用户名: 密码: 验证码:
大豆叶片衰老过程中PSⅡ功能和光破坏防御机制的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用大豆叶片为实验材料,通过测定叶绿素荧光参数、气体交换、蛋白及色素等,着重研究了其衰老过程中PSII功能及光破坏防御机制的动态变化规律。主要结果如下:
    1.随着衰老的进行,光呼吸与光合都呈下降趋势,米尔反应却呈波动式变化,用乙烯利诱导衰老的前3天内,依赖米尔反应的电子传递逐渐上升,3天后又逐渐下降,但在整个衰老过程中依赖米尔反应的电子传递与PSII中总电子传递的比值不断增加。
    2.NPQ,qf和(Z+A)/(Z+A+V)在整个衰老过程中并不呈现单一变化趋势。用乙烯利诱导衰老的前3天内,虽然PSII实际光化学效率(ФPSII)下降,但NPQ,qf和(Z+A)/(Z+A+V)逐渐增加;诱导衰老3天后,这3个参数又呈下降趋势。在整个衰老过程中,qI一直呈现上升趋势。
    3.在衰老初期,虽然ФPSII和qP下降了,但叶片中过剩光能(通过光化学途径和依赖NPQ耗散后所剩的光能,用 (1-qP)/NPQ来衡量)与对照(功能叶)相比变化不大;然而在极度衰老叶片中,过剩光能急剧增加。
    4.在光系统II中,随着衰老,PSII原初光化学反应能力逐渐下降,而QA的氧化还原程度却逐渐增加。另外通过瞬时荧光曲线和Vt曲线可知衰老叶片中PSII反应中心QB位点发生了变化,并且我们认为该位点的变化导致了QA到QB的电子传递受到抑制(受体端抑制),并最终引起PSII原初光化学反应的降低。
    5.单位激发截面所吸收的光量子(ABS/CSo)以及用于电子传递的光量子(ETO/CSO)随着衰老也逐渐下降。用乙烯利诱导衰老过程中,单位激发截面活性反应中心数目(RC/CSo)逐渐下降,相反单位激发截面所
    
    耗散的光量子(DIO/CSO)逐渐增加。
    6. 随着衰老,虽然PSII平均原初光化学反应降低,但单位反应中心捕获的光量子(TRo/RC)和用于电子传递的光量子(ETo/RC)增加了,这可能是由于失活反应中心将其捕获的激发能传给具有活性的反应中心并导致电荷分离所致。
    7.叶绿素,可溶性蛋白,类囊体膜脂脂肪酸不饱和度和紫黄质脱环氧化酶(VDE)蛋白量在衰老过程中逐渐下降。
    8.自然光照条件下,田间大豆叶片光抑制主要是由PSII反应中心可逆失活引起的,但可逆失活并没有随衰老增加。
    总之,用乙烯利诱导大豆叶片衰老过程中,其PSII反应中心的状态和功能发生了变化,并导致了受体端抑制;在此过程中,光破坏防御机制也随之发生变化,与叶黄素循环有关的耗散并不能自始至终地起到重要的耗散作用,叶片热耗散位点也由天线逐渐转移到反应中心。
By measurement of chlorophyll fluorescence, gas exchange, protein and pigment, etc., changes of PSII function and photoprotection mechanism in soybean leaves during senescence were investigated in this paper. The main results are as follows:
    1. With the senescence in soybean leaves, photorespiration and photosynthesis decreased markedly. In contrast, Mehler reaction dependent electron transport increased during the first three days of ethylene treatment then decreased to a low level after 3 days of ethylene treatment, and the ratio of Mehler reaction dependent electron transport to the total electron transport increased throughout the senescence.
    2. NPQ, qf and (Z+A)/(Z+A+V) exhibited two distinct phases, with an initial increase (during the first 3 days) followed by a dramatically decrease after 3 days of ethylene treatment during senescence. However, increase of qI was observed from beginning to the end.
    At the beginning of senescence, (1-qP)/NPQ (used to estimate the fraction of excess photons) showed a little difference compared to the control; however, it increased to a high level when leaf became
    
