用户名: 密码: 验证码:
燃煤细微颗粒物的模态识别及其形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物(Particulate Matter,PM)是我国城市空气的首要污染物,对人体健康和生态环境造成了严重危害。燃煤过程是大气颗粒物的重要来源,其贡献已超过33%,对燃煤颗粒物的深入研究是进行颗粒物危害评价、法规制定和有效控制的重要基础。国内外学者虽然在此方面已经开展了大量研究,取得了较大进展,但是相关理论还远未完善。一方面,传统的基于质量或体积粒径分布的颗粒物模态识别方法往往不能有效识别颗粒物中间模态,并且不能准确定义各模态的粒径范围,因此难以深入揭示颗粒物的形成机理,而且常常存在研究结果不一致的情况;另一方面,由于常用体分析(bulk analysis)技术的局限性,对燃煤颗粒物形成机理的大多数研究都还只能停留在定性的层面,因此阻碍了认知水平的提高。
     本论文研究的主要目标在于开发更为有效的颗粒物模态识别方法,验证燃煤颗粒物三模态分布的合理性,并基于此颗粒物模态识别方法,对各模态(尤其是中间模态)颗粒物的形成机理及其影响因素进行定性揭示;同时,利用逐粒统计分析技术对颗粒物的形成机理进行更深入的定量揭示,从而为燃煤颗粒物控制技术的研究与开发奠定基础。本论文取得的主要研究成果包括:
     (1)提出了全新的基于Al元素粒径分布的颗粒物模态识别方法,利用该方法对实验室沉降炉和电厂锅炉燃煤颗粒物的形成模态进行了研究,证明燃煤颗粒物实际上均呈三模态(超细模态、中间模态和粗模态)分布,而非传统的双模态(超细模态和粗模态)分布。研究表明,基于Al元素粒径分布的颗粒物模态识别方法不仅能有效识别颗粒物模态的数目,而且能更为准确地定义各模态的粒径范围,比传统的基于质量或体积粒径分布的颗粒物模态识别方法更为合理有效,因此具有十分重要的理论价值。
     (2)利用基于Al元素粒径分布的颗粒物模态识别方法对各模态颗粒物的形成机理进行了研究,结果表明,燃煤颗粒物超细模态和粗模态的形成可用已有的理论进行解释,即超细模态主要由无机物的气化-凝结形成,粗模态主要是熔融矿物聚合的结果,而对中间模态的形成还没有现成的理论。本论文根据中间模态颗粒物中Al元素的分布规律,首次提出气态组分在细小残灰颗粒上的异相冷凝/反应是其主要形成机理;并通过系统的实验研究深入揭示了煤粒破碎、煤中细小颗粒以及外在矿物颗粒的燃烧转化在中间模态颗粒物形成中的重要作用,不仅提升了对PM2.5形成机理的认识,而且有助于PM2.5控制技术的研究与开发。
     (3)鉴于传统的基于质量或体积粒径分布的颗粒物模态识别方法往往不能有效识别颗粒物中间模态、不能准确定义各模态粒径范围,利用基于Al元素粒径分布的颗粒物模态识别方法对颗粒物三模态进行了详细表征,准确定义了各模态的粒径范围;并在此基础上,系统、深入地揭示了燃烧温度、氧含量和煤粉粒径对超细模态、中间模态、PM2.5和PM10生成的影响规律,对于燃烧过程中颗粒物生成的预测具有重要的参考价值。
     (4)针对传统体分析技术难以开展定量研究的局限性,利用逐粒统计分析技术(即CCSEM技术)对矿物分布、转化行为以及颗粒物的形成机理进行了详细、定量揭示。研究表明,煤中矿物的含量、内/外分布和粒径分布等都具有高度非均一性特点,不同种类的矿物具有不同的转化行为。熔融矿物的聚合是导致颗粒物粒径增大的主要原因,黄铁矿和部分碳酸盐的破碎是细微颗粒物的重要来源。杂质元素的存在可促进硅酸盐矿物的熔融和聚合,有利于粗颗粒的生成;硅酸盐化是大多数矿物和无机元素向颗粒物转化的主要途径。
Particulate matter (PM) is the dominant pollutant in most Chinese cities, and has brought about serious impacts on human health and the ecological environment. Coal combustion is the major source of PM in Chinese ambient air and accounts for more than 33% in PM mass. The knowledge of PM formation and emission contributes a lot to the risk assessment of PM pollution, legislation and emission control. Many investigators have carried out a number of studies and much progress has been achieved. However, it is still far from complete at present. On one hand, the conventional method for particle mode identification, based on mass or volume size distributions, is often unable to effectively identify the newly-found central particle mode and accurately define the particle mode size range. Therefore, particle formation mechanisms have not yet been demonstrated clearly and some conflicting results might be obtained. On the other hand, particle formation mechanisms can only be qualitatively studied in most literature due to the limitations of bulk analysis techniques often used, which cannot provide an insight into the problems of particle formation.
