用户名: 密码: 验证码:
微波场强化植物性多孔材料内部流体流动与传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根茎类药用植物提取时有效成分的溶出和干燥过程中水分的迁移,以及多孔纤维素膜内的物质流动均属于多孔介质内部纳、微尺度的物质流动与传递过程,具有强烈的非均质性和各向异性。微波辅助是一种环境友好的绿色技术。本文围绕多孔介质的微观结构和流经其流体的分子量或混合物颗粒特征,利用扫描电镜、压汞仪、比表积分析仪、膜超滤、原子力显微镜及高效液相色谱等技术对基质材料和提取物从微纳尺度进行表征,深入研究基质材料微结构与宏观性能、处理工艺、产品质量的关系,考察微波对物质流动与质量传递的影响。
     研究发现:(1)微波辅助提取在较大分子量有效成分的快速浸出和避免大分子无效物质浸出方面显著优于传统回流工艺;(2)微波辐射对高分子化合物具有降解作用,能够改变其聚集态特征;(3)导管纹孔在天然产物提取过程中起着重要的瓶颈作用,较大的微波功率对植物组织产生固化作用,合适的提取工艺有利于保持药材内部输导组织的通透性;(4)微波干燥技术在缩短干燥时间方面具有显著的优越性,尤其是对于含有较多胶质黏性成分的难干植物性多孔介质物料。(5)当归饮片微波干燥制品的总孔体积和孔隙率小于传统热风干燥制品,而黄芪饮片则远高于热风干燥制品。当归饮片的微波干燥制品表现出较低的复水能力,而黄芪饮片的微波干燥制品表现出较高的复水能力。基质材料的平均孔径越大,吸水速度越快;而基质材料的总孔体积和孔隙率越大,其复水能力越强。干制品的孔隙特征和复水能力不仅与干燥工艺有关,而且还与植物材料的本身属性有很大关系。(6)微波干燥、真空冷冻干燥、真空干燥、热风烘干等四种工艺所得黄芪饮片的干制品,其中微波干燥工艺有利于减小饮片后续提取过程中溶质扩散的质量传递阻力,有利于有效成分的提取。(7)微波辐照可以促进黄芪水提液和二氧化钛颗粒悬浮液在多孔微滤膜内流动与传递。(8)微波辅助膜清洗有助于膜通量的恢复,有利于膜面及膜内污染物与基质的分离,促进物质在多孔介质材料表面及其内部的传递。(9)盒子计数法不适合对基质材料内部纹孔的变化进行表征,而小岛法和压汞法是适合的。微波900W的分形维数均大于600W的,较小的分形维数表明孔隙边界光滑,基质材料内部孔隙简单,细胞内的有效成分更容易溶出。(10)材料孔径分布的分形维数与其干燥特性和复水特性密切相关。饮片分形维数较大,则孔隙率大,复水速率快和复水率高。总之,该研究对于丰富热科学研究领域,促进相关领域的理论创新和技术突破具有重要的意义。
The solvent extraction of medicinal herb, water flowing during plant materials drying and membrane separation processing in porous structure of membrane are all complicated mass and energy transfer process for its un-homogeneity, un-stability and coupling with the biological physics and chemistry properties. Microwave Assisted Extraction (MAE) is a kind of green extraction technology.This paper studied the effect of microwave on the mass transfer process of plant porous materials from the points of the micro-structure of porous media and molecular weight distribution of water extracts or the particle size distribution of suspension, by using scanning electronic microscope(SEM), automatic mercury injection apparatus, automatic surface area-porosity analyzer, micro and ultro filtration membranes, laser particle size analyzer, atomic force microscope(AFM) and high performance liquid chromatograph(HPLC). Astragalus and Angelica slices are a kind of root and sterm meidcinal herb, also a typical of plant porous materials. This work choose Astragalus and Angelica slices, micro and ultro-filtration membranes, as the objects of study, combinng the experimental research with theoretical analysis, our findings indicate that: (1) MAE technology is obviously better than traditional reflux technology on the fast extraction of valid components with bigger molecule weight and the avoiding of invalid extracts; (2) Microwave radiation could make the degradation of biological macro-molecular, resulting the variation of the characteristics of aggregation state of extracts processed by microwave assisted technology; (3) Trachea and aperture characteristics of plant porous materials play an important role in the mass transportation of porous medium. A suitable microwave power level is helpful for maintaining or improving the permeability of transportation tissue in materials and promoting the fast dissolution of effective components; (4) Microwave drying technology behaves significant advantages in decreasing drying time of root and stem plant porous materials, especially which contain more glutinous component; (5) Compared to hot air dried sample, microwave dried Chinese angelica slices have the faster absorption rate and the lower capacity of re-hydration, which may be attribute to their the larger average pore diameter, the lower