    3. severely senescent.
    4. In PSII, the decline of primary photochemical activity was observed during senescence. The rate and extent of QA reduction increased markedly. The QB site was changed reflected by the fluorescence transient and Vt curve, which was the key factor leading to inhibition of electron transporting to QB from QA resulting in the decline of primary photochemistry.
    5. Photons absorbed by per excited cross-section (ABS/CSo) and used to move electron transport beyond QA- per excited cross-section (ETO/ CSo) decreased throughout the senescence. Accompanied with the decline in the density of active reaction center per excited cross-section (RC/CSO), the dissipated flux per excited cross-section (DIO/CSO) was enhanced.
    6. It was clear to observe that the fraction of photons used to move electron transport beyond QA- per reaction center (ETO/RC) and trapped photons per reaction center(TRo/RC) increased markedly during the senescence, which was attribute to that the absorbed photons by inactive reaction center was transported to active reaction centers and resulted in charge separation.
    7. Besides, chlorophyll content, soluble protein, thylakoid membrane lipids fatty acid instauration and activity of Violaxanthin de-epoxidase(VDE)were all decreased with the progress of senescence.
    Photoinhibition in soybean leaves grown in the field was mainly attributed to reversible inactivation of PSII reaction center. However,
    
    8. the inactivated degree did not increase with the senescence.
    In summary, structure and function of PSII changed, and this resulted in inhibition of PSII acceptor side in soybean leaves during senescence induced by ethylene. Photoprotective mechanisms exhibited dynamic change: xanthophyll cycle related thermal dissipation showed a biphasic change, with an initial increase followed a final decrease, throughout the senescence; energy quenching site shifted gradually from antenna to reaction center.
引文
陈志强 膜脂在类囊体不同功能膜区的分布及其与植物抗寒性的研究。 中科院植物研究所博士毕业论文 1991,7~9
    高煜珠, 王忠 ,孙进东和王志琴 关于光呼吸与光合作用关系的研究V。不同类型植物光呼吸与光合强度之间的关系。作物学报 1985,11(2):81-88
    高煜珠, 曹显祖, 王忠等 关于光呼吸与光合作用关系的研究。江苏农学院学报 1982,3(3):1-6
    郭连旺,许大全,沈云钢 棉花叶片光合的光抑制和光呼吸的关系。 科学通报 1995, vol 40(20):1885-1887
    贾虎森 干旱胁迫下苹果叶片光抑制。 山东农业大学博士毕业论文 2001
    郭连旺,许大全,沈云钢 田间棉花叶片光合速率中午降低的原因。 植物生理学报 1994, 20:360-366
    陆定志,潘裕才,马跃芳, 林宗达, 鲍为群 杂交水稻抽穗结实期间叶片衰老的生理生化研究。 中国农业科学 1988,21(3):21-26
    林世青等 叶绿素荧光动力学在植物抗性生理学,生态学和农业现代化中的应用。植物学报1992,9(1):1-16
    苏维埃,王文英,李锦树 植物类脂及脂肪酸的分析技术。 植物生理学通讯1980,3:54~60
    张承烈,陈靠山,梁厚果 杜新华 菜豆叶片衰老过程中叶绿体被膜的相变特征。植物生理学报 1990,16(4):333-339
    赵士杰,孟庆伟,许长成等。植物组织中叶黄素循环组分的高效液相色谱分析法。 植物生理学通讯 1995,31(6):438-442
    赵世杰 董新纯等 植物生理实验指导 中国农业科技出版社。1998
    Alexander VR, Horton P. The xanthophylls cycle modulates the kinetics of
    
    non-photochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol 1999,119: 531-542
    Anderson JM. Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chorolasts. FEBS Letters1981,124(1):1~10
    Anderson JM, Brendenkamp GJ, Baker NR. Evaluation of the role of state transients in determining the efficiency of light utilization for CO2 assimilation in leaves. Photosynth Research 1993,38: 15-26
    Anderson JM and Aro EM. Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under suntained high irrandiance: a hypothesis. Photosynth Research. 1994, 41:315-323
    Anderson JM, Park YI, Chow WS. Photoinactivation and photoprotection of photosystem II in nature. Physiogia Plantarum 1997, 100:214-223
    Aro EM, McCaffery S, Anderson JM. Recovery from photoinhibition in peas(Pisum sativum L.) acclimated to varying growth irradiances. Role of D1 protein turnover. Plant Physiol 1993, 104:1033-1041
    Asada K. Mechanism for scavenging reactive molecular generated in chloroplasts under light stress. In: Photoinhibition of photosynthesis: From Molecular Mechanisms to the Field(N.R. Baker and J.R. Bowyer, eds), pp, 129-142. Bios Scientific Publishers, Oxford. ISBN 1-872748-03-1 1994
    Baker NR,Webber AN. Interactions between photosystems. Advances Botanical Research 1987,13:1~56
    Besford RT, Withers AC, Ludwing LJ. Ribulose bisphosphate carboxylase activity and photosynthesis during leaf development in the tamato Journal of Exprimental Botany 1985, 36:1530-1541
    Biechler K and Fock H. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 1996, 112:265-272
    
