用户名: 密码: 验证码:
沙生植物——冰草抗逆生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由于人口激增,自然植被遭到严重破坏,我国北方地区沙化日渐严重,北京作为我国的首都,由于沙化问题引起的沙尘暴等现象严重困扰着人民的正常生活,大大降低了环境质量。因此,适合当地气候条件,具有防风固沙功能,且具有一定经济价值的植物的筛选,对于改善环境,提高环境质量,创造清新、幽雅的人居环境具有重要意义。
     为科学选择适应干旱气候条件的沙生植物,需要对抗逆性强的植物的适应逆境条件的机制进行系统而深入地研究,以便为沙生植物的选择提供科学的依据。冰草属于寿命较长的多年生丛生牧草,抗寒、耐旱性强,营养丰富,是我国北方干旱和半干旱地区改良天然牧草和人工草地的适宜草种。冰草不仅是一种重要的牧草,而且由于它的抗旱、抗寒和耐荒漠的特性,又是一种具有重要生态和遗传价值的植物材料。
     本文研究内容为国家科技部攻关项目:首都圈(环北京)防沙治沙应急技术研究与示范项目中的共性技术项目研究“防沙治沙适应植物新品种筛选、配套栽培技术及沙区植物病虫鼠害重大生物防治技术研究”的一部分,以两种冰草为材料,对其进行了抗旱和抗盐性研究。主要通过测定两种冰草植株在不同浓度胁迫下的一些生理指标,了解不同胁迫对植物造成的伤害以及植物对胁迫的反应,为完善植物抗逆机理提供理论依据,并比较两种冰草抗逆性,为内蒙古地区抗逆性强的沙生植物的筛选提供理论依据。
     主要结论如下:
     一、利用PEG—6000(聚乙二醇)模拟土壤干旱胁迫对两种冰草根部进行渗透胁迫,发现渗透胁迫会影响冰草植株一系列生理反应:相对含水量下降显著,渗透调节物质(包括脯氨酸、可溶性糖等)显著增加,保护酶活性在轻度胁迫下升高,而中度或重度胁迫下活性降低或者不变,细胞膜透性明显增大,MDA(丙二醛)含量增加显著,得出冰草植株之所以抗旱有三个原因:
     1、冰草在轻度渗透胁迫下会提高保护酶活性以消除干旱胁迫产生的过多的氧自由基,维持植株正常的生理功能。
     2、冰草植株在渗透胁迫条件下会增加渗透调节物质如脯氨酸、可溶性糖类以降低细胞渗透势,使其在高渗溶液中仍能够保持一定水分的吸收,植株能够维持生命活动。
     3、冰草植株在干旱条件下关闭气孔,以减少水分散失,叶片萎蔫,以减少蒸腾面积。
     二、用不同浓度的NaCl(氯化钠)溶液对冰草植株进行根际渗透胁迫发现,冰草在低盐浓度胁迫下能够保持正常的生理代谢,而高浓度盐胁迫下植株质膜透性增大,鲜重减少,生长明显受到抑制,有机渗透调节物质显著增加,长时间胁迫植株死亡。得出冰草植株耐盐有三个原因:
     1、冰草植株能够增加可溶性渗透调节物质,以降低细胞渗透势,保持植株根系吸水。
     2、冰草植株对地上部分生长的抑制大于对地下部分生长的抑制,这样可以增强根系吸水,较少叶片的蒸腾失水。
     3、冰草植株通过将Na~+截留在根部,控制Na~+向地上部分的运输,以维持植株代谢旺盛部位的离子平衡。
    
    三、通过研究两种冰草植物对两种胁迫的反应指出干旱胁迫和盐胁迫通过不同
    的途径对植物进行伤害,主要表现在叶片的失水速率和保护酶活性的变化,干
    旱胁迫短时间内叶片失水速率很快,叶片萎蔫,引起保护酶活性显著变化,表
    明干旱胁迫主要是通过氧化胁迫对植株造成伤害,而盐胁迫下叶片相对含水量
    几乎保持不变,表明盐胁迫对植物的伤害主要通过离子毒害和营养亏缺造成。
    四、对抗旱和抗盐沙生植物在园林上的应用进行了简单的论述
In recent years, the vegetation was destroyed severely in north of China with population explosion. The quality of atmosphere in Beijing, the capital of China, was depressed seriously because of the sand storm. Ministry of Science and Technology decided to deal with this problem by building windbreak forest system, so some plants, which grew well in sand areas and defend people from the sand and the pollution, were selected to grow in sand areas.