porosity, the smaller total pore volume. However, microwave dried Astragalus slices behaves faster the absorption rate and higher the capacity of re-hydration, which may be due to that larger the average pore diameter, higher the porosity, larger the total pore volume; (6) Microwave assisted filtration could considerably enhance the processed volume of suspension with micro-particle; (7) Microwave assisted technology is also helpful for cleaning fouling on the surface of membrane and inside the pores of membrane, and preventing from the declining of the membrane flux during the process of solution ultra-filtration. It can be suggested that the microwave assisted technology is benefit to promote the mass transfer process during the membrane operation; (8) The fractal scaling law of box counting method is not suitable for the apertures on the wall of trachea inside matrix. The Slit island method and the mercury injection method are better. A smaller fractal dimension at 600W presented that borderline of the apertures is smoother than that of 900W, which is in favor of functional components flowing; (9) The fractal dimension of pore size distribution inside materials matrix correlated well with both the drying behavior and re-hydration property. The higher the fractal dimensions of sample, results in higher porosity and the better the connectivity of moisture transfer path. This work have important meanings in theory to enrich the research fields of heat transfer and mass transfer, promote the creativity in theory and the break-up in technology of relative fields of application and research.
引文
[1]刘小平,李湘南,徐海星,中药分离工程,北京:化学工业出版社,2005.
    [2]安建忠,许志惠,新技术新方法在中草药提取方面的应用,时珍国医国药2001,12(5):465-467.
    [3] Boutin, O., Badens, E., Extraction from oleaginous seeds using supercritical CO2: Experimental design and products quality, Journal of Food Engineering, 2009,92: 396–402
    [4] Araus, K., Uquiche, E., Valle, J. M. D., Matrix effects in supercritical CO extraction of essential oils from plant material, Journal of Food Engineering, 2009,92 : 438–447.
    [5]王福纯,赵贵一,蔡德富等,超临界CO2流体萃取技术在中草药中的应用,黑龙江医药,2008,21(3):37-39.
    [6]许松林,栾礼侠,分子蒸馏技术在中草药有效成分分离中的应用,药学进展,2005,29(10):472-476.
    [7]翁少伟,陈建华,黄少烈等,超临界CO2萃取及分子蒸馏技术联用提取分离杭白菊精油,广东化工,2008,35(4):68-71.
    [8]朱玉强,王兴东,超临界萃取并分子蒸馏技术分离提纯玫瑰精油,化学分析计量,2007,16(1):17-19.
    [9] Rosenthal, A., Pyle, D.L., Niranjan, K. et al, Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean, Enzyme and Icrobial Technology, 2001,28: 499–509.
    [10]易建华,朱振宝,酶法提取芹菜黄酮的研究,食品科技,2008,33(8):144-147.
    [11] Kaufmann, B., Christen, P. Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction, Phytochemical Analysis, 2002, (13): 105–113.
    [12]苏中武,乔传卓.生药学.上海:上海医科大学出版社,1989.
    [13] He, Y. S., Ji, Z. J., Li, S. X., Effective clarification of apple juice using membrane filtration without enzyme and pasteurization pretreatment, Separation and Purification Technology, 2007,(57)2: 2007, 366-373.
    [14]许英一,徐雅琴,崔崇士,超滤澄清南瓜汁工艺的研究,东北农业大学学报,2008,39(3):39-41.
    [15]付艳华,多通道无机陶瓷膜分离Ti02悬浆体系的研究,吉林化工学院学报,2007,24(3):37-39.
    [16] Manttari, M., Nuortila-Jokinen, J., Nystrom, M., Influence of filtration conditions on the performance of NF membranes in the filtration of paper mill total effluent, Journal of Membrane Science, 1997, 137: 187-199.
    [17] Viadero Jr, R. C., Noblet, J. A., Membrane filtration for removal of fine solids from aquaculture process water. Aquacultural Engineering, 2002,(26)3: 151-169.