    
    Bj?rkman O. Biochemical process in leaves under stress. Carnege Inst Washington Yerb 1993, 92:61-70
    Bj?rkman O and Demmig-Adams B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 1987, 170:489-504
    Bj?rkman O, Demmig-Adams B. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In Schulze E-D. Caldwell MM (eds). Ecophysiology of photosyntheisis. Berlin: Springer-Verlag 1994, 17-47
    Bratt CE, Arridsson PQ, Carlsson M, Akerlund HE. Regulation of Violaxanthin de-epoxidase activity by PH and ascorbate concentration. Photosynth Res. 1995, 45:169-175
    Bricker TM and Newsman DW. Changes in the chlorophyll-proteins and electron transport activities of soybean (Glycine May L. ev. Wayne) cotyledon chloroplasts during senescence. Photosynthetica 1982, 16:229-244
    Bukhov NG, Heber U, Wiese C, Shuvalov VA. Energy dissipation in photosynthesis: Does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Planta 2001, 212:749-758
    Calayud A. Deltoro V.I. Abadía A. Abadía J. Barreno E. Effects of ascorbate feeding on chlorophyll fluorescence and xanthophylls cycle components in the lichen parmelia quercina (Wild) Vainio expsed to atmospheric pollutants. Physiologia Plantarum 1999, 105:679-684
    Chow WS. Photoprotection and photoihibitiory damage .Adv Mol Cell Biol 1994, 10:151-196
    Demmig-Adams B. Carotenoids and photoprotection in plant: A role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1990, 1020:1-24
    Demmig-Adams B, Adams WW. III. Photoprotection and other response of
    
    plant to high light stress. Annu Rev Plant Physiol Plant Mol Biol 1992, 43:599
    Demmig-Adams B, Adams WW. III. The role of the xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1996, 1:21-26
    Dodge JD. Changes in chloroplasts fine structure during the autumnal senescence of Betula leaves. Annals of Botany 1970, 34:817-824
    Duysens L N M, Sweers H E. Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In studies on Microalgae and Photosynthetic Bacteria. Jpn. Soc, Plant Physiology pp 353-372. Tokyo: Univ. Tokyo Press. 1963
    Esking M, Arvidsson PQ, ?kerlund HE. The xanthophylls cycle, its regulation a components. Physiol Plant 1997, 100: 806-816
    Evans JR. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.) Plant Physiol 1983, 72: 297-302
    Fork DC. Cyclic electron flow in stressed plants. Cargegie Inst Washington Yearb. 1993, 92: 69-78
    Forti G, Barbagallo P, Inversini B. The role of ascorbate in the protection of thylakoids against photoinactivation. Photosyn Research 1999, 59:215-222
    Foyer C, Furbank R, Harbinson J, Horton P. The mechanisms contributing to photosynthetic control of electron of electron transport by carbon assimilation in leaves. Photosynth Res. 1990, 25:83-100
    Foyer CH and Lelands M. The role ascorbate in the regulation of photosysthsis. In: Yamamoto HY. Smith CM(eds)Edited by C.H. Foyer 1993
    Friedrich J W, Huffaker R C. Photosynthesis, leaf resistance, and ribulose-1, 5-bisphosphate carboxylase degradation in senescencing barley leaves. Plant Physiol 1908, 65:1103-1107
    Gao SJ, Chen SS, Li MQ. Effects of phosphorous nutrition on
    