     The first objective of this dissertation is to develop an effective method for particle mode identification and verify the tri-modal fly ash particle size distribution reported recently. Second, the formation mechanisms of different particle modes (especially the central mode) and the influence factors are to be studied qualitatively based on the developed method for particle mode identification. Third, an advanced CCSEM technique, rather than conventional bulk analysis techniques, is used to quantitatively investigate particle formation mechanisms during coal combustion. The key findings of this dissertation are as follows:
     (1) A new method based on the size distribution of the aluminum (Al) is developed for particle mode identification, and used to characterize particulate matter generated from a laboratory drop tube furnace and two real coal-fired boilers. All combustion particle samples are proven to have three modes (the ultrafine, central and coarse mode), rather than just mere two (the ultrafine and coarse mode). By the developed particle mode identification method, not only can the three particle modes be identified, but also can their size ranges be accurately defined. It is shown that, this method is more effective and reasonable than the conventional particle mode identification method based on mass or volume size distributions.
     (2) By the developed particle mode identification method based on the size distribution of the Al, it is found that the formation of the ultrafine and coarse modes can be well explained by established theories, i.e., the ultrafine mode is generated by vaporization-condensation processes, while the coarse mode is the result of coalescence of molten minerals. However, the formation of the newly found central mode can not be interpreted by existing theories. This dissertation first suggests that the central mode is formed by the heterogeneous condensation or reaction of vaporized species on the surfaces of fine residual ash particles. A systematic study on the origins of the inner cores of the central mode shows that, coal particle fragmentation, the transformation of small particles and excluded minerals present in the original coal are important sources of the central mode.
     (3) Rather than the conventional particle mode identification method based on mass or volume size distributions, the developed particle mode identification method based on the size distribution of the Al is first used to characterize the three particle modes and their size ranges. Based on these results, the influences of combustion temperature, oxygen concentration and coal particle size on particle formation are further investigated. An important result is that, the formation of the ultrafine mode, the central mode, PM2.5 and PM10 can be enhanced by increasing combustion temperature, oxygen concentration and decreasing coal particle size under most conditions.
     (4) Due to the limitations of the conventional bulk analysis techniques, an advanced CCSEM technique is used to quantitatively investigate the heterogeneous distribution of minerals in coal, their transformation and PM formation. The highly heterogeneous nature of coal minerals and their transformation behavior are characterized in detailed. The results show that, coalescence of molten mineral particles leads to the increase in PM size, while fragmentation of pyrite and some carbonates during combustion is an important source of fine PM. Clay minerals in coal have a complex composition and contain some impurities, which result in melting and coalescence of alumino-silicate minerals at lower temperatures and formation of larger PM. Most minerals and elements are transformed into PM through reactions with alumino-silicates.
引文
[1] Winchester, J. W., Jones, D. L., Mu-tian, B. Aerosol deposition in the human respiratory tract. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1984, 3(1-3): 360-363.
    [2] Howel, D., Darnell, R., Pless-Mulloli, T. Children's respiratory health and daily particulate levels in 10 nonurban communities. Environmental Research. 2001, 87(1): 1-9.
    [3] Longest, P. W., Vinchurkar, S., Martonen, T. Transport and deposition of respiratory aerosols in models of childhood asthma. Journal of Aerosol Science. