用户名: 密码: 验证码:
传热学反问题模糊推理方法的继续研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传热学反问题(Inverse Heat Transfer Problems,IHTP)是根据传热系统的部分输出信息反向求解热物性参数、几何形状、边界条件等未知参数。IHTP广泛存在于航空航天工程、动力工程、机械工程、建筑工程、生物医疗工程等领域。对传热学反问题开展深入的研究具有极其重要的科学和工程价值。
     IHTP为一类典型的不确定性推理问题。传统的反演方法可归类为确定性推理方法,利用传统反演方法研究传热学反演问题不可避免的存在不足。分散模糊推理(DFI)方法是建立在模糊集合理论基础上的一种典型的不确定性推理方法,该方法对输入信息具有明显的抗干扰能力,可以有效利用不精确、不确定及不完备的输入信息进行推理和决策,表现出较好的抗不适定性。本文在我们已有研究成果的基础上,对应用DFI方法求解传热学反问题进行了更加深入的研究,主要研究内容及成果包括以下五个方面:
     ①以圆柱表面热流分布反演问题为例,建立基于灵敏度加权的分散模糊推理(SDFI)方法。通过数值试验,讨论了待反演热流分布的初始猜测值、观测点数目、测量误差以及测量误差与观测点数目耦合等条件对反演结果的影响,并与共轭梯度法(CGM)和遗传算法(GA)进行了对比,在此基础之上,总结了DFI方法的有效性和优越性。
     ②研究了模糊论域的选取问题,针对依赖于专家经验的固定论域DFI方法及现有变论域DFI方法所具有的局限性,借助目标函数的收敛特性对模糊论域进行自适应调整,提出新的变论域分散模糊推理(VDFI)方法。以二维平板边界温度分布反演为例,讨论了不同论域对反演结果的影响,并与定论域DFI方法及现有变论域DFI方法进行了比较,讨论了测量误差及测点数目对文VDFI方法反演结果的影响,证明了VDFI方法的有效性和优越性。
     ③研究了SDFI方法的综合协调问题,以三维平板传热反问题为例,指出了SDFI的反演结果容易受边界条件影响的不足,针对此问题,根据传热系统的局部影响特性,提出了基于空间正态分布加权的分散模糊推理(SND-DFI)方法。利用SDN-DFI反演了三维平板表面对流换热系数,系统讨论了方差参数对SND-DFI反演结果的影响,给出了方差参数的选择范围,同时也讨论了测量误差对反演结果的影响,并与SDFI方法的反演结果进行了对比,证明了SND-DFI方法的有效性和优越性。
     ④根据传热系统的局部影响特性,提出了基于测量空间分解的分散模糊推理(MSD-DFI)方法。该方法是针对具有明显空间分布特性、待反演参数及测点数较多的传热学反问题提出的。对于此类传热系统,DFI的加权矩阵通常比较庞大且难以建立。MSD-DFI方法不需建立综合协调矩阵,其基本思想为:通过分析传热学正问题,对测量空间(即测量信息)在空间域上进行分解,为每一个待反演参数构造一个测量子空间;在每个测量子空间内进行模糊推理,获得推理输出;最后,利用本文提出的模糊解耦方案,对模糊推理输出进行解耦协调,实现对待反演参数的反演。应用MSD-DFI方法研究了加热炉内壁温度分布反演问题,讨论了初始猜测值、测量误差对反演结果的影响,并与SDFI方法进行对比,说明了MSD-DFI的有效性。
     ⑤将DFI方法应用于非稳态传热学反问题研究。针对顺序函数法(SFSM)求解传热学反问题时反演结果严重依赖未来时间信息、最优未来时间步难以准确获得、对测量误差敏感等问题,在应用DFI研究稳态传热反问题基础上,通过对测量信息在时间域上进行分散与综合协调,提出了求解非稳态传热反问题的DFI方法。应用DFI研究了一维平板表面热流反演问题,并与SFSM进行对比,讨论了未来时间步、最优未来时间步、测量误差以及测点位置对反演结果的影响。试验结果表明,DFI能更加有效地利用未来时间的测量信息反演平板表面热流,降低了对未来时间信息的敏感性,即使利用非最优未来时间的测量信息也能获得非常好的反演结果;DFI能够有效利用不精确、不确定的信息进行推理和决策的优势得以体现,降低了对测量误差的敏感程度,表现出更好的抗不适定性。
The inverse heat transfer problems (IHTP) involves the estimation of the unknownparameters, such as the thermophysical properties, the geometrical shape, the boundaryconditions, based on the output information of the heat transfer systems. The IHTP iswidespread in the fields of aerospace, power engineering, mechanical engineering,constructional engineering and biomedical Engineering. It is of important scientific andengineering significance to further research the IHTP.
