用户名: 密码: 验证码:
基于碳纳米管的有机/无机杂化膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管自问世以来因其卓越的性能而备受关注。将碳纳米管与聚合物复合从而提高聚合物的力学、电学及其它性能,具有广泛的研究和实际应用前景,尤其是将碳纳米管添加到高聚物中制备成膜,利用其独特的一维管状结构和超疏水能力,可以提高传统分离膜对复杂体系的分离效果。获得到结构完整,性能优良的碳纳米管/聚合物分离膜,首先需要提高碳纳米管在聚合物基体中的分散性。通过对碳纳米管改性接枝活性基团,提高界面相容性可使整个体系保持稳定,发挥混合杂化膜中碳纳米管的独特性能。本论文针对上述目标,采用不同功能化方法提高原始碳纳米管的纯度、稳定性和分散性,然后将功能化的碳纳米管与几种聚合物材料分别进行复合,分别制备超滤、反渗透和渗透汽化膜,研究添加碳纳米管后膜分离性能的变化。主要包括以下四个方面的内容:
     (1)原始多壁碳纳米管(multi-walled carbon nanotube)的纯化及表面功能化。首先采用在硫酸/硝酸组成的混酸中超声处理以纯化碳纳米管。针对不同聚合物的结构特点采用两种不同的方法对纯化碳纳米管进行功能化以提高成膜后的性能:一是利用5-异氰酸酯-异酞酰氯(5-isocyanato-isophthaloyl chloride, ICIC)与碳纳米管反应实现多壁碳纳米管表面酰氯化;二是利用丁二酸酐过氧化物(diisobutyryl peroxide)与碳纳米管反应实现碳纳米管表面的羧酸化。通过功能化改性后,极大的提高了多壁碳纳米管在水中和各种有机溶剂中的分散性,也显著提高其在各种聚合物基质中的分散能力和界面相容性。
     (2)碳纳米管/聚砜超滤杂化膜的制备及性能研究。将表面酰氯化的碳纳米管与聚砜基质共混,采用相转化的方法制备得到表面孔径约为30 nm的超滤膜。通过扫描电镜(SEM)和透射电镜(TEM)观察膜表面和截面结构;采用元素分析(XPS),红外光谱(IR)及接触角对膜表面的化学成分和亲疏水性分析。以纯水和聚乙二醇(PEG,分子量20000)为原料液分别测试超滤膜的通量和截留性能,结果表明,碳纳米管的加入改善了膜的微结构并提高了膜表面的亲水性,纯水通量由原来的40 L/m2-h上升到180 L/m2·h,分离性能得到显著增强。另外,通过对BSA蛋白质分子的静态吸附实验,证明加入碳纳米管的聚砜超滤膜可以有效降低蛋白质引起的膜污染。
     (3)碳纳米管/壳聚糖渗透汽化复合膜的制备及性能研究。将表面羧酸化的碳纳米管与壳聚糖共混制备得到表面致密的渗透汽化复合膜。通过SEM和TEM观察到膜的形貌以及碳纳米管在壳聚糖中的分散状况;通过红外光谱和X射线衍射(XRD)比较了混有碳纳米管的壳聚糖复合膜和纯壳聚糖复合膜结构的差异。通过膜在乙醇和水中的溶胀实验,考察了膜中碳纳米管含量对乙醇和水在膜中溶解系数和扩散系数的影响,与Fick定律推导出的理论扩散系数进行比较,证实膜中的碳纳米管更有利于提高水分子的扩散速率。最后将膜应用与渗透汽化实验中,考察料液温度和碳纳米管含量对分离性能的影响,结果表明,含碳纳米管的混合膜可以降低分子穿透膜的活化能,从而大幅度地提高水通量和膜的总通量及其他分离性能。
     (4)碳纳米管/聚酰胺反渗透复合膜的制备及性能研究。首先考察界面聚合反应条件对以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体的反渗透复合膜性能的影响,并经过单因素和正交实验优化膜制备条件。研究了向水相中添加相转移催化剂和小分子醇类后对反渗透复合膜性能的影响,合理的解释了相转移催化剂和小分子醇作为水相添加剂能提高复合膜通量的原因。随后,将羧酸化的碳纳米管分散到MPD水溶液中制备得到碳纳米管/聚酰胺反渗透复合膜。SEM、TEM的表征结果证明:加入碳纳米管后膜表面比纯聚酰胺膜粗糙,而且加入碳纳米管后由于微相分离会造成膜的分离层出现微小的空隙,降低了膜表面的致密程度。另外,碳纳米管/聚酰胺复合膜的表面更亲水,表面的电负性也大于纯的聚酰胺复合膜。与纯聚酰胺复合膜分离性能相比,碳纳米管/聚酰胺反渗透复合膜对纯水和盐溶液的渗透通量增加近一倍,同时,膜抗污染性和耐氧化性也得到了一定的提高,对活性氯的耐受力提高到3000 ppm·h。
     综上所述,本论文所制备的含碳纳米管有机/无机复合膜比单纯的有机高分子膜在结构和性能上有明显提高,该膜制备方法为制备高性能杂化膜提供了新的思路。
Since the carbon nanotubes (CNTs) was first discovered in 1991, it has been of great interest in chemistry physics and materials science rapidly, and has a lot of potential applications in many fields, especially applying in preparation of new mixed matrix membranes (MMM), due to its peculiar mechanical, electronic, chemical properties. The constraints of separation performance of traditional membrane would be conquered by CNTs because of its unique one-dimensional and superhydrophobic tubal structure. However, how to fabricate a well-performance CNT mixed matrix membrane (CNTs-MMM) is really a tough task since the bad dispersibility of CNTs. If CNTs would be grafted by active group and thus create no void with polymers, the CNTs-MMM would exhibit more advantages than original polymer membrane. So the task of this thesis is first to exploit two different methods for functionalizing CNTs to improve its purity, stability and dispersion in polymers, and then mix the functionalized CNTs with polymers to fabricate three well-performance CNTs-MMMs which can be applied in ultrafiltration, pervaporation and reverse osmosis. The main contents include the following four parts:
     (1) The purification and functionalization of pristine multi-walled carbon nanotubes (MWNTs). First, the pristine MWNTs were treated by mixed acid in ultrasonic bath for purification. After that, according to the chemical structure of polymers, two different functionalized methods were used. One was acyl-chlorination (MWNTs-COC1). MWNTs were treated by 5-isocyanato-isophthaloyl chloride (ICIC) and acyl-chloride group was successful grafted on it. The second was carboxylation (MWNTs-COOH). MWNTs were treated by diisobutyryl peroxide and carboxyl group was successful grafted on it. After functionalziation, not only the dispersibility of MWNTs in water and organic solvents was remarkably improved, but also well dispersed in different polymer matrix.