    photosynthesis and photorespiration in tobacco leaves. Acta Phytophysiologica Sinica 1989, 15(3):281-290
    Genty B, Harbinson. Regulation of light utilization for photosynthetic electron transport. In:Baker NR(ed) Photosynthesis and the environment. Kluwer , Amsterdam, 1996 pp 69-99
    Gilmore AM. Mechanisms aspects of xanthophylls cycle dependent photoprotection in higher plant, chloroplasts and leaves. Physiol Plant 1997, 99:197-209
    Gilmore AM and Yamamoto HY. Epoxidation of Zeaxanthin and antheraxanthin traverses non-photochemical quenching of photosystem II chlorophyll a fuorescence in the presence of a trans-thylakoid △pH.FEBS Letter 1994, 350:271-274
    Grove, A. and Mohany, P. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In photosynthesis: photoreaction to plant productivity.(Eds YP Abrol.P Mohany and Govindjee) pp.225-255.(Kluwer Academic Publishers: The Netherlands) 1992.
    Grover A, Sabat SC and Mohany P. Effect of temperature on photosynthetic activities of senescent detached wheat leaves. Plant and Cell Physiology 1986, 27: 117-126
    Gruszeeki WI, Vccranjancyuluk, Zelent B, Leblanc RM. Energy transfer process during senescence: fluorescence and photosynthetic studies of intact per leaves. Biochim Biophysica et Acta 1991, 1056:173-180
    Guissé BA, Srivastava A, Strasser RJ. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Arch. Sci. Genevè 1995, 48:147-160
    Hager A. Lichtbedingte pH-Erniedrigung in einem chloroplasten-kompartiment als Ursache der Enzymatischen Violaxanthinzu
    
    Zeaxanthin-Vmwandlung; Beziehungen zur Photophosphorylierung. Planta 1969, 89:224-243
    Hager A and Holocher K. Localization of the xanthophylls-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light dependent) PH decrease. Planta 1994, 192:581-589
    Hashimoto H, Kura-Hotta M, Katoh S. Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seeding. Plant and Cell Physiology 1989, 30:707-715
    Hong S-S and Xu D-Q. Difference in response of chlorophyll fluorescence parameters of strong light between wheat and soybean leaves. Chinese Science Bulletin 1997, 42:684-688
    Hong S-S and Xu D-Q. Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PSII reaction centers in soybean leaves. Photosynth Res. 1999, 61: 269-280
    Horton P, Ruban A, Walters RG. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 1994, 106: 415-420
    Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 1996, 47:655-684
    Humbeck K, Quast S and Krupinaska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant cell and Environment 1996, 19:337-344
    Hundal T, Aro E-M, Carlberg I. Restoration of light induced photosystem II inhibition without de novo protein synthesis. FEBS Letter 1990, 267:203-206
    Jenkins GI, Baker NR, Woolhouse HW. Photosynthetic electron transport during senescence of the primary leaves of Phaseolus rulgaris L.III. Kinetics of chlorophyll fluorescence emission from intact leaves.
    
    Journal of Expremental Botany 1981, 32:999-1008
    Jiang CD, Gao HY and Zou Q. Enhanced thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover in iron-deficient maize leaves under high irradiance. Photosynthetica 2001, 39(2): 269-274
    Johnson GN, Young AJ, Scholes JD, Horton P. The dissipation of excess excitation energy in British plant species. Plant cell environment 1993, 16: 673-679
    J?rg L, Peter S, Yvan F. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta 2000, 210: 964-969
    Kirilovsky D, Ducrue JM and Etienne AL. Biochim. Biophys. Acta 1990, 102:87-93
    Kozaki A and Takeba G. Photorespiration protects plants from photooxidation. Nature 1996, 384:557-560
    Krause G.H. Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Physiol. Plant 1988, 74: 566-574
    Krause GH and Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol.1991, 42:313-349
    Krüger G H J, Tsimilli-Maichael M, Strasser RJ. Light stress provokes plastic and clastic modifications in structure and function of photosystem II in camellia leaves. Physiologia Plantarum 1997, 101:265-277
    Kura-Hotta M, Satoh K, Katoh S. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedling. Plant Cell and Physiology 1987, 28:1321-1329
    Lazar D and Ilik P. High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures
    