     IHTP is a typical uncertain reasoning subject, the traditional optimizationalgorithms are can be classed as certain methods. The deficiencies are unavoidablewhen these traditional optimization algorithms are applied to research the IHTP. Thedecentralized fuzzy inference (DFI) method is a typical uncertain reasoning methodbased on the fuzzy set theory. The DFI method owns strong capacity of resistingdisturbance to input information. It can effectively use the imprecise and incompleteinformation to perform the reasoning process and possesses better anti-ill-posedcharacter. In this paper, the DFI method for IHTP is further researched on the basis ofour prior research, and the main works of this paper are as follows:
     ①Take the problem of determining the heat flux on the surface of a cylinder forexample. The sensitivity weighting decentralized fuzzy inference (SDFI) method isapplied to solve this IHTP. Numerical experiments are conducted, the influence of theinitial guesses of the unknown heat flux, the measurement errors, and the couplingeffects of measurement errors and measurement points number on the inversion resultsare discussed. Comparisons with the conjugate gradient method (CGM) and the geneticalgorithm (GA) are also conducted. Finally, the validity and superiority of SDFI aresummarized.
     ②The determining of the universes of discourse of DFI is researched. For thelimitations of the DFI method based on the fixed universes of discourse scheme relyingon the expertise and the existing DFI method based on the variable universes ofdiscourse scheme, the converging character of the objective function is considered to setup the self-adaptive adjustment strategy for the universes of discourse, and a new DFImethod based variable universes of discourse, the VDFI method, is proposed. The VDFIis performed to image the temperature boundary of a two-dimensional flat. The effect ofdifferent universes of discourse on the inverse results are researched, comparisons with the DFI method based on the fixed and the existing variable universes of discourse areconducted. The results show the practicality of our VDFI method. The influence of themeasurement errors and measurement points number on the inversion results are studied,and the validity and superiority of our VDFI method are proved.
     ③The synthetic issue of SDFI is studied, taking a three-dimensional IHTP forexample, the shortcoming that the inverse results are sensitive to the boundaryconditions of SDFI method is point out. For this problem, we propose the spatialnormal distribution weighting DFI (SND-DFI) method. The SND-DFI method isapplied to estimate the convective heat transfer coefficient of a three-dimensional flat.The effects of variance parameters on the SND-DFI method are detailed and the suitableranges of variance parameters are given. The influence of the measurement errors on theinversion results are studied, comparisons with the SDFI method are researched. Theresults show the validity and superiority of our SND-DFI method.
     ④The DFI method based on the measured space decomposition (MSD-DFImethod) is presented relying on the local influence characteristic of heat transfer system.The MSD-DFI is proposed for the IHTP that the local effect characteristic is apparent,and the number of unknown parameters and measurement points are large. For this kindof heat transfer systems, the synthesizing matrix is large and often difficult to set up.The MSD-DFI method has no need of the synthesizing matrix. The basic ideas ofMSD-DFI method are: Firstly, the measured space (namely, the measured information)decomposition is conducted according to the local influence by analyzing the direct heattransfer problem, and the measured subspaces corresponding to every estimatedparameter is built; Then, the fuzzy inference are performed for each measuredsubspaces to obtain the fuzzy inference outputs; Finally, the fuzzy decoupling algorithmproposed in this paper are applied to the fuzzy inference outputs, and the inverseprocess is accomplished. The MSD-DFI method is applied to estimate the temperaturedistribution of furnace inner surface. The influences of the initial guesses of thetemperature distribution and the measurement errors on the inversion results areresearched. Comparisons with the SDFI method are researched. The results show thevalidity of MSD-DFI method.
     ⑤The DFI method is applied to the unsteady IHTP. For the problems that theinverse results are depending on the number of future time steps, and the optimalnumber of future time steps is difficult to obtain, and the inverse results are sensitive tothe measurement errors when the Sequential Function Specification Method (SFSM) is used for solving the unsteady IHTP, the DFI method for the unsteady IHTP bydecomposing and synthesizing the measured information in the temporal domain basedon our previous study on the steady IHTP. The heat flux of one-dimensional flat isdetermined by the DFI method, the influence of the number of future time steps, theoptimal number of future time steps, measurement errors and measurement position onthe estimated results are discussed. Comparisons with the SFSM are discussed. Theresults show that the DFI can more effective use the measured infoemation in the futuretime to estimate the heat flux availabl, even without the optimal number of future timesteps, and significantly reduces the dependence of the estimated results on the numberof future time steps, and also weakens the effects of measurement errors. The DFIpossesses higher accuracy than the SFSM. The advantages that DFI can effectivelyutilize imprecise, uncertain and incomplete information to infer and make strategicdecisions are reflected, DFI possesses better anti-ill-posed character.
引文
[1]朱丽娜.二维稳态传热系统的模糊反演及应用[D].重庆:重庆大学博士学位论文,2011.