     (2) Preparation and property of MWNTs/polysulfone (PSF) ultrafiltration hybrid membranes. Blends of polysulfone and different composition of MWNTs-COC1 to prepare a series of ultrafiltration membranes by phase-inversion method. According to the SEM and TEM, it was found that the content of functionalized MWNTs was an important factor influencing the morphology and permeation properties of the blend membranes. In addition, SEM images of the blend membrane surface and cross-section showed that the average pore size and pore structure of the blend membranes changed with the content of functionalized MWNTs up to 0.19%, then decreased. The static water contact angle of membrane surface showed that the hydrophilicity was improved with increasing content of functionalized MWNTs in blends. In separation experiments, pure water flux of the blend membranes increased from 40 L/m2·h to180 L/m2·h with the content of functionalized MWNTs, until up to 0.19%, and then gradually decreased. Finally, protein adsorption performance of membrane indicated that MWNTs content suppressed the adsorption of protein on membrane, and thus alleviated membrane fouling.
     (3) Preparation and property of MWNTs/chitosan pervaporation hybrid membranes. A series of MWNTs-COOH incorporated chitosan membranes were prepared by phase-inversion method. The morphology of surface and cross-section of membrane were observed by SEM and TEM. XRD and IR were employing to analyse chemical structure of membrane surface. In swelling experiment, the swelling degree of hybrid membranes in ethanol/water mixtures was 6 times than that of the pristine chitosan membrane. According to the Fick's law, the solubility and the diffusion coefficient of membranes in water, ethanol, and 90% ethanol/water mixtures were obtained. Compared with the calculated diffusion coefficient (D90), the measured diffusion coefficient (D90T) in 90% ethanol/water mixtures was higher, which indicated the functionalized MWNTs were more prone to increased water permeation when ethanol and water penetrated into the membrane simultaneously. In pervaporation experiment, the permeation flux of the membranes increased significantly with increasing functionalized MWNTs content in hybrid membrane in pervaporation. The effect of MWNTs content in the membrane matrix and operating temperature on pervaporation performance was investigated. After introducing functionalized MWNTs, the Arrhenius activation parameters for the total permeation decreased from 28.15 to 12.91 kJ/mol, which indicated that the carbon nanotubes filled membranes were easier to penetrate and exhibited higher flux performance than a pristine membrane.
     (4) Preparation and property of MWNTs/polyamide reverse osmosis composite membranes. Reverse osmosis composite membrane was prepared by interfacial polymerization of MPD with TMC on the surface of polysulfone support. The effects of monomers concentration, reaction time of IP, time and temperature of heat treatment on the separation performance of composite membranes were investigated. From the orthogonal experiment results, the optimum condition was obtained. In addition, the effects of phase-transfer catalyst and several alcohols as additions in water phase during IP on membrane performance were investigated, and the reason was also discussed. After that, MWNTs/polyamide reverse osmosis composite membranes were prepared by interfacial polymerization under the optimum condition. By comparing of structures, the surface of MWNTs/polyamide membrane was rougher than pure polyamide membrane, and some gaps occurred in polyamide layer because of micro-phase separation. Moreover, membrane surface became more hydrophilic and was decorated by more negative charges. In addition, after testing, the water flux of MWNTs/polyamide membrane was doubled than original polyamide membrane, and MWNTs/polyamide membrane could inhibit membrane fouling caused by organic or inorganic substances. The most important thing is the oxidation resistance of composite membrane has also been improved, the tolerance of active chlorine was up to 3000 ppm-h.