    [18]楼雅青,电场作用下荷电膜超滤多糖的研究[硕士学位论文],华南理工大学,2004.
    [19] Rodgers, V. G., Sparks, R. E., Reduction of membrane fouling in the ultrafiltration of binary protein mixtures, Alch E J,1193,37(10):1517-1528.
    [20]冯惠勇,在生物产品分离中膜污染的影响因素及其控制,河北科技大学学报,1999,20(2):39-40.
    [21]祝生杰,超滤器的膜污染控制与处理,膜科学与技术,1997,17(2):1-4.
    [22]廉继范,用电场和超声力场提高微滤,过滤与分离,1995,2:23-26.
    [23] Kobayashi, T., Fujii, N., Effect of ultrasound on enhanced permeability during membrane water treatment, Japanese Journal Applied Physics, 2000, 39(5):2890-2891.
    [24] Jaganadh, S. N., Muralidhara, H. S., Electrokinetics methods to control membrane fouling, Ind.Eng.Chem.Res.1996,35:1133-1140.
    [25]金兴乾,宋鹏云,电场促进膜过滤技术研究进展,云南化工,2007,34(3):63-68.
    [26] Bowen, W. R., Subuni, H. A. M., Electrically enhanced membrane filtration at low cross-?ow velocities, Ind. Eng. Res., 1991,30: 1573–1579
    [27]张国俊,刘忠州,超滤膜的超声波助清洗研究,环境科学,2003,24(6):130-134.
    [28] Masselin, S., Chasseray, X., Durand-Bourlier, L.et al., Effect of sonication on polymeric membrane, Journal of Membrane Science,2001,181:213-220.
    [29]黄瑞华,周永传,韩伟等,不同极性的溶剂与黄芪饮片在微波场中升温行为的研究,华东理工大学学报(自然科学版)2005,31(2):140-143.
    [30] Hayes, B. L., Microwave Synthesis, CEM Publishing, 2002.
    [31]刘伟,张明祥,美国EPA3546新方法-微波快速溶剂萃取技术,现代科学仪器,2005,(1):52-55.
    [32] Ganzler, K., Salgo, A., Valko, K., Microwave extraction- A novel sample preparation method for chromatography, Journal of Chromatography, 1986, 371: 299-306.
    [33] Glanzler, K., Salgo, A., Microwave-Extraction—A New Method Superseding Traditional Soxhlet Extraction, Z Lebensm Unters Forsch, 1987, 184:274-276.
    [34] Kaufmann, B., Christen, P., Recent Extraction Techniques for Natural Products: Microwave-assisted Extraction and Pressurized Solvent Extraction, Phytochemical Analysis, 2002, 13(2): 105-113.
    [35] Pare, J. R. J., Belanger, J. M. R., Microwave-assisted Process (MAP): a new tool for the analytical laboratory, Trends in Analytical Chemistry, 1994, 13: 176-184.
    [36] Garca-Ayuso, L. E., Castro, M. D. L. D., A multivariate study of the performance of a microwave-assisted Soxhlet extractor for olive seeds, Analytica Chimica Acta. 1999, 382(3): 309-316.
    [37] Zhou, H.Y., Liu, C.Z., Microwave-assisted Extraction of Solanesol from Tobacco Leaves, Journal of Chromatography A, 2006, 1129(1), 135-139.
    [38] Lay-Keow, N., Hupe. M., Effects of moisture content in cigar tobacco on nicotine extraction similarity between Soxhlet and focused open-vessel microwave-assisted techniques, Journal of Chromatography A, 2003, (1011):213-219.
    [39]刘传斌等,白凤武,冯朴荪,酵母胞内海藻糖的微波破细胞提取,化工学报,2000,51(12):810-813.
    [40]韩伟,郝金玉,薛伯勇等,微波辅助提取青蒿素的研究,中成药,2002,24(2):83-86.
    [41]王娟,沈平孃,沈永嘉等,葛根中有效成分的微波辅助萃取研究,中国医药工业杂志,2002,33(8):382-384.
    [42]郭振库,金钦汉,范国强等,微波帮助提取中药金银花中有效成分的研究,中国中药杂志,2002,27(3):189-192.
    [43]郝金玉,黄若华,邓修等,微波萃取西番莲籽的研究,华东理工大学学报,2001,27(2):117-120.