    [2]于达仁,范轶,徐志强.基于分布信息融合的直流锅炉燃料量信号重构[J].中国电机工程学报,2004,24(2):191-195.
    [3] Zhou H.C., Lou C., Cheng Qiang, et al. Experimental investigations on visualization ofthree-dimensional temperature distributions in a large-scale pulverized-coal-fired boilerfurnace[J]. Proceedings of the Combustion Institute,2005,30(1):1699-1706.
    [4] Zhou H.C., Han S.D. Han. Simultaneous reconstruction of temperature distribution,absorptivity of wall surface and absorption coefficient of medium in a2-D furnace system [J].International Journal of Heat and Mass Transfer,2003,46(14):2645-2653.
    [5] Liu D., Wang F., Yan J.H., et al. Inverse radiation problem of temperature field inthree-dimensional rectangular enclosure containing inhomogeneous, anisotropically scatteringmedia[J]. International Journal of Heat and Mass Transfer,2008,51(13):3434-3441.
    [6]刘吉臻,刘焕章,常太华,等.部分烟气信息下锅炉煤质分析模型[J].中国电机工程学报,2007,27(14):1-5.
    [7] Piotr Duda, Jan Taler. A new method for identification of thermal boundary conditions inwater-wall tubes of boiler furnaces [J]. International Journal of Heat and Mass Transfer,2009,52(5-6):1517-1524.
    [8] Borukhov V.T., Tsurko V.A., Zayats G.M.. The functional identification approach fornumerical reconstruction of the temperature-dependent thermal-conductivity coefficient [J].International Journal of Heat and Mass Transfer,2009,52(1):232-238.
    [9]王广军,邓良才,陈红.锅炉汽温对象逆动力学过程模糊辨识[J].中国电机工程学报,2007,27(20):76-80.
    [10]钱炜祺,蔡金狮.再入航天飞机表面热流密度辨识[J].宇航学报,2000,21(4):1-6.
    [11]蔡泽民.基于图像处理技术的飞行器表面传热测量与计算方法[D].中山:中山大学博士学位论文,2009.
    [12]何开锋,汪清,钱炜祺,和争春.高超声速飞行器气动力/热参数辨识研究综述[J].实验流体力学,2011,25(5):99-104.
    [13]张石玉.气动热流辨识方法研究[C].北京力学会第18届学术年会论文集:流体力学,2012: II45-II46.
    [14] Northover E.W., Hitchcock J.A.. A heat flux meter for use in boiler furnaces [J]. Jourbal ofScientific Instruments,1967,44(5):371-374.
    [15] S Neal.B.H.C., Northover E.W., The measurement of radiant heat flux in large boilerfurnances-I. Problems of ash deposition relating to heat flux, Int. J. Heat Mass Transfer23(1980)1015–1021.
    [16] Arai N., Matsunami A., Churchil S.W.. A review of measurements of heat flux densityapplicable to the field of combustion, Exp. Thermal Fluid Sci.12(1996)452–460.
    [17] Taler J.. Measurement of heat flux to steam boiler membrane water walls, VGB Kraftwerkstechnik70(1990)540–546.
    [18] Valero A., Cortes C.. Ash fouling in coal-fired utility boilers. Monitoring and optimization ofon-load cleaning [J]. Progress in Energy and Combustion Science,1996,22(2):189–200.
    [19] Teruel E., Cortés C., Díez L.I., Arauzo I.. Monitoring and prediction of fouling in coal-firedutility boilers using neural networks [J]. Chemical Engineering Science,2005,60(18):5035–5048.
    [20] Seeger M., Taler J., Konstruktion und Einsatz transportabler W rmeflu sondenzurBestimmung der Heizfl chenbelastung in Feuerr umen, Fortschr.-Ber. VDI-Z., Reihe6, Nr.129, Düsseldorf, VDI-Verlag,1983.
    [21] Taler J.. A method of determining local heat flux in boiler furnaces [J]. International Journalof Heat and Mass Transfer,1992,35(6):1625–1634.
    [22] Fang Z., Xie D., Diao N., Grace J.R., Jim Lim C., A new method for solving the inverseconduction problem in steady heat flux measurement [J]. International Journal of Heat andMass Transfer,1997,40(6):3947–3953.
    [23] Luan W., Bowen B.D., Lim C.J., Brereton C.M.H., Grace J.R.. Suspension-to-membrane-wallheat transfer in a circulating fluidized bed combustor [J]. International Journal of Heat andMass Transfer,2000,43(7):1173–1185.
    [24] Duda, P., Taler, J. A new method for identification of thermal boundary conditions inwater-wall tubes of boiler furnaces [J]. International Journal of Heat and Mass Transfer,2009,52(5):1517-1524.
    [25] Taler J., Duda P., Taler D., et al. Identification of local heat flux to membrane water walls insteam boilers [J]. Fuel,2009,88(2):305-311.