     In summary, the structure and performance of CNT mixed matrix membrane have more advantages than the original polymer membranes, and such hybrid membrane can break through the constraints of separation performance of traditional membrane, which provides an idea and method for the development of membrane technology.
引文
[1]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,354,1991,56-58.
    [2]Henning TH, Salama F. Carbon in the universe [J]. Science,1998,282:2204-2210.
    [3]Vincent H. Relations between global and local topology in multiple nanotube junctions [J]. Phys. Rev. B,1998,58:12671-12671.
    [4]潘正伟,常保和,等。超长、开口定向碳纳米管列阵的制备[J]。中国科学(A辑),1999,29:743。
    [5]Liu C, Cong HT, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method [J]. Carbon,1999,37:1865-1868.
    [6]Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes [J]. Chem. Phys. Lett.,2000,319:457-459.
    [7]Birkett PR, Cheetham AJ, Eggen BR, et al. Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter [J]. Chem. Phys. Lett.,1997,281:111-114.
    [8]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Sicence,1996,273:483-487.
    [9]Georgakilas V, Bourlinos A, Gournis D, Tsoufis T, Trapalis C, Mateo-Alonso A, Prato M. Multipurpose organically modified carbon nanotubes:From functionalization to nanotube composites [J]. J. Am. Chem. Soc., 2008, 130:8733-8740.
    [10]Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite [J]. Polymer,2007,48:5662-5670.
    [11]Hirsch A. Functionalization of Single-Walled Carbon Nanotubes [J]. Angew. Chem. Int. Ed.,2002,41:1853-1859
    [12]Choi JH, Jegal J, Kim WN. Modification of performances of various membranes using MWNTs as a modifier [J]. Mocromol. Symp.,2007,249-250:610-617.
    [13]Hamwi A, Alvergnat H, Bonnamy S, Beguin F. Fluorination of Carbon Nanotubes [J]. Carbon,1997,35:723-728.
    [14]Polona U, Seo JW, Klara H, Ales M, Peter P, Mihailovic DD, Laszlo F. Addition of carbon radicals generated from organic peroxides to single wall carbon nanotubes [J]. Chem. Mater.,2003,15:4751-4755.
    [15]Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le T, Mayadunne Roshan TA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process [J]. Macromolecules,1998,31:5559-5562.
    [16]Kong H, Gao C, Yan DY. Functionalization of Multi-walled Carbon Nanotubes by Atom Transfer Radical Polymerization (ATRP) and Defunctionalization of the Products [J]. Macromolecules,2004,37:4022-4030.
    [17]Qin SH, Qin DQ, Ford WT, Herrera JE, Resasco DE, Bachilo SM, Weisman RB, Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate [J]. Macromolecules,2004, 37:3965-3967.
    [18]Chen R, Zhang Y, Wang D, Dai H. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization [J]. J. Am. Chem. Soc.,2001,123:3838-3839.
    [19]Peng F, Hu C, Jiang Z. Novel ploy (vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures [J]. J. Membr. Sci.,2007,297:236-242.
    [20]Star A, Steuerman DW, Heath JR. Starched carbon nanotubes [J]. Angew. Chem. Int. Ed.,2002,41:2508-2512.
    [21]Star A, Stoddart JF, Steuerman D. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angew. Chem. Int. Ed.,2001,40:1721-1725.
    [22]Matsui K, Pradhan BK, Kyotani T. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes [J]. J.Phys.Chem. B,2001,105:5682-5688.
    [23]Li WZ, Xie SS, Qian LX. Large-scale synthesis of aligned carbon nanotubes [J]. Science,1996,274:1701-1703
    [24]Wei BQ, Vajtai R, Jung Y. Organized assembly of carbon nanotubes-Cunning refinements help to customize the architecture of nanotube structures [J]. Nature, 2002,416:495-496.
    [25]Yamamoto K, Akita S, Nakayama Y. Orientation and purification of carbon nanotubes using ac electrophoresis [J]. J. Phys. D,1998,31:L34-L36.
    [26]Zhang YG, Chang AL, Cao J. Electric-field-directed growth of aligned single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2001,79:3155-3157
    [27]Fujiwara M, Oki E, Hamada M. Magnetic orientation and magnetic properties of a single carbon nanotube [J]. J. Phys. Chem. A,2001,105:4383-4386.