    [44]沈岚,冯年平,韩朝阳等,微波萃取对不同形态结构中药及含不同极性成分中药的选择性研究,中草药,2002,33(7): 604-607.
    [45]杨俊红,段增宾,郭锦棠,姚冀涛,肖恒,甘草酸的微波辅助提取与强化传质机理,工程热物理学报,2004,25(6):1037-1039.
    [46]杨俊红,郭锦棠,朱养妮,褚治德,甘草酸的提取动力学特性与强化传质机理,工程热物理学报,2002,23,增刊:161-164.
    [47]郭锦棠,杨俊红,李雄勇等,微波与索氏提取甘草酸的正交实验研究,中国药学杂志,2002,37(12):919-922.
    [48]龚盛昭,杨卓如,微波提取黄芩甙的协同效应研究,精细化工,2003,20(7):427-429.
    [49] Alfaro, M. J., Belanger, J. M. R., Padilla, F. C., Pare, J. R. J., Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAPTM) 1 extraction of ginger (Zingiber officinale), Food Research International, 2003, 36, 499-504.
    [50] Chemat, S., A?t-Amar, H., Lagha, A., Esveld, D.C., Microwave-assisted Extraction Kinetics of Terpenes from Caraway Seeds, Chemical Engineering and Processing, 2005, 44: 1320-1326.
    [51] Li, H., Chen, B., Zhang, Z.H., Yao, S.Z., Focused Microwave-assisted Solvent Extraction and HPLC Determination of Effective Constituents in Eucommia ulmodies Oliv. (E. ulmodies), Talanta, 2004, 63: 659-665.
    [52] Wang, S.J., Chen, F., Wu, J.H., Wang, Z.F., Liao, X.J., Hu, X.S., Optimization of Pectin Extraction Assisted by Microwave from Apple Pomace Using Response Surface Methodology, Journal of Food Engineering, 2007, 78(2): 693-700.
    [53] Lee, G.D., Lee, S.Y., Kim, K.S., Kwon, J.H., The Optimization of Microwave-assisted Extraction of Decursin from Angelica Gigas Nakai Root, International Journal of Food Science and Technology, 2006 41(7): 737-742.
    [54] Sun, Y.Z., Liao, X.J., Wang, Z, F., Hu, X.S., Chen, F., Optimization of Microwave-assisted Extraction of Anthocyanins in Red Raspberries and Identification of Anthocyanin of Extracts Using High-performance Liquid Chromatography– mass Spectrometry, 2007, 14(6): 767-778.
    [55] Kratchanova, M., Pavlova, E., and Panchev, I., The Effect of Microwave Heating of Fresh Orange Peels on the Fruit Tissue and Quality of Extracted Pectin,”Carbohydrate Polymers, 2004, 56: 181–185.
    [56]杨屹,侯翔燕,郭振库,微波辅助萃取新鲜芦荟叶中芦荟甙的研究,高等学校化学学报,2005,26(9):1627-1630.
    [57]李核,李攻科,张展霞,影响微波辅助萃取虎杖中白黎芦醇产率的一些重要操作参,分析化学,2003,31(13):1341-1344.
    [58]韩伟,高姗等,微波辐射促进阔叶十大功劳叶萃取过程的研究,华东理工大学学报,2002,28(4): 337-340.
    [59]李核,李攻科,张展霞,密闭系统中微波辅助萃取机制探讨,分析测试学报,2004,23(5):12-16.
    [60] Liu, Z. D, Wei, G. H., Guo, Y. C., Image study of pectin extraction from orange skin assisted by microwave, Carbohydrate Polymers, 2006,64: 548–552.
    [61]肖凯军,陈健,李巧玲等,高频电磁场强化浸取果胶的研究,食品科学,2001,22(3):50-52.
    [62]刘凤岐,汤心颐,高分子物理,北京:高等教育出版社,2004.
    [63] Harahsheh, A., Kingman, S. W., Microwave-assisted leaching– a review, Hydromellurgy,2004,73:189-203.
    [64]王晓娟,魏传晚,徐淑永等,生物活性多糖结构与功效关系的研究进展,广州化工,2002,32(1):6-10.
    [65] Wang, X. P., Zhou, Z., Mo, K. J. et al., Study on effect on the chemical structures of caffeine and tea polysaccharide by microwave treatment, Food Sci, 2003, 24(3) : 44-46.