    [26] Fang Z.H., Xie D.L., Diao N.R. et al. A new method for solving the inverse conductionproblem in steady heat flux measurement [J]. International Journal of Heat and Mass Transfer,1997,40(16):3947-3953.
    [27]张志正,孙保民,徐鸿,等.沁北发电厂超临界压力电站锅炉水冷壁截面温度场分析[J].中国电机工程学报,2006,26(7):25-28.
    [28]张志正,曲志忠,刘汉政,等.膜式水冷壁特定点温度相关性的研究[J].动力工程,2005,25(6):25-28.
    [29]张志正,孙保民,郭永红,等.超超临界压力锅炉水冷壁危险点壁温在线监测方法研究[J].中国电机工程学报,2005,25(3):130-134.
    [30] Huang C.H., Jan L.C., Shih Albert J.. A three-dimensional inverse problem in estimating theapplied heat flux of a titanium drilling–Theoretical and experimental studies [J]. InternationalJournal of Heat and Mass Transfer,2007,50(17-18):3265-3277.
    [31] Chen H.T., Chou J.C., Wang H.C.. Estimation of heat transfer coefficient on the vertical platefin of finned-tube heat exchangers for various air speeds and fin spacings [J]. InternationalJournal of Heat and Mass Transfer,2007,55(1-2):45-47.
    [32] Chen H.T., Hsu W.L.. Estimation of heat transfer coefcient on the fin of annular-finned tubeheat exchangers in natural convection for various fin spacings [J]. International Journal ofHeat and Mass Transfer,2007,50(9-10):1750-1761.
    [33] Chen H.T., Hsu W.L.. Estimation of heat-transfer characteristics on a vertical annular circularfin of finned-tube heat exchangers in forced convection [J]. International Journal of Heat andMass Transfer,2008,51(7-8):1920-1932.
    [34] Huang C.H., Yuan I-Cha, Ay H.. A three-dimensional inverse problem in imaging the localheat transfer coefcients for plate finned-tube heat exchangers [J]. International Journal ofHeat and Mass Transfer,2003,46(19):3629-3638.
    [35] Chen H.T., Song J.P., Wang Y.T.. Prediction of heat transfer coefficient on the fin insideone-tube plate finned-tube heat exchangers [J]. International Journal of Heat and MassTransfer,2005,48(13):2697-2707.
    [36] Chen H.T., Chou J.C.. Investigation of natural-convection heat transfer coefficient on avertical square fin of finned-tube heat exchangers [J]. International Journal of Heat and MassTransfer,2006,49(17-18):3034-3044.
    [37] Zhang L.H., Tai B.L., Wang G.J., Zhang K.B., Sullivan S., Shih A.J.. Thermal model toinvestigate the temperature in bone grinding for skull base neurosurgery [J]. MedicalEngineering&Physics,2013,35(10):1391-1398.
    [38] Tai B.L., Zhang L.H., Wang A.C., Sullivanb S., Wang G.J., Shiha A.J. Temperature predictionin high speed bone grinding using motor PWM signal [J]. Medical Engineering&Physics,2013,35(10):145-1549.
    [39] Cheng C.H., Chan C.K., Lai G.J.. Shape design of millimeter-scale air channels for enhancingheat transfer and reducing pressure drop [J]. International Journal of Heat and Mass Transfer,2008,51(9-10):2335–2345.
    [40] Monteau J.Y.. Estimation of thermal conductivity of sandwich bread using an inverse method[J]. Journal of Food Engineering,2008,85(1):132–140.
    [41]宋志文,肖建庄,赵勇.基于试验测定的混凝土热工参数反演计算[J].同济大学学报(自然科学版),2010,36(1):35-38.
    [42]张宇鑫,宋玉普,王登刚,张燕.基于遗传算法的混凝土一维瞬态导热反问题[J].2003,20(5):87-91.
    [43] Beck J.V., Blackwell B., Clair C.R.ST.. Inverse heat conduction ill-posed problems [M]. NewYork: John Wiley&Sons,1985.
    [44] Alifanov, O.M. Inverse heat transfer problems [M].Spring-Verlag, Berlin,1994.
    [45]王登刚,刘迎曦,李守巨.二维稳态导热反问题的正则化解法[J].吉林大学自然科学学报,2000,2:56-60.
    [46]薛齐文,魏伟.非线性热传导反问题参数辨识[J].工程力学,2010,27(8):5-9.
    [47]薛齐文,杨海天.二阶非定常多宗量热传导反问题的正则解[J].力学学报,2007,39(6):774-780.
    [48] Shen S.Y.. A Numerical Study of Inverse Heat Conduction Problems [J]. Computers andMathematics with Applications,1999,38(7-8):173-188.