    [28]Walters DA, Casavant MJ, Qin XC. In-plane-aligned membranes of carbon anotubes [J]. Chem. Phys. Lett.,2001,338:14-20.
    [29]Nan XL, Gu ZN, Liu ZF. Immobilizing shortened single-walled carbon nanotubes (SWNTs) on gold using a surface condensation method [J]. J. Colloid. Interface. Sci.,2002,245:311-318.
    [30]Pan HL, Liu LQ, Guo ZX. Carbon nanotubols from mechanochemical reaction [J]. Nano Lett.,2003,3:29-32.
    [31]Ajayan PM, Stephan O, Colliex C. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite [J]. Science,1994,265:1212-1214.
    [32]Chen J, Weimer WA. Room-temperature assembly of directional carbon nanotube strings [J]. J.Am.Chem.Soc.,2002,124:758-759.
    [33]Cornelius C, Hibshman C, Narand E. Hybrid organic-inorganic membranes [J]. Sep. Sci. Technol.,2001,25:181-193.
    [34]王学松。液膜分离技术及其进展[J]。化学进展,1994,6:21-338.
    [35]Rama RGV, Balamurugan S, Meyer DE, et al. Hybrid bioinorganic smart membranes that incorporate protein-based molecular switches [J]. Langmuir,2002, 18:1819-1824.
    [36]Stevens NSM. Rezac ME. Formation of hybrid organic/inorganic composite membranes via partial pyrolysis of poly(dimethyl siloxane) [J].Chem. Eng. Sci., 1998,53:1699-1711.
    [37]Cornelius CJ, Marand E. Hybrid silica-polyimide composite membranes:gas transport properties [J]. J. Membr. Sci.,2002,202:97-118.
    [38]Mascia L, Kioul A. Influence of siloxane composition and morphology on properties of polyimide:silica hybrids [J]. Polymer,1995,36:3649-3659.
    [39]Landry CJT, Coltrain BK. Insitu polymerization of tetraethosysilane in polymer: Chemical nature of the interaction [J]. Polymer,1992,33:1496-1504.
    [40]钟顺和,李传峰,孙宏伟等。负载型Ti02-聚丙烯疏水复合膜的制备与表征[J]。膜科学与技术,2002,22:23-26。
    [41]孙宏伟,钟顺和。Ti02-聚乙烯复合膜的制备有红外光谱对其膜层结构的表征[J]。膜科学与技术,1997,17:42-45。
    [42]郭清萍,钟顺和。负载型Ti02-聚丙烯微孔复合膜的制备及性能[J]。太原工业大学学报,1997,28:83-86。
    [43]Yano S, Kurita K. Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process [J]. Mater. Sci. Eng. C,1998,6:75-90.
    [44]Ismaila AF, Goha PS, Sanipa SM, Aziz M. Transport and separation properties of carbon nanotube-mixed matrix membrane [J]. Sep. Sci. Technol.,2009,70:12-26.
    [45]Wei C, Srivastave D. Theory of transport of long polymer molecules through carbon nanotube channels [J]. Phys. Rev. Lett.,2003,91:235901/1-4.
    [46]Liu Y, Wang Q, Zhang L, Wu T. Dynamics and density profile of water in nanotubes as one-dimensional fluid [J]. Langmuir,2005,21:12025-12030.
    [47]Konduri S, Tong HM, Chempath S, Nair S. Water in single-walled aluminosilicate nanotubes:Diffusion and adsorption properties [J]. J. Phys. Chem. C,2008, 112:15367-15374.
    [48]Sokhan VP, Nicholson D, Quirke N. Fluid flow in nanopores:Accurate boundary conditions for carbon nanotubes [J]. J. Chem. Phys.,2002,117:8531-8539.
    [49]Sholl DS, Fichthorn KA. Concerted diffusion of molecular clusters in a molecular sieve[J]. Phys. Rev. Lett.,1997,79:3569-3572.
    [50]Sholl DS. Characterization of molecular cluster diffusion in A1PO4-5 using molecular dynamics [J]. Chem. Phys. Lett.,1999,305:269-275.
    [51]Shoulidas AI, Ackerman DM, Johnson JK, Sholl DS. Rapid Transport of Gases in Carbon Nanotubes [J]. Phys. Rev. Lett.,2002,89:185901/1-4.
    [52]Mao Z, Sinnot SB. A computational study of molecular diffusion and dynamic flow through carbon nanotubes [J]. J. Phys. Chem. B,2000,104:4618-4624.
    [53]Bathia SK, Chen H, Sholl DS. Comparisons of diffusive and viscous contributions to transport coefficients of light gases in single-walled carbon nanotubes [J]. Mol. Simul.,2005,31:643-649.
    [54]Hummer G, Rasaiah JC, Noworyta JP. Water conduction through the hydrophobic channel of a carbon nanotube [J]. Nature,2001,414:188-190.