    [66]陈卫祥,赵杰,刘昭林,XC-72碳和碳纳米管负载PtRu纳米粒子的微波快速合成及其对甲醇的电化学氧化,化学学报,2004,62(l7):1590-1594
    [67] Jouhannaud, J., Rossignoland, J., Stuerga, D., Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis. Journal of Solid State Chemistry, 2008,181, 1439- 1444.
    [68] Siddharthan, A., Seshadri, S.K., & Sampath Kumar, T. S. Influence of microwave power on nanosized hydroxyapatite particles. Scripta Materialia, 2006,55,175-178.
    [69]田玉明,徐明霞,葛志平等,微波干燥对共沉淀法制备纳米ZrO2(Y2O3)粉体特性的影响,天津大学学报,2006,39(增刊):333-336.
    [70] Fang, C. Y., Wang, C. P., Polotai, A. V., Agrawal, D. K., Lanagan, and M. T., Microwave synthesis of nano-sized barium titanate, Materials Letters , 2008,62 : 2551-2553.
    [71] Qi, L., Xu, M. X., Tian, Y. M., Zhao, J. W., Preparation of alumina-doped yttria-stabilized zirconia nano-powders by microwave-assisted peroxyl-complex coprecipitation. Transactions of Nonferrous Metals Society of China, 2006, 16, 426-430.
    [72]刘松,邢荣娥,于华华,郭占勇,李鹏程,微波辐射对不同介质均相壳聚糖的降解研究,食品科学,2005,26(10):30-34.
    [73]闫红,毕雅静,钟儒刚,曾毅等,多糖微波降解方法,中国专利: 200510008708.2.
    [74] Singh, V., Sethi, R., Tewari, A., Vasundhara Srivastava, Rashmi Sanghi. Hydrolysis of plant seed gums by microwave irradiation, Carbohydrate Polymers, 2003, 54:523-525.
    [75]葛仕福,施明恒,被干燥多孔物料中孔隙大小及分布的探讨,应用科学学报, 2005,23(1):94-98.
    [76]吕建雄,林志远,蒋佳荔等,不同干燥方法对杉木人工林木材浸注性的影响,林业科学, 2006,42(10):85-90.
    [77]林志远,吕建雄,几种木材干燥方法机理及其对木材浸注性的影响,世界林业研究,2004,17(1):25-30.
    [78]马先英,赵世明等,不同干燥方法对胡萝卜复水性及品质的影响,大连水产学院学报,2006,21(2):158-161.
    [79] Bondaruk, J., Markowski, M., B?aszczak, W., Effect of drying conditions on the quality of vacuum-microwave dried potato cubes, Journal of Food Engineering 2007, 81: 306-312.
    [80] Giri, S. K.; Prasad, S., Drying kinetics and re-hydration characteristics of microwave-vacuum and convective hot-air dried mushrooms, Journal of Food Engineering, 2007, 78: 512-521.
    [81] Maskan, M., Drying, shrinkage and re-hydration characteristics of kiwifruits during hot air and microwave drying, Journal of Food Engineering, 2001, 48: 177-182.
    [82] Funebo, T., Ohlsson, T., Microwave-assisted air dehydration of apple and mushroom, Journal of Food Engineering, 1998, 38: 353-367.
    [83] Therdthai, N., Zhou, W. B., Characterization of Microwave Vacuum Drying and Hot Air Drying of Mint Leaves (Mentha cordifolia Opiz ex Fresen), Journal of Food Engineering, 2009, 91(3): 482-489.
    [84] Wang, N., Brennan, J. G., Change in structure, density and porosity of potato drying dehydration, Journal of Food Engineering, 1995, 24: 61-76.
    [85] Krokida, M.K., Karathanos, V.T., Maroulis, Z. B., Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products, Journal of Food Engineering, 1998, 35: 369-380.
    [86]田英姿,陈克复,用压汞法和氮吸附法测定孔径分布及比表面积,中国造纸,2004,23(4),21-23.
    [87] Sundaram, J., Durance, T. D., Influence of processing methods on mechanical and structure characteristics of vacuum microwave dried biopolymer foams, Trans IChemE, 2007, 85 (C3): 264-272.
    [88] Sundaram, J., Durance, T. D., Wang, R., Porous scaffold of gelatin–starch with nanohydroxyapatite composite processed via novel microwave vacuum drying, Acta Biomaterialia, 2008, 4: 932–942.