    Some plants which have strong resistance to adversity should be researched,. Mongolian wheatgrass is a long-lived perennial grass of the genus Agropyron. It is well adapted to the cold, arid conditions of the great plains and its leaves are rich in nutrition, so it is wide ranged in arid and semi-arid area of north of China. Not only is it an important forage grass, but also has an important ecological and genetic value because of its drought-resistant, cold-resistant and barren-tolerant traits.
    This paper selected two different species of wheatgrasses to research In order to find out the damage and the responses of plants at different stress, some physiological indexes were determined. These results would provide some information to geneticist and breeder who coud make better used of Agropyron.
    The main results were described as follows:
    Firstly, this paper pointed out that effect of PEG(polyethylene glycols) on some indexes of wheatgrass seedlings. The content of relative water decreased dramatically, the osmoregulatory substance increased notably, including proline and the soluble sugar. The defensive enzymes activity increased at light stress and decreased at middle or severe stress, the membrane penetrability and the content of MDA(malondialdehyde) increased notably. From the change of these indexes, the paper concluded that the wheatgrass had strong drought resistance. The reasons of strong resistance had three aspects. (1)Wheatgrass could remove the active oxygen by heightening the activity of the
    enzymes and protect the plants from damage at light stress. (2)Wheatgrass could keep turgor pressure by osmoregulation and flexibility of
    cells to maintain plants developing in drought stress, some osmregulatory
    substance, such as the proline and the soluble sugar, increased.
    (3) Wheatgrass could reduce water dissipation by shutting up stoma and let some leaves wither.
    Secondly, this paper studied the effect of different concentration NaCl on wheatgrass and pointed out that the wheatgrass could maintain well-balanced physiology at light salt stress, but at high salt stress, the membrane penetrability increased, fresh weight reduced, the development was restrained distinctly, and the osmoregulatory substance increased notably, at last the plants perished. From these results, this paper concluded that the wheatgrass had strong salt resistance. The reasons of strong salt resistance had three aspects:
    (1) Wheatgrass could reduce the potentiality penetration in cell by increasing the osmoregulatotory substance, so the plants could absorb more water by roots.
    (2) Wheatgrass could restrain the growth of upground of plants more than that of underground, so the plant could absorb more water and reduced transpiration.
    (3) Wheatgrass could control Na+ transport to upground by withholding Na+ in root which can keep the balance of ion of upground.
    Thirdly, this paper compared the different responses of plants to these two
    
    
    
    stresses, the change of the defensive enzyme activity and the rate of losing water of leaves was different at two different stresses. The rate of losing water of leaves at drought stress was more rapid than that at salt stress, the leaves would wither and the change of activity of enzymes notably at drought stress, these results showed that the damage to plants was result from the oxidation at drought stress. At salt stress, the content of relative water of leaves changed slightly as well as did the activity of enzymes, these results showed that the damage to plants was caused by poison of ion and lack of nutrition .
引文
1.张丽娟,张淑艳,苏慧,赵丽清,2000,几种冰草植物种子萌发期及幼苗期抗旱性比较研究,哲里木畜牧学院学报,10 (4):1—7。
    2.解新明,云锦凤,尹俊,张艳如,赵冰,卢小良,2002,蒙古冰草遗传多样性的RAPD分析,西北植物学报,22(1):56—62。
    3.陈世璜等.1994,几种冰草特性的初步研究.内蒙古草业,(3、4):27-31
    4.马瑞昌等.1998,冰草品种旱作栽培比较试验.中国草地,(5):31—34
    5.陈宝书等.1995,八种冰草产量和品质的试验研究.青海草业,4 (3):30—33
    6.江香梅,黄敏仁,王明庥,2001,植物抗盐碱、耐干旱基因工程研究进展,南京林业大学学报(自然科学版),25 (5):57—62。
    7.胡新生,王世绩,1998,树木水分胁迫生理与耐旱性研究进展及展望。林业科学。34 (2):78—89。
    8.李景生,黄韵珠,1995,浅述植物的耐盐生理.植物学通报,12(3):15-19.
    9.王霞,侯平,2001,植物对干旱胁迫的适应机理,干旱区研究,18(2):42—46。
    10.陈善福,舒庆尧,1999,植物耐干旱胁迫的生物学机理及其基因工程研究进展,植物学通报,16 (5):555—560
    11. Hsiao, T.C. 1973, Plant responses to water stress. Ann. Rev. Plant. Physiol. (24):419-570
    12. Chris B, Marc V M, Dirk I, 1992. Superoxide dismutase and stress tolerance. Annual Review Plant Physiol and plant molecular Biology, 43: 83~116
    13.蒋明义,杨文英,徐江,陈巧云.1994,渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用。植物学报,36 (4):289—295
    14. Jingxian zhang and M.B. Kirkham, 1994, Drought stress induced changes in activities of superoxide dismutase, catalase,and peroxidase in wheat species. Plant cell phsiol. 35(5):785-791
    
    
    15.蒋明义、郭绍川,1996,水分亏缺诱导的氧化胁迫和植物的抗氧化作用。植物生理学通讯,32(2):144—150.