    [49] Hon Y.C., Wei T.. A fundamental solution method for inverse heat conduction problem [J].Engineering Analysis with Boundary Elements,2004,28():489–495.
    [50] Wei T., Li Y.S.. An inverse boundary problem for one-dimensional heat equation with amultilayer domain [J]. Engineering Analysis with Boundary Elements,33(2009)225–232.
    [51] Pourgholi R., Rostamian M.. A numerical technique for solving IHCPs using Tikhonovregularization method [J]. Applied Mathematical Modelling,34(2010):2102–2110.
    [52] Hazanee A., Lesnic D.. Determination of a time-dependent heat source from nonlocalboundary conditions [J]. Engineering Analysis with Boundary Elements37(2013):936–956.
    [53] Xiong X.T., Liu X.H., Yan Y.M., Guo H.B.. A numerical method for identifying heat transfercoefficient [J]. Applied Mathematical Modelling34(2010):1930–1938.
    [54] Xiong X.T., Wang J.X.. A Tikhonov-type method for solving a multidimensional inverse heatsource problem in an unbounded domain [J]. Journal of Computational and AppliedMathematics236(2012):1766–1774.
    [55] Cheng W., Fu C.L., Qian Z.. A modified Tikhonov regularization method for a sphericallysymmetric three-dimensional inverse heat conduction problem [J]. Mathematics andComputers in Simulation,75(2007):97–112.
    [56] Yang F., Fu C.L.. A simplified Tikhonov regularization method for determining the heatsource [J]. Applied Mathematical Modelling,34(2010):3286–3299.
    [57] Lu S., Heng Y., Mhamdi A.. A robust and fast algorithm for three-dimensional transientinverse heat conduction problems [J]. International Journal of Heat and Mass Transfer55(2012):7865–7872.
    [58] Tikhonov AN, Arsenin VY. On the solution of ill-posed problems. New York: Wiley;1977.
    [59] Hansen P.C.. Regularization tools: A Matlab package for analysis and solution of discreteill-posed problems. Numerical Algorithms,6(1994):1-35.
    [60] Huang C.H., Yuan I.C., Ay H.. A three-dimensional inverse problem in imaging the local heattransfer coefficients for plate finned-tube heat exchangers [J]. International Journal of Heatand Mass Transfer,2003,46(19):3629–3638.
    [61] Huang C.H., Jan L.C., Shih A.J.. A three-dimensional inverse problem in estimating theapplied heat flux of a titanium drilling-Theoretical and experimental studies [J]. InternationalJournal of Heat and Mass Transfer,2007,50(17-18):3265–3277.
    [62] Huang C.H., Chen C.A.. A three-dimensional inverse geometry problem in estimating thespace and time-dependent shape of an irregular internal cavity [J]. International Journal ofHeat and Mass Transfer,2009,52(7-8):2079-2091.
    [63] Huang C.H., Chaing M.T.. A transient three-dimensional inverse geometry problem inestimating the space and time-dependent irregular boundary shapes [J]. International Journalof Heat and Mass Transfer,2008,51(21):5238–5246.
    [64] Dantas L.B., Orlande H.R.B., Cotta R.M.. An inverse problem of parameter estimation forheat and mass transfer in capillary porous media [J]. International Journal of Heat and MassTransfer,2003,46(9):1587–1598.
    [65] Kim K.W., Baek S.W.. Inverse radiation–conduction design problem in a participatingconcentric cylindrical medium [J]. International Journal of Heat and Mass Transfer,2007,50(13):2828–2837.
    [66]王艳武,杨立,孙丰瑞.基于Levenberg-Marquardt算法的内部缺陷导热反问题研究[J].光电工程,2008,35(1):85-89.
    [67]范春利,孙丰瑞,杨立.红外系统的定量缺陷识别算法研究[J].电子器件,2006,29(3):878-882.
    [68]杨晨,高思云.基于热传导反问题的各向异性材料热物性预测方法[J].化工学报,2007,2007,58(6):1378-1384.
    [69]杨晨, Ulrich Gross基于热传导逆问题方法预测材料热物性参数[J].化工学报,2005,56(2):2415-2420.
    [70]李斌,刘林华.一种基于边界元离散的导热问题几何边界识别算法[J].中国电机工程学报,200828(20):38-43.
    [71]李斌,刘林华.基于双倒易边界元法的非稳态导热几何边界识别[J].中国电机工程学报,200929(5):38-43.
    [72]范春利,孙丰瑞,杨立.基于红外测温的试件内部缺陷的识别算法研究[J].工程热物理学报,2007,28(2):304-306.
    [73]范春利,孙丰瑞,杨立.二维缺陷的定量识别技术研究[J].热科学与技术,2008,7(3):262-267.
    [74]范春利,孙丰瑞,杨立.基于红外测温的圆管内壁不规则边界的识别算法研究[J].热科学与技术,2006,5(2):112-117.