    [55]Striolo A. The mechanism of water diffusion in narrow carbon nanotubes [J]. Nano Lett.,2006,6:633-639.
    [56]Joseph S, Aluru NR. Why are carbon nanotubes fast transporters of water [J]? Nano Lett.,2008,8:452-458.
    [57]Thomas JA, McGaughey AJH. Reassessing fast water transport through carbon nanotubes [J]. Nano Lett.,2008,8:2788-2793.
    [58]Zhou XY, Lu HJ. The structure and dynamics of water inside armchair carbon nanotube [J]. Chin. Phys.,2007,16:335-339.
    [59]Huang B, Xia Y, Zhao M, Li F, Liu X, Ji Y, Song C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes [J]. J. Chem. Phys.,2005,122:1-8.
    [60]Huang B, Xia Y. Zhao M, Li F, Liu XD, Liu H. Single-walled carbon nanotubes acting as controllable transport channels [J]. Chin. Phys. Lett.,2004, 21:2388-2391.
    [61]Zheng J, Lennon EM, Tsao HK, Sheng YJ, Jiang S. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient [J]. J. Chem. Phys.,2005,122:1-7.
    [62]Maibaum L, Chandler D. A coarse-grained model of water confined in a hydrophobic tube [J]. J. Phys. Chem. B,2003,107:1189-1193.
    [63]Zimmerli U, Gonnet PG, Walther JH, Koumoutsalos P. Curvature induced L-defects in water conduction in carbon nanotubes [J]. Nano Lett.,2005, 5:1017-1022.
    [64]Sokhan VP, Nicholson D, Quirke N. Transport properties of nitrogen in single walled carbon nanotubes [J]. J. Chem. Phys.,2004,120:3855-3863.
    [65]Matranga C, Bockrath B, Chopra N, Jinds BJ, Andrews R. Raman spectroscopic investigation of gas interactions with an aligned multiwalled carbon nanotube membrane [J]. Langmuir,2006,22:1235-1240.
    [66]Kaganov IV, Sheintuch M. Nonequilibrium molecular dynamics simulation of gas-mixtures transport in carbon-nanopore membranes [J]. Phys. Rev.,2003, E68:046701.
    [67]Jokobtorweihen S, Verbeek MG, Lowe CP, Keil FG, Smit B. Understanding the loading dependence of self-diffusion in carbon nanotubes [J]. Phys. Rev. Lett., 2005,95:044501/1-4.
    [68]Lee KH, Sinnott SB. Equilibrium and nonequilibrium transport of oxygen in carbon nanotubes [J]. Nano Lett.,2005,5:793-798.
    [69]Arora G, Wagner NJ, Sandler SI. Adsorption and diffusion of molecular nitrogen in single wall carbon nanotubes [J]. Langmuir,2004,20:6268-6277.
    [70]Fujiwara A, Ishii K, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y. Gas adsorption in the inside and outside of single-walled carbon nanotubes [J]. Chem. Phys. Lett.,2001,336:205-211.
    [71]Kruk M, Li ZJ, Jaroniec M, Betz WR. Nitrogen adsorption study of surface properties of graphitized carbon blacks [J]. Langmuir,1999,15:1435-1441.
    [72]Lee KH, Sinnott SB. Computational studies of non-equilibrium molecular transport through carbon nanotubes [J]. J. Phys. Chem. B,2004,108:9861-9870.
    [73]Cooper SM, Cruden BA, Meyyappan M. Gas transport characteristics through a carbon nanotubule [J]. Nano Lett.,2004,4:377-381.
    [74]Cao D, Wu J. Self-diffusion of methane in single-walled carbon nanotubes at sub-and supercritical conditions [J]. Langmuir,2004,20:3759-3765.
    [75]Mao Z, Sinnott SB. Separation of organic molecular mixtures in carbon nanotubes and bundles:Molecular dynamics simulations [J]. J. Phys. Chem. B, 2001,105:6916-6924.
    [76]Duren T, Keil FJ, Seaton NA. Composition dependent transport diffusion coefficients of CH4/CF4 mixtures in carbon nanotubes by non-equilibrium molecular dynamics simulations [J]. Chem. Eng. Sci.,2002,57:1343-1354.
    [77]Chen H, Johnson JK, Sholl DS. Transport diffusion of gases is rapid in flexible carbon nanotubes [J]. J. Phys. Chem. B,2006,110:1971-1975.
    [78]Klinke C, Bonard JM, Kern K. Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes [J]. Phys. Rev. B,2005,71:1-7.
    [79]Deng J, Zhang X, Wang K, Zou H, Zhang Q, Fu Q. Synthesis and properties of poly(ether urethane) membranes filled with isophorone diisocyanate-grafted carbon nanotubes [J]. J. Membr. Sci.,2007,288:261-267.