    16.蒋明义、荆家海、王韶唐,1991,渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响。植物生理学报,17(1):80—84
    17.陈京,1999,抗旱性不同的甘薯品种对渗透胁迫的生理响应。作物学报,25 (2):232—236。
    18. RAJINDER S. DHINDSA, WANDEKAYI MATOWE。1981, Drought Tolerance in Two Mosses: Correlated with Enzymatic Defense Against Lipid Peroxidation。
    19. Jose F. Moran, Manuel Becana, Inaki Iturbe-Ormaetxe, Silivia Frechilla, Robert V. Klucas, Pedro Aparcio-Tejo. 1994, Drought Induce oxidative stress In pea plant. Planta, 194:346-352.
    20.祁云枝等.1997,干旱胁迫黄瓜及蚕豆叶片膜透性改变及其机理的初步研究.陕西农业科学,(4):6—7
    21.王霞,侯平,尹林克,冯大千,潘伯荣,1999,水分胁迫对柽柳植物可溶性物质的影响,干旱区研究,16 (2)
    22. TANG Zhang-Cheng, 1989, The Accumulation of Free Proline and Its Roles In Water-Stressd Sorghum Seedings. Acta Phytophysiologica Sinica, 15(1): 105-110.
    23.李德全,邹琦,程炳嵩,1992,土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质,植物生理学报,18 (1):37—44
    24.王邦锡,黄久常,王辉,1989,不同植物胁迫在水分胁迫条件下脯氨酸的累积与抗旱性的关系,植物生理学报,15 (1):46—51。
    25.罗音等.1999,干旱胁迫对5树种叶片中脯氨酸含量的影响.山东林业科技,(4):1—4
    26.肖用森等.1996,渗透胁迫下稻苗中游离脯氨酸累积与膜脂过氧化的关系.武汉植物学研究,14(4):334—340
    27.谭云,叶庆生,李玲,2001,植物抗旱过程中ABA生理作用的研究进展,植物学通报,18 (2):197—201。
    28. Liu L,McDonald A J S, 1998, Stomatal and leaf-growth responses to root drying in willow. J Exp Bot,49:36.
    29.王忠华,李旭晨,夏英武,2002,作物抗旱的作用机制及其基因工程改良研究进展,生物技术通报,(1):16—19
    30.唐连顺,李广敏.1994,水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系。植物学报,36(增刊):43—49.
    31.阎秀峰,李晶,祖元刚,1999,干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响,生态学报,19 (6):850-854。
    32.薛刚等.1995,水分胁迫对棉花根质膜蛋白质及脂肪酸组分的影响.新疆农业科学,(6):243—246
    33.陈军等.1990.干旱对玉米叶片膜透性及膜脂脂肪酸组分的影响.植物生理学通讯,(6):39—41
    34. Levitt, J. 1980, Response of plants to environmental stress (2nd Ed)。Academic press。New York, 31: 149-153
    35.李吉跃,1991,植物耐旱性及其机理,北京林业大学学报,13 (3):92-100。
    36.曹福亮,张往祥,方升佐,1998,盐胁迫对南方主要造林树种生理特性的影响,中国南方主要造林树种耐盐耐旱机理研究,中国林业出版社,7-17。
    37.吴永波,四种白蜡树幼苗耐盐性的比较研究,2002,南京林业大学博士论文,南京林业大学图书馆。
    38. Munns, R. Garden,A.Tonnet,M.L., Rawson, H.M., 1988,Growth and development in NaCl-treated plants·: Do Na~+ or Cl~- concentrations in dividing or expanding tissues determine growth in barley. Aust. J. plant physiol. 15:529-540.