    [75]朱丽娜,王广军,陈红.采用共轭梯度法求解多变量稳态传热反问题[J].中国电机工程学报,2011,31(8):58-61.
    [76]杨海天,胡国俊.共轭梯度法求解多宗量稳态传热反问题[J].应用基础与工程科学学报,2002,10(2):174-181.
    [77]薛齐文,杨海天.共轭梯度法求解非线性多宗量稳态传热反问题[J].计算力学学报,2005,22(1):51-54.
    [78]薛齐文,杨海天,胡国俊.共轭梯度法求解多宗量瞬态热传导反问题[J].计算物理,2005,22(1):56-60.
    [79]薛齐文,魏伟,杜秀云.共轭梯度法求解稳态湿热耦合多宗量反问题[J].大连交通大学学报,2009,30(1):5-8.
    [80] O Alifanov.M., Kerov N.V., Determination of thermal load parameters by solving thetwo-dimensional inverse heat-conduction problem, J. Eng. Phy. Thermophys,41(1981)1049-1053.
    [81] Sawaf B., M zisik.N., Determining the constant thermal conductivities of orthotropicmaterials by inverse analysis, International Communications in Heat and Mass transfer,22(1995)201-211.
    [82] Liu L.H., Tan H.P., Yu Q.Z.. Inverse radiation problem of sources and emissivities inone-dimensional semitransparent media [J]. International Journal of Heat and Mass Transfer,2001,44(1):63-72.
    [83] Park H.M., Yoo D.H.. A multidimensional inverse radiation problem of estimating thestrength of a heat source in participating media [J]. International Journal of Heat and MassTransfer,2001,44(15):2949–2956.
    [84] Prud'homme M., T Hung Nguyen.. Solution of inverse free convection problems by conjugategradient method: effects of Rayleigh number [J]. International Journal of Heat and MassTransfer44(2001):2011-2027.
    [85] Prud'homme M., JasminS.. Determination of a heat source in porous medium with convectivemass difusion by an inverse method [J]. International Journal of Heat and Mass Transfer46(2003):2065–2075.
    [86] Li H.Y., Yan W.M.. Identification of wall heat flux for turbulent forced convection by inverseanalysis [J]. International Journal of Heat and Mass Transfer46(2003):1041–1048.
    [87] Cheng C.H, Chang M.H. Shape design for a cylinder with uniform temperature distributionon the outer surface by inverse heat transfer method [J]. International Journal of Heat andMass Transfer,2003,46(1):101–111.
    [88] Lin D.T.W., Yan W.M., Li H.Y.. Inverse problem of unsteady conjugated forced convection inparallel plate channels [J] International Journal of Heat and Mass Transfer,2008,51(5-6):993–1002.
    [89] Huang C.H, Chen C.W. A boundary element-based inverse problem in estimating transientboundary conditions with conjugate gradient method [J]. International journal of NumericalMethods Engineering,1998,42(5):943-965.
    [90] Huang C.H., Chao B.H.. An inverse geometry problem in identifying irregular boundaryconfigurations [J]. International Journal of Heat and Mass Transfer,1997,40(9):2045-2053.
    [91] Huang C.H., Chaing M.T., A three-dimensional inverse geometry problem in identifyingirregular boundary configurations [J]. International journal of Thermal Sciences,2009,48(3):502-513.
    [92] Huang, C.H., Wang, S.P. A three-dimensional inverse heat conduction problem in estimatingsurface heat flux by conjugate gradient method [J]. International Journal of Heat and MassTranfer,1999,42(18):3387-3403.
    [93] Huang C.H. Inverse heat conduction problem of estimating boundary fluxes in an irregulardomain with conjugate gradient method [J]. International Journal of Heat and Mass Transfer,1998,34(1):47-54.
    [94] Huang, C.H., Shih, C.C. A shape identification problem in estimating simultaneously twointerfacial configurations in multiple region domain [J]. Applied Thermal Engineering,2006,26(1):77-88.
    [95] Huang C.H., Yeh C.Y.. An inverse problem in simultaneous estimating the Biot numbers ofheat and moisture transfer for a porous material [J]. International Journal of Heat and MassTransfer,2002,45(23):4643–4653.
    [96] Huang C.H., Huang C.Y.. An inverse biotechnology problem in estimating the opticaldiffusion and absorption coefficients of tissue [J]. International Journal of Heat and MassTransfer,2004,47(3):447–457.
    [97] Charles Elegbede. Structural reliability assessment based on particles swarm optimization [J].Structural Safety,2005,27(2):171–186.
    [98]张宇鑫,宋玉普,王登刚,张燕.基于遗传算法的混凝土一维瞬态导热反问题[J].工程力学,2003,20(5):87-91.
    [99]侯曙光,黄晓明,汪双杰.基于优化遗传算法的冻土路基热物性参数反演[J].公路交通科技,2005,22(1):26-28.
    [100]李守巨,刘迎曦.改进遗传算法在非线性热传导参数识别中的应用[J].工程力学,2005,22(3):72-76.
    [101]朱岳明,王弘,闪黎.混凝土热学参数反问题求解的遗传算法[J].人民长江,2004,35(11):55-57.
    [102]王秀春,智会强,毛一之,杨增军,韩鹏.用遗传算法求解多维导热反问题[J].核动力工程,2005,26(1):23-27.
    [103]方萍,金峰,邢振华,彭昌海,吴智深.基于遗传算法的多孔体一维瞬态导热反问题[J].重庆理工大学学报(自然科学),2010,24(11):34-37.
    [104]方萍,金峰,邢振华,彭昌海,吴智深.建筑围护材料热导率反演模拟研究[J].测试技术学报,2011,25(1):35-39.
    [105]王素云.飞秒激光加热金属薄膜反演问题的研究[D].石家庄:石家庄铁道大学硕士学位论文,2013.
    [106] Adili, A., Hasni, C., Kerkeni, C., et al. An inverse problem based on genetic algorithm toestimate thermophysical properties of fouling [J]. International Journal of Thermal Science,2010,49(6):889-900.
    [107] Liu, F.B. A modified genetic algorithm for solving the inverse heat transfer problem ofestimating plan heat source [J]. International Journal of Heat and Mass Transfer,2008,51(15-16):3745-3752.
    [108] Liu, F.B. A hybrid method for the inverse heat transfer of estimating fluid thermalconductivity and heat capacity [J]. International Journal of Thermal Science,2011,50(5):718-724.
    [109]杨鹏.神经网络算法在导热反问题中的应用[D].天津:河北工业大学硕士学位论文,2003.
    [110]韩莉果,杨鹏.神经网络算法在确定热物性参数中的应用[J].河北工业大学学报,2003,32(3):114-116.
    [111]寇蔚,孙丰瑞,杨立.神经网络求解传热反问题的可行性研究[J].激光与红外,2004,34(5):347-349.
    [112]寇蔚,孙丰瑞,杨立.基于随机有限元与神经网络的传热参数的智能辨识[J].红外应用,2005,27(1):70-74.
    [113]王秀春,智会强,毛一之,杨增军,韩鹏.多宗量导热反问题求解的神经网络法[J].航空动力学报,2004,19(4):525-529.
    [114]王旭东,姚曼,尹合壁,郭亮亮,刘晓,于艳.神经元网络应用于圆坯连铸结晶器传热计算[J].北京科技大学学报,2008,30(2):184-188.
    [115]韩帅.基于BP神经网络的高炉炉缸内衬侵蚀识别[D].沈阳:东北大学硕士学位论文,2010.
    [116] Deng S., Hwang Y.. Applying neural networks to the solution of forward and inverse heatconduction problems [J]. International Journal of Heat and Mass Transfer,2006,49(25-26):4732–4750.
    [117] Deng S., Hwang Y.. Solution of inverse heat conduction problems using Kalmanfilter-enhanced Bayesian back propagation neural network data fusion [J]. InternationalJournal of Heat and Mass Transfer,2007,50(11-12):2089–2100.
    [118] Sablani, S.S., A neural network approach for non-iterative calculation of heat transfercoefficient in fluid-particle systems [J]. Chemical Engineering and Processing,2001,40(4):363-369.
    [119] Sablani, S.S., Kacimov, A., Perret, A.S, et al. Non-iterative estimation of heat transfercoefficients using artificial neural network models [J]. International Journal of ThermalScience,2005,48(3-4):665-679.
    [120] Aquino W., Brigham J.C.. Self-learning finite elements for inverse estimation of thermalconstitutive models [J]. International Journal of Heat and Mass Transfer,2006,49(15-16):2466–2478.
    [121]文哲希,吕硕,何雅玲.预测喷雾冷却热流密度反问题的粒子群算法研究[J].工程热物理学报,2013,34(8):1506-1510.
    [122]张涛,卢玫,陶亮,李博汉.基于粒子群优化算法的寻源导热反问题研究[J].上海理工大学学报,2013,35(4):376-381.
    [123]周远,徐映红,徐定华.结合粒子群算法的一类双层纺织材料厚度设计反问题[J].纺织学报,2013,34(6):40-45.
    [124]陈亚文,邹学文.二维非稳态对流扩散方程反问题的混沌粒子群算法[J].西安工业大学学报,2011,31(5):470-473.
    [125]周铭.热源未知的热传导反问题高效并行计算[D].武汉:武汉理工大学硕士学位论文,2011.
    [126]蔻蔚,孙丰瑞,杨立.粒子群优化算法用于缺陷的红外识别研究[J].激光与红外,2006,36(8):710-714.