    [89] Achaw, O. W., Afrane, G., The evolution of the pore structure of coconut shells during the preparation of coconut shell-based activated carbons, Microporous and Mesoporous Materials, 2008, 112: 284-290.
    [90] Arevalo, P., Ngadi, M. O., Bazhal, M. I.; Raghavan, G. S. V., Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices, Drying Technology,2004, 22 (5): 1233-1246.
    [91] Rahman, M.S., Al-Zakwani, I; Guizani, N., Pore formation in apple during air-drying as a function of temperature: porosity and pore-size distribution, Journal of the Science of Food and Agriculture, 2005, 85: 979-989.
    [92] Rahimpour, A., Madaeni, S. S., Shockravi, A., Ghorbani. S., Preparation and characterization of hydrophile nano-porous polyethersulfone membranes using synthesized poly (sulfoxide-amide) as additive in the casting solution, Journal of Membrane Science, 2009, 334(1-2):64-73.
    [93] Chai, X., Fujii, N., Ultrasound enhanced cross flow membrane filtration, Separation and Purification Technology, 1999, 17(1):31-40
    [94] Ahmad, A. L., Hairul. N. A. H., The effect of protein–membrane interactions on filtration behavior in forced-flow electrophoresis of protein solutions. Separation and Purification Technology, 2008, 61(3): 384-390.
    [95] Named, N., Oussedik, S., Yeddou, R., Enhancement of ultra-filtration flux by coupling static turbulence promoter and electric field, Separation and Purification Technology,1999,17(3):203-211.
    [96] Zumbush, P. V., Kulcke, W., Brunner, G., Use of alternating electrical fields as antifouling strategy in ultra-filtration of biological suspensions introduction of a new experimental procedure for cross flow filtration, Journal of membrane science ,1998,142(1):75-86.
    [97]肖凯军,郭祀远,李琳,陈健等,电场作用下超滤粘多糖的膜分子截留特性,中国海洋药物,2001,20(4):7-10.
    [98]许磊,王公慰,魏迎旭等,MCM41介孔分子筛合成研究Ⅱ.微波辐射合成法,催化学报,1999,20(3):251-255.
    [99]姚云峰,张迈生,杨燕生,纳米介孔分子筛MCM 41的微波辐射合成法,物理化学学报,2001,17(12):1117-1121.
    [100] Han, Z., Li, Y. S., Zhu, G. Q.et al, Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties, Separation and Purification Technology,2009,65:164-172.
    [101] Chen, X. B., Yang, W. S., Liu, J. et al, Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation, Journal of Membrane Science,2005,255:201–211.
    [102] Cheng, Z. L., Liu, Z., Wan, H. L., Microwave–heating synthesis and gas separation performance of NaA zeolite membrane, Chinese J. Chem, 2005, 23 :28–31.
    [103] Teruhiko, O., Tetsuyoshi, Y., Production method of hollow fiber membranes, JP, 2003324529[P], 2003
    [104] Yokota Hideyuli, Mabuchi Kimihiro, Kuze Katsuo, et al. Method for drying of hollow-fiber membrane bundle,JP,2006035195[P].2006
    [105] John, L., Jones, S. R., Process for increasing the permeability of plastic membrane,USP,4430278[P],1984
    [106] Bryjak, M., Pozniak, G., Gancarz, I. et al, Microwave plasma in preparation of new membranes, Desalination,2004,163:231-238
    [107] Nakai, Y., Tsujita, Y., Yoshimizu, H., Control of gas permeability for cellulose acetate membrane by microwave irradiation, Desalination, 2002, 145: 375-377.
    [108] Yoshiharu, T., Hiroaki, Y., Misao, M., Method for controlling membrane permeability by microwave and method for producing organic separation membrane, USP, 6706088[P], 2004.
    [109] Yusa, V., Pastor, A., Guardia, M. D. L.,Microwave-assisted extraction of OCPs, PCBs and PAHs concentrated by semi-permeable membrane devices (SPMDs), Analytica Chimica Acta,2005, 540 :355–366.
    [110] Yusa, V., Pastor, A., Guardia, M. D.L., Microwave-assisted extraction of polybrominated diphenyl ethers and polychlorinated naphthalenes concentrated on semipermeable membrane devices, Analytica Chimica Acta, 2006 565:103–111.
    [111] [美]J金克普利斯著,清华大学化工传递组译,传递过程与单元操作,华大学出版社,1985.