    [80]Kalappa P, Lee JH, Rashmi J, Venkatesha TV, Pai KV, Xing W. Effect of polyaniline functionalized carbon nanotubes addition on the positive temperature coefficient behavior of carbon black/high-density polyethylene nanocomposites [J]. IEEE Trans. Nanotechnol.,2008,7:223-228.
    [81]Jeon IY, Lee HJ, Choi YS, Tan LS, Baek JB. Semimetallic Transport In Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes [J]. Macromolecules,2008,41:7423-7432.
    [82]Zou W, Du ZJ, Liu YX, Yang X, Li HQ, Zhang C. Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT-epoxy matrix nanocomposites [J]. Compos. Sci. Technol.,2008,68:3259-3264.
    [83]Pechar TW, Kim S, Vaughan B, Marand B, Baranauskas V, Riffle J, Leong HK, Tsapatsis M. Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane [J]. J. Membr. Sci.,2006,277:210-218.
    [84]Liu YL, Chen WH, Chang YH. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs [J]. Carbohyd. Polym.,2009,76:232-238.
    [85]Nednoor P, Chopra N, Gavalas V, Bachas LG, Hinds BJ. Reversible biochemical switching of ionic transport through aligned carbon nanotube membranes [J]. Chem. Mater.,2005,17:3595-3599.
    [86]Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG. Aligned multiwalled carbon nanotube membranes [J]. Science,2004,303:62-65.
    [87]Majumder M, Chopra N, Hinds BJ. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes [J]. J. Am. Chem. Soc., 2005,127:9062-9070.
    [88]Majumder M, Zhan X, Andrews R, Hinds BJ. Voltage gated carbon nanotube membranes [J]. Langmuir,2007,23:8624-8631.
    [89]Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ. Nanofibrous membranes prepared by multiwalled carbon nano tube/poly (methyl methacrylate) composites [J]. Macromolecules,2004,37:9899-9902.
    [90]Cervini R, Simon GP, Ginic-Markovic M, GMatisons J, Huynh C, Hawkins S. Aligned silane-treated MWCNT/liquid crystal polymer films [J]. Nanotechnology, 2008,19:175602.
    [91]Chen W, Tao X. Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane [J]. Macromol. Rapid. Commun.,2005,26:1763-1767.
    [92]Mi W, Lin YS, Li Y. Vertically aligned carbon nanotube membranes on macroporous alumina supports [J]. J. Membr. Sci.,2007,304:1-7.
    [93]Huang S, Dai L. Plasma etching for purification and controlled opening of aligned carbon nanotubes [J]. J. Phys. Chem. B,2002,106:3542-3545.
    [94]Cong H, Zhang J, Radosx M, Shen Y. Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation [J]. J. Membr. Sci.,2007,294:178-185.
    [95]Anson M, Marchese J, Garis E, Ochoa N, Pagliero C. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation [J]. J. Membr. Sci., 2004,243:19-28.
    [96]Rafizah WAW, Ismail AF. Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane [J]. J. Membr. Sci.,2008,307:53-61.
    [97]Skoulides A, Chen HB, Chong SS. Carbon nanotubes as high flux/high selectivity gas separation membranes [J].227th ACS National Meeting.,2004, 227:U350-U351.
    [98]Kim S, Chen S, Johnson JK, Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation:Theory and experiment [J]. J. Membr. Sci.,2007,294:147-158.
    [99]Chen H, Sholl DS. Predictions of selectivity and flux for CH4/H-2 separations using single walled carbon nanotubes as membranes [J]. J. Membr. Sci.,2006, 269:152-160.
    [100]Kim S, Pechar TW, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation [J]. Desalination,2006,192:330-339.
    [101]Chung TS, Chan SS, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/C-60 mixed matrix membranes [J]. J. Membr. Sci.,2003, 211:91-99.
    [102]Corry B. Designing carbon nanotube membranes for efficient water desalination [J]. J. Phys. Chem. B,2008,112:1427-1434.
    [103]Choi JH, Jegal J, Kim WN. Modification of performances of various membranes using MWNTs as a modifier [J]. Mocromol. Symp.,2007,249-250:610-617.
    [104]Peng F, Hu C, Jiang Z. Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures [J]. J. Membr. Sci.,2007,297:236-242.
    [105]Lue SJ, Peng SH. Polyurethane (PU) membrane preparation with and without hydroxypropyl-beta-cyclodextrin and their pervaporation characteristics [J]. J. Membr. Sci.,2003,222:203-217.
    [106]Yu M, Funke HH, Falconer JL, Noble RD. High Density, Vertically-Aligned Carbon Nanotube Membranes [J]. Nano Lett.,2009,9:225-229.
    [107]Mondal S, Hu JL. Microstructure and water vapor transport properties of functionalized carbon nanotube-reinforced dense-segmented polyurethane composite membranes [J]. Polym. Eng. Sci.,2008,48:1718-1724.
    [108]O'Cornell MJ, Boul P, Ericson LM, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping [J]. Chem. Phys. Lett., 2001,342:265-271.