    39.殷立娟,石德成,王萍,1993,盐碱化草地羊草生长的适应性于耐盐渗透调节,植物学报,35(8):619-625。
    40.赵可夫,范海,Harris,P.J.C,1995,钾抑制盐生植物生长的生理基础研究,植物学报,37 (6):437-442。
    41.赵可夫,2002,植物对盐渍逆境的适应,生物学通报,37 (6):7-10。
    42. Chessman, J.M., 1988, Mechanism of salinity tolerance in plants, Plant Physiol., 87:547-550.
    43.马焕成,蒋东明,1998,木本植物抗盐性研究进展,西南林学院学报,18 (1):52-59。
    
    
    44.杨锡麟,郭本兆编辑,1987,中国植物志,第九卷,第三分册,北京科学出版社。
    45.沈惠娟,曾斌,李梅枝,1993.渗透胁迫下多效唑对刺槐体内多胺、脯氨酸和保护酶系统的影响.植物生理学报,19(1):53~60
    46.李合生,2000.植物生理生化实验原理和技术。高等教育出版社,260~261
    47.张殿忠,汪沛洪,赵会贤.1990,《测定小麦叶片游离脯氨酸含量的方法》.《植物生理学通讯》(4):62-65。
    48.中国科学院上海植物生理研究所、上海市植物生理学会编.1999,现代植物生理学实验指南.北京科学出版社.127-128
    49.张龙翔,张庭芳,李令媛,生化实验方法和技术,高等教育出版社,191
    50. Morgan JM. 1984, Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299—319.
    51. Guehl,J.M., A.Clement, P. Kaushal, G. Aussenae, 1993,Plant stress, water status and non-structural carbohystrate concentrations in Corsican Pine seedlings, Tree physiol, 12:173-183.
    52.张美云,钱吉,郑师章,2001,渗透胁迫下野生大豆有利脯氨酸和可溶性糖的变化,复旦学报(自然科学版),40 (5):558—561。
    53.杜秀敏 殷文璇 赵彦修 张慧,2001,植物中活性氧的产生及清除机制,网上文章。
    54.王宝山,1988,生物自由墓与植物膜伤害,植物生理学通讯,(2):12-16。
    55.林久生,王根轩,2000,CO_2倍增对渗透胁迫下小麦叶片抗氧化酶类及细胞程序性死亡的影响,植物生理学报,26 (5):453—457。
    56.郭振飞,卢少云,李明启,黎用朝,1997,不同耐寒性水稻幼苗对氧化胁迫的反应,植物学报,39(8):748-752.
    57. William Hamilton and Scott A. Heckathorn, 2001, Mitochondrial Adaptations to NaCl. Complex Ⅰ Is Protected by Anti-Oxidants and Small Heat Shock Proteins, Whereas Complex Ⅱ Is Protected by Proline and Betaine. Plant Physiol. 126(3): 1266-1274
    58.彭祚登,李吉跃,沈熙环.1998,林木抗旱性育种的现状与策略思考。北京林业大学学报,20(4):98—103
    59.胡新生,王世绩.1998,树木水分胁迫生理与耐旱性研究进展及展望。林业科学。34 (2):78—89
    60. Jose A. Hernandez and Maria S. Almansa. 2002, Short-term effect of salt stress on anfioxidant systems and leaf water relations of pea leaves. Physiologia plantarum 115:251-257.
    61. Jingxian zhang and M.B.Kirkham, 1994, Drought stress induced changes in activities of superoxide dismutase, catalase,and peroxidase in wheat species. Plant cell phsiol. 35(5):785-791,
    62.林植芳,李双顺,林桂珠,孙谷畴,郭俊彦,1984,水稻叶片的衰老与超氧化物活性及脂质过氧化作用的关系.植物学报,26 (6):605—615
    63.森林植物与森林枯叶落叶层全硅、全铁、全铝、全钙、全镁、全钾、全钠、全磷、全硫、全锰、全铜、全锌的测定(硝酸-高氯酸消煮法)UDC634.0.114:631.423 GB 7887-87
    64.汤章城.1984,逆境条件下植物脯氨酸的累积及其可能的意义,植物生理学通讯,(1):15-21
    65.石德成,盛艳敏,赵可夫。1998,不同盐浓度的混合盐对羊草苗的胁迫效应。植物学报,40(12):517-526
    66.王艳青,蒋湘宁,李悦,周晓阳,曾瑞香,周金池,2001,盐胁迫对刺槐不同组织及细胞离子吸收和分配的变化,北京林业大学学报,33 (1):18-23
    67.汤章城,王育启,吴亚华,王洪春,1998,钾离子在水分胁迫下高粱幼苗脯氨酸累积的作用,植物生理学报,24 (2):131-135
    68.汤章城,1983,植物对水分胁迫的反应和适应性Ⅱ植物对干旱的反应和适应性,植物生理学通讯,(4):3-7。
    69.云锦凤,李造哲,于卓,米福贵,孙海莲,1999,杂种冰草1号的选育,中国草地,(5):7-11
    70.谷安琳,云锦凤,Larry Holzworth,戎郁萍,贾丰生,翁森红,1998,冰草属牧草在旱作条件下的产量分析,中国草地,(3):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700