    [112] Simeonov, E., Tsibranska, I., Minchev, A., Solid-liquid extraction from plants-experimental kinetics and modeling, Chemical Engineering Journal, 1999,73: 255-259.
    [113] Spiro, M., Siddique, S., Kinetics and equilibria of tea infusion: analysis and partition constants of theaflavins, hearubigins, and cafeine on koonsong broken, J Sci Food Agric, 1981, 32: 1027.
    [114]李核,张展霞,李攻科,密闭式微波系统的微波辅助萃取动力学模型,中山大学学报,2004,43(3):40-44.
    [115]黄瑞华,韩伟,周永传,微波辅助提取淫羊藿饮片中淫羊藿苷的热质同向传递数值模拟,化工学报,2005,56(7):1300-1304.
    [116] Catchpole, O. J., Grey, J. B., Smallifield, B. M., Near critical extraction of sage, celery and coriander seed, Supercrit Fluids, 1996, 9(3):273-279.
    [117] Goto, M., Roy, B. C., Hirose, T., Shrinking core leaching model for supercritical fluid extraction, Journal of Supercritical Fluids , 1996 ,9 : 128-133.
    [118]赵跃强,吴争鸣,刘玮炜,超临界流体萃取天然产物传质模型,化工学报,2006,57(3):521-525.
    [119] Mandelbrot, B.B., Passoja, D.E., Paullay, A.J., Fractal character of fracture surfaces of metals, Nature, 1984, 308: 721-722.
    [120]王经洲,郑晓,宛农等,基于扫描电镜图像分析的菜籽仁饼孔隙结构分形研究,农业工程学报,2008,24(3):16-20.
    [121] Nussinovitch, A., Jaffe, N., Gillilov, M., Fractal pore-size distribution freeze-dried agar-texturized fruit surface, Food Hydrocolloids, 2004,18, 825-835.
    [122] Xu, P., Mujumdar, A. S., Yu, B.M., Fractal Theory on Drying: A Review, Drying Technology, 2008, 26: 640 -650.
    [123] Rahman, M.S., Al-Zakwani, I., Guizani, N., Pore formation in apple during air-drying as a function of temperature: Porosity and pore-size distribution, Journal of the Science of Food and Agriculture, 2005, 85: 979-989.
    [124] Koňas, P., Buchar, J.,Severa, L., Study of correlation between the fractal dimension of wood anatomy structure and impact energy, European Journal of Mechanics - A/Solids, 2009,28: 545-550.
    [125] Kerdpiboon, S., Devahastin, S., Kerr, W. L., Comparative fractal characterization of physical changes of different food products during drying, Journal of Food Engineering, 2007, 83: 570–580.
    [126] Kerdpiboon, S., Devahastin, S., Fractal characterization of some physical properties of a food product under various drying conditions, Drying Technology, 2007,25:135-146.
    [127] Kerdpiboon, S., Kerr, W. L., Devahastin, S., Neural network prediction of physical property changes of dried carrot as a function of fractal dimension and moisture content, Food Research International, 2006,39: 1110-1118.
    [128] Kerdpiboon, S., Thesis summary: Use of fractal analysis to evaluate physical changes of foods during drying, Drying Technology, 2007, 25: 1141.
    [129]江蔚新,葛坤如,薛宝玉,不同种类黄芪根中有效成分的比较,哈尔滨商业大学学报(自然科学版), 2004, 20(4): 87-389
    [130]周俊,中药复方-天然组合化学库与多靶作用机理,中国中西医结合杂志,1998, 2(2): 67.
    [131]郭立玮,金万勤,无机陶瓷膜分离技术对中药药效物质基础研究的意义,膜科学与技术,2002, 22(4): 46-49.
    [132]汤飞宇,郭玉海,当归,北京:中国中医药出版社,2001:74-76.
    [133]彭小飞,俞晓莉,夏立峰等纳米流体悬浮稳定性影响因素,浙江大学学报,2007,41(4):577-580.
    [134]朱冬生,李新芳,王先菊等,氧化铝-水纳米流体的分散性研究,功能材料,2007,38(增刊):3144-3147.
    [135]杨通在,罗顺忠,许云书,氮吸附法表征多孔材料的孔结构,炭素,2006,1:17-25.