    [109]Narayan RJ, Berry CJ, Brigmon RL. Structural and biological properties of carbon nanotube composite films [J]. Mater. Sci. Eng. B,2005,123:123-129.
    [110]Brunet L, Lyon DY, Zodrow K, et al. Properties of membranes containing semi-dispersed carbon nanotubes [J]. Environ. Eng. Sci.,2008,25:565-575.
    [111]Joseph S, Mashi RJ, Jakobson E, Aluru NR. Electrolytic transport in modified carbon nanotubes [J]. Nano Lett.,2003,3:1399-1403.
    [112]Majumder M, Keis K, Zhan X, Meadows C, Cole J, Hinds BJ. Enhanced electrostatic modulation of ionic diffusion through carbon nanotube membranes by diazonium grafting chemistry [J]. J. Membr. Sci.,2008,316:89-96.
    [113]刘海霞,张浩勤,刘金盾,罗庆涛.分光光度法测定不同分子量聚乙二醇浓度[J]。河南化工。2004,5:36-37。
    [114]Kang Y, Taton TA. Micelle-encapsulated carbon nanotubes:A route to nanotube composites [J]. J. Am. Chem. Soc.,2003,125:5650-5651.
    [115]Carlos VS, Ana LMH, Fisher FT et al. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization [J]. Chem. Mater.,2003,15:4470-4475.
    [116]Eitan A, Jiang K, Dukes D, et al. Surface modification of multiwalled carbon nanotubes:Toward the tailoring of the interface in polymer composites [J]. Chem. Mater.,2003,15:3198-3201.
    [117]Han MJ, Nam ST, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane [J]. J. Membr. Sci.,2002,202:55-61.
    [118]Lee KW, Seo BK, Nam ST, Han MJ, Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes [J]. Desalination,2003,159:289-296.
    [119]Ahmad AL, Sarif M, Ismail S. Development of an integrally skinned ultrafiltration membrane for wastewater treatment:effect of different formulations of PSf/NMP/PVP on flux and rejection [J]. Desalination,2005, 179:257-263.
    [120]Steen ML, Hymas L, Fisher ER, et al. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification [J]. J. Membr. Sci.,2001,188:97-114.
    [121]Wavhal DS, Fisher ER. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment [J]. Desalination,2005,172:189-205.
    [122]Ballinas L, Torras C, Fierro V, Garcia-Valls R. Factors influencing activated carbon polymeric composite membrane structure and performance [J]. J. Phys. Chem. Solids.2004,65:633-637.
    [123]Petra P, Mahmoud AG, Ingo A, et al. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites [J].Polymer,2004,45:8863-8870.
    [124]Zhao ZP, Wang Z, Wang SC, Formation, charged characteristic and BSA adsorption behaviour of carboxymethyl chitosan/PES composite MF membrane [J]. J. Membr. Sci.,2003,217:151-158.
    [125]Matsumoto H, Koyama Y, Tanioka A. Interaction of proteins with weak amphoteric charged membrane surfaces:effect of pH [J]. J. Colloid. Interface. Sci.,2003,264:82-88
    [126]Jones KL, O'Melia CR. Protein and humic acid adsorption onto hydrophilic membrane surfaces:effects of pH and ionic strength [J]. J. Membr. Sci.,2000, 165:31-46.
    [127]Cohen MA, Fleer GJ, Lyklema J, Norde W. Adsorption of Ions, Polyelectrolytes and Proteins [J]. Adv. Colloid. Interface. Sci.,1991,34:477-535.
    [128]潘学杰。多壁碳纳米管聚砜共混超滤膜制备及表征[M]。国家海洋局第二研究所硕士学位论文,2008。
    [129]Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite [J]. Chem. Mater.,2003,15:3774-3780.
    [130]Dong B, Wang C, He BL, Li HL. Preparation and tribological properties of poly(methyl methacrylate)/styrene/MWNTs copolymer nanocomposites [J]. J. Appl. Polym. Sci.,2008,108:1675-1679.
    [131]Podsiadlo P, Tang Z, Shim BS, Kotov NA. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites [J]. Nano Lett.,2007,7:1224-1231.
    [132]Santos DS, Goulet PJG., Pieczonka NPW, Oliveira ON, Aroca RF. Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering [J]. Langmuir,2004,20:10273-10277.
    [133]Hao C, Ding L, Zhang X, Ju H. Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing [J]. Anal. Chem.,2007,79:4442-4447.
    [134]Li W, Xue F, Cheng R. States of water in partially swollen poly(vinyl alcohol) hydrogels [J]. Polymer,2005,46:12026-12031.
    [135]Chen HL, Wu LG, Tan J, et al. PVA membrane filled (3-cyclodextrin for separation of isomeric xylenes by pervaporation [J]. Chem. Eng. J.,2000, 78:159-164.