    determined from fluorescence induction and from fluorescence temperature curve. Plant Sci. 1997, 124:159-164
    Lazar D, Ilik P, Naus J. An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures. J. Lumin. 1997, 72-74: 595-596
    Lee Y-H, Hong Y-N, Chow WS. Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbors in Capsicum annuum L. leaves. Planta 2001, 212:332-342
    Leitsch J, Schnettger B, Critchley C, Krause GH. Two mechanisms of recovery from photoinhibition in vivo: Reactivation of photosystem II related and unrealated to D1-protein turnover. Planta 1994, 194:15-21
    Lu CM. and Zhang JH. Modifications in photosystem II photochemistry in senescent leaves of maize plants. Journal of Experimental Botany 1998, 49: 1671-1679.
    Mae T and Ohina K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza stativa L.) Plant Cell Physiol 1981, 22: 1067-1074
    Mae T, Thomas H, Gay AP, Makino A and Hidema J. Leaf development in Lohum tenulentum: photosynthesis and photosynthetic proteins in leaves senescing under different irradiances. Plant and Cell Physiology 1993, 34:391-399
    Makino A, Mae T, Ohira K. Relation between nitrogen ans ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiology 1984, 25(3):429-437
    McRae BD, Thompson JE. Senescence-dependent changes superoxide anion production by illuminated chloroplasts from bean leaves. Planta 1983, 158:185-193
    Mehler AH. Studies on the reactions of illuminated chloroplasts II.
    
    Stimulation on inhibition of the reaction with molecular oxygen Arch Biochem Biophys 1951, 34: 339-351
    Melis A, Homann PH. Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 1976, 23: 343-350
    Miller KW. Structural and functional responses of wheat mitochondrial membranes to growth at low temperature. Plant physiology 1974, 53: 426-433
    Misra AN, Biswal UC. Differential changes in the electron properties of thylakoid membranes during aging of attached and detached leaves, and isolated chloroplasts. Plant Cell and Environment 1982, 51:27-30
    Munné-Bosch, S. and Alegre, L. The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender (Lavandula stoechas). Physiologica Plantarum 2000, 108: 147-151
    Nedbal L, Masojidek J, Komenda J, Prasil O, Setlik I. Photosynth Res 1990, 24: 89-97
    Neubauer C, Schreiber U. The polyphsic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I.Saturation characteristics and partial control by the photosystem acceptor side. Zeitschrift für Naturforschung 1987, 42c:1246-1254
    Neubauer C, Yamamoto HY. Mehler-peroxidase reactive mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 1992, 99:1354-1361
    Osmond CB. Photorespiration and photoinhibition, some implications for the energetics of photosynthesis. Biochim Biophys Acta 1981, 639:77-85
    Osmond CB, Grace SC. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photorespiration? Journal of Experimental Botany 1995, 46 :1351-1362
    
    
    Owens TG, Shreve AP, Albrecht AC. Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light harvesting and nonphotochemical fluorescence quenching. In Murata N(ed). Rearch in photosynthesis. Dordrecht: Kluwer Academic 1992, vol 5:179-186
    ?quist G, Chow WS, Anderson JM. Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosystem II. Planta. 1992, 186: 450-460
    Patterson T G, Moss D N, Brun W A. Enzymatic changes during the senescence of field-grown wheat. Crop Sci. 1980, 20(1):15-18
    Pfündel EE, Diley RA. The pH dependent of violaxanthin deepoxidase in isolated pea chloroplasts. Plant Physiol 1993, 101:65-71
    Robert C B, Chang S-H, Yamamoto HY. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. Plant Physiology 1999, 121: 207-213
    Raven JA, Samuelsson G. Photoinhibition at low quantum flux densities in a marine dinoflagellate (Amphidinium carterae). Maringe Biology 1986, 70: 21-26
    Schreiber U, Neubauer C. The polyphasic rise of chlorophyll fluorescence upon of strong continous illumination. II. Partial control by the photosystem IIdonor side and possible ways of interpretation. Zeitschrift für Naturforschung 1987, 42c:1255-1264
    Setlik I, Allakhverdiev SJ, Nedbal L, Setlikovs E , Klimov VV. Photosynth Research. 1990, 23: 39-48
    Shimazaki K, Ito K, Kondo N, Sugahara K. Reversible inhibition of the photosynthetic water-splitting enzyme system by SO2-fumigation assayed by chlorophyll fluorescence and EPR signal in vivo. Plant Cell Physiolgy 1984, 25:795-803
    Siegenthaler PA, Rawyler A., Smutny J. The phospholipids population which sustains the uncoupled non-cyclic electron flow activity is located in
    