    [127] Lee, K.H., Baek, S.W., Kim, K.W. Inverse radiation analysis using repulsive particle swarmoptimization algorithm [J]. International Journal of Heat and Mass Transfer,2008,51(11-12):2772-2783.
    [128] Vakili S., Gadala M.S. Effectiveness and efficiency of particle swarm optimization techniquein inverse heat conduction analysis [J]. Numerical Heat Transfer Part B: Fundamentals,2009,56(2):119-141.
    [129]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:同济大学出版社哈尔滨工业大学出版社,1998.
    [130] Wang G.J., Zhu L.N., Chen H.. A decentralized fuzzy inference method for solving thetwo-dimensional steady inverse heat conduction problem of estimating boundary condition [J].International journal of heat and mass transfer.2011,54(13):2782-2788.
    [131] Wang G.J., Luo Z.M., Zhu L.N., Chen H., Lihui Zhang. Fuzzy estimation for temperaturedistribution of furnace inner surface [J]. International Journal of Thermal Sciences,2012,51:84-90.
    [132] Zhu L.N., Wang G.J., Chen H., Luo Z.M.. Inverse estimation for heat flux distribution at themetal-mold interface using fuzzy inference [J]. Journal of heat transfer-transactions of theASME.2011,133(8):081602.
    [133] Luo Z.M., Wang G.J., Chen H.. Decentralized fuzzy inference method for estimating thermalboundary condition of a heated cylinder normal to a laminar air stream [J]. Computers&Mathematics with Applications,2013,66(10):1869-1878.
    [134] Wang K., Wang G.J., Chen H., Zhu L.N.. Estimating thermal boundary conditions of boilermembrane water-wall using decentralized fuzzy inference with sensitivity weighting [J].Applied Thermal Engineering,2014,66(1-2):309-317.
    [135]朱丽娜,王广军,张丽慧.稳态传热反问题的模糊推理方法[C].中国工程热物理学会传热传质学学术会议论文集,2010:93-96.
    [136]罗兆明,王广军,朱丽娜.炉子内壁不规则几何形状的模糊反演[J].工程热物理学报,2013,34(10):1906-1909.
    [137]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [138] Lin J.H., Chen C.K., Yang Y.T.. The inverse estimation of the thermal boundary behavior of aheated cylinder normal to a laminar air stream [J]. International Journal of Heat and MassTransfer.2000,43(21):3991-4001.
    [139]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006.
    [140] Alifanov O.M.. Solution of an inverse problem of heat conduction by iteration methods [J].Journal of Engineering Physics,1974,26(4):471-476.
    [141]李洪兴.变论域自适应模糊控制器[J]. SCIENCE IN CHINA (Series E),1999,29(1):32-42.
    [142]袁正中.基于变论域模糊推理的二维稳态传热反问题研究[M].重庆:重庆大学硕士学位论文,2013.
    [143] Fan C.L., Sun F.R., Yang L.. A Numerical Method on Inverse Determination of Heat TransferCoefficient Based on Thermographic Temperature Measurement [J]. Chinese Journal ofChemical Engineering,2008,16(6):901-908.
    [144] Bailey-Kellogg C., Zhao F.. Influence-based model decomposition for reasoning aboutspatially distributed physical systems [J]. Artificial Intelligence,2001,130(2):125-166.
    [145] Li H.X., Zhang X.X., Li S.Y. A Three-Dimensional Fuzzy Control Methodology for a Class ofDistributed Parameter Systems [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,15(3),2007,470-481.
    [146]李文辉,刘树德.高纯度塔简化静态解藕的分析与改进[J].炼油化工自动化,1996,2:19-21.
    [147] Li H.Y., Yan W.M.. Identification of wall heat flux for turbulent forced convection by inverseanalysis[J]. International journal of heat and mass transfer,2003,46(6):1041-1048.
    [148] Beck J.V., Blackwell B., St.Clair C.R.. Inverse heat conduction: III-posed problems [M]. NewYork: Wiley Press,1985:218-237.
    [149] Beck J.V. Surface Heat Flux Determinations Using an Integral Method [J]. NuclearEngineering and Design,1968,7(2):170-178.
    [150] Beck J.V. Nonlinear estimation applied to the nonlinear inverse heat conduction problem [J].International Journal of Heat and Mass Transfer,1970,13(4):703-716.
    [151] Beck J.V. Criteria for comparison of methods of solution of the inverse heat conductionproblem [J]. Nuclear Engineering and Design,1979,53(1):11-22.
    [152]张丽慧,王广军,陈红,罗兆明.基于最优未来时间步求解非稳态导热反问题[J].电机工程学报,2012,32(2):99-103.
    [153]程俊国,张洪济,张幕瑾,顾念祖.高等传热学[M].重庆:重庆大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700