    [136]Grossi N, Espuche E, Escoubes M. Transport properties of NafionR/cyclodextrin membranes [J]. Sep. Purif. Technol.,2001, 22-23:255-267.
    [137]Tang C, Zhang Q, Wang K, Fu Q, Zhang C. Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs) [J]. J. Membr. Sci.,2009,337:240-247.
    [138]Kittur AA, Kulkarni SS, Aralaguppi MI. Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite [J]. J. Membr. Sci.,2005,247:75-86.
    [139]Qiao XY, Chung TS, Guo WF, Matsuura T, Teoh MM. Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamics and molecular aspects [J]. J. Membr. Sci.,2005,252:37-49.
    [140]Cadotte JE, King RS. Interfacial syntheses in the preparation of reverse osmosis membrane [J]. J. Macromol. Scrchem.,1981, A15:727-755.
    [141]Petersen RJ. Composite reverse osmosis and nanofiltration membranes [J]. J. Membr. Sci.,1993,83:81-150.
    [142]Cadotte JE, Rozelle L T. OSW PB-Report,1972, No.927
    [143]Larson RE, Cadotte JE, and Petersen RJ. The Ft-30 sea-water reverse-osmosis membrane:element test results [J]. Desalination,1981,38:473-483.
    [144]Zhou Y, Yu SC, Liu MH. Effect of mixed crosslinking agents on performance of thin-film-composite membranes [J]. Desalination,2006,192:182-189.
    [145]Liu LF, Yu SC, Zhou Y. Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD):I. Preparation and characterization of ICIC-MPD membrane [J]. J. Membr. Sci.,2006,281:88-94.
    [146]Tang B, Xu T, Wu P. Preparation of thin film composite membrane by interfacial polymerization method [J]. Progress in Chemistry,2007,19:1428-1435.
    [147]Yu M, Funke HH, Falconer JL, Noble RD. High Density, Vertically-Aligned Carbon Nanotube Membranes [J]. Nano Lett.,2009,9:225-229.
    [148]Sholl DS, Johnson JK, Making high-flux membranes with carbon nanotubes [J]. Science,2006,312:1003-1004.
    [149]Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes [J]. Science,2006,312:1034-1037.
    [150]Wang XF, Chen XM, Yoon K, Fang DF, Hsiao BS, Chu B, High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating [J]. Environ. Sci. Technol.2005,39:7684-7691.
    [151]Li G, Kikuchi E, Matsukata M. A study on the pervaporation of wateracetic acid mixtures through ZSM-5 zeolite membranes [J]. J. Membr. Sci.,2003, 218:185-194.
    [152]Li LX, Liu N, McPherson B, et al. Influence of counter ions on the reverse osmosis through MFI zeolite membranes:implications for produced water desalination [J]. Desalination,2008,228:217-225.
    [153]Kazemimoghadam M, Mohammadi T. Synthesis of MFI zeolite membranes for water desalination [J]. Desalination,2007,206:547-553.
    [154]Koros WJ. Evolving beyond the thermal age of separation processes: membranes can lead the way [J]. AIChE J.,2004,50:2326-2334.
    [155]Jeong BH, Hoek EMV, Yan YS. Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes [J]. J. Membr. Sci.,2007,294:1-7.
    [156]Song YJ, Patricia S, Laurence LH. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process [J]. J. Membr. Sci.,2005,251:67-79.
    [157]Canas A, Ariza MJ, Benavente J. Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements [J]. J. Membr. Sci.,2001,183:135-146.
    [158]Deshmukh SS, Childress AE. Zeta potential of commercial RO membranes: influence of source water type and chemistry [J]. Desalination,2001,140:87-95.
    [159]周勇。高性能反渗透复合膜及其功能单体制备研究[M]。浙江大学博士学位论文,2006。
    [160]Rao AP, Joshi SV, Trivedi JJ. Structure-performance correlation of polyamide thin film composite membranes:effect of coating conditions on film formation [J]. J. Membr. Sci.,2003,211:13-24.
    [161]潘祖仁。高分子化学,增强版[M]。北京:化学工业出版社,2007。
    [162]金日光,华幼卿。高分子物理[M]。 北京:化学工业出版社,2007。
    [163]Kwak SY, Jung SG, Yoon YS, Ihm DW. Details of Surface Features in Aromatic Polyamide Reverse Osmosis Membranes Characterized by Scanning Electron and Atomic Force Microscopy [J]. J. Phys. Chem. B,1999,37:1429-1440.
    [164]Huang SH, Hsu CJ, Liaw DJ, Hu CC, Lee KR, Lai JY. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes [J]. J. Membr. Sci.,2008,307:73-81.
    [165]Field RW, Wu D, Howell JA, Gupta BB. Critical flux concept for microfiltration fouling [J]. J. Membr. Sci.,1995,100:259-272.
    [166]Du J, Sigrid P, Peter MH, Feng XS. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment [J]. Water Res.,2009,43:4559-4568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700