    the inner monolayer of the thylakoid membrane. Biochimica. Biophys Acta 1989, 975:104-111
    Srivastava A and Strasser RJ. Stress and stress management of land plants during a regular day. Journal of Plant Physiology 1996, 148: 445-455
    Srivastava A, Guisse B, Greppin H, Strasser RJ. Regulation of antenna structure and electron transport in PSII of Pisum Sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP. Biochimica Biophysica Acta. 1997, 1320:95-106
    Strasser RJ. The grouping model of plant photosynthesis. In: Akoyunoglou G, Argyroud-Akoyunoglou JH. Eds. Chloroplast development. Amsterdam. The Netherlands: Elsevier/North-Holland Biomedical Press. 1978, 513-542
    Strasser RJ. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynth Res. 1997, 52:147-155
    Strasser RJ, Eggenberg P, Strasser BJ. How to work without stress but with fluorescence. Bull Royal Soc Liege 1996, 65:330-349
    Strasser BJ and Strasser RJ. Measuring fast fluorescence transients to address environmental questions: The JIP test. In mathis, P.(ed.) Photosynthesis: from light to Biosphere Vol 5: 977-980 Kluwer Academic, The Netherlands.1995
    Strasser BJ, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology 1995, 61:32-42
    Thomas CP,Aubrey WN. A comparison of the effects of chilling on thylakoid electron transfer in Pea(Pisum sativun L.) and Cucumber(Cucumis sativus L.). Plant physiology 1988,86:147~151
    Telfer A, De Las Rivas J, Barber J. β-carotene within the isolated photosystem II reaction center: photooxidation and irreversible bleaching of this chromophose by oxidized p680. Biochim. Biophys Acta. 1991, 1060:106-114
    
    
    Thomopson LK and Brudwig GW. Cytochrome b-559 may function to protect photosystem II from photoinhibition. Biochemistry 1988, 27: 6653-6658
    Verhoven AS, Adams, III WW, and Demmig-adams B. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology 1997, 113, 817-824
    Verhoven AS, Adams III WW, Demmig-adams B, Groce R, Bassi R. Xanthophyll cycle pigment localization and dynamics during exposure to low temperature and light stress in Vinca major. Plant Physiology 1999, 120, 727-737
    Weise C, Shi LB, Heber U. Oxygen reduction in the Mehler reaction is insufficient to protect photosystems I and II of leaves against photoinactivation. Physiologia Plantarum 1998, 102:437-446
    Woolhouse H W, Batt T In: Perspective in Experimental Biology. Ed: Sunderland N, Pergamon Press. Oxford 1976: 163-175
    Xu YN,Siegenthaler PA. Low temperature treatments induce an increase in the relative content of both linolenic and -trans-hexadecenoic acids in thylakoid membrane. Plant Cell Physiol,1997,38(5):611~618
    Yamamoto HY. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chen. 1979, 51:639-648
    Yamamoto HY. Xanthophyll cycles. Methyleneods Enzymol 1985, 110: 303-312.
    
    
    
    
    
    
    
    Thomopson LK and Brudwig GW. Cytochrome b-559 may function to protect photosystem II from photoinhibition. Biochemistry 1988, 27: 6653-6658
    Verhoven AS, Adams, III WW, and Demmig-adams B. Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiology 1997, 113, 817-824
    Verhoven AS, Adams III WW, Demmig-adams B, Groce R, Bassi R. Xanthophyll cycle pigment localization and dynamics during exposure to low temperature and light stress in Vinca major. Plant Physiology 1999, 120, 727-737
    Weise C, Shi LB, Heber U. Oxygen reduction in the Mehler reaction is insufficient to protect photosystems I and II of leaves against photoinactivation. Physiologia Plantarum 1998, 102:437-446
    Woolhouse H W, Batt T In: Perspective in Experimental Biology. Ed: Sunderland N, Pergamon Press. Oxford 1976: 163-175
    Xu YN,Siegenthaler PA. Low temperature treatments induce an increase in the relative content of both linolenic and -trans-hexadecenoic acids in thylakoid membrane. Plant Cell Physiol,1997,38(5):611~618
    Yamamoto HY. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chen. 1979, 51:639-648
    Yamamoto HY. Xanthophyll cycles. Methyleneods Enzymol 1985, 110: 303-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700