    [136]陈凤婷,曾汉民,几种植物基活性炭材料的孔结构与吸附性能比较,离子交换与吸附,2004,20(2):104-112.
    [137]李秀凤,殷辉安,唐明林等,纳米技术在中药新药研究中的应用,国外医学中药分册,2003,25(6):3329-3331.
    [138] Maia, C.S., Mehenert, W. et al., Solid lipid nano particles as drug carrier for topical glucocorticoids, Int. Pharm, 2000, 196:165-167.
    [139]张卫强,邓宇,微波辐射萃取番茄红素的研究,研究与探讨,2002,23(5):36-37.
    [140]杨丽飞,邓宇,叶黄素体躯工艺的初步研究,广西轻工业,2003,6:12-15.
    [141]袁卫平,莫钦国,陈汉华等,微波固化加肝切除治疗原发性肝癌,广西医科大学学报,2002,19(1):22-23.
    [142] Matsuura, H., Kitao, A. etc, Microwave coagulation therapy as a local control for advanced clear cell adenocarcinoma of the maxillary, Oral Oncology Extra,2005,41(4):61-64
    [143]张远方,刘学清,刘继延,微波固化环氧树脂/氨基二苯醚树脂的耐热性研究,中国塑料,2005,19(1):18-21.
    [144]邓红霞,刘青梅等,紫菜多糖体躯工艺的研究,工艺技术,2005,26(1):129-130.
    [145]左春英,丁言镁,王建华,微波的生物非热效应的机理研究,沈阳师范大学学报,2005,23(3):254-257.
    [146]翟华嶂,李建保,黄向东等,微波非热效应诱发的陶瓷材料中物质各向异性扩散,材料工程,2003,(6):29-35.
    [147]习岗,宋清,杨初平,李英,曹永军,低强度微波对烟草叶片细胞膜系统和POD同工酶的非热效应,微波学报,2006,22(2):65-70.
    [148]郭立玮,金万勤,无机陶瓷膜分离技术对中药药效物质基础研究的意义,膜科学与技术,2002; 22(4): 46-49.
    [149]樊文玲,郭立玮,董洁,中药水提液中可溶性有机物分子量分布及其对陶瓷膜通量的影响,南京中医药大学学报,2004,20(5):295-297.
    [150]杨其蒀,天然药物化学,北京:中国医药科技出版社,2003.
    [151]黄卡玛,杨晓庆,微波加快化学反应中非热效应研究的新进展,自然科学进展,2006,16(3):273-279.
    [152]李雄彪,植物细胞壁,北京:北京大学出版社,1993.
    [153]徐自升,蔡宝昌,张弦,中药川芎中阿魏酸稳定性的研究现代,中药研究与实践,2004,18(2),25-27.
    [154]邵明望,张文敏,微波化学与工程,合肥,安徽大学出版社,1999.
    [155] Leeratanarak, N., Devahastin, S., Chiewchan, N., Drying kinetics and quality of potato chips undergoing different drying techniques, Journal of Food Engineering, 2006, 77:635–643.
    [156] Krokida, M. K., Maroulis, Z. B., Effect of drying method on shrinkage and porosity, Drying Technology, 1997, 10(3):2441- 2458.(1)
    [157] Krodida, M. K., Maroulis, Z. B., Saravacos, G. D., The effect of the method of drying on the color of dehydrated products, International Journal of Food Science and Technology, 2001, 36: 53-59.
    [158] Chin-Lin, H., Wenlug, C., Yih-Ming, W., Chin-Yin, T., Chemical composition, physical properties and antioxidant activitiesof yam flours as affected by different drying methods, Food Chemistry, 2003, 83: 85–92.
    [159]刑卫红,范益群,徐南平,无机陶瓷膜应用过程研究的进展,膜科学与技术,2003,23(4):86-92.
    [160]赵眉飞,满瑞林,超滤膜分离研究,贵州化工,2004,29(5):3-7.
    [161] Quevedo, R., Carlos, L. G., Aguilera, J. M., Cadoche, L., Description of food surfaces and microstructural changes using fractal image texture analysis, Journal of Food Engineering, 2002,53:361-371.
    [162] Yuan, C.Q., Li, J., Peng, Z., The use of the fractal description to characterize engineering surfaces and wear particles, Wear, 2003,255:315-326.
    [163] Pfeifer, P., Avnir, D., Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces, Journal Chemical Physics, 1983, 79: 3558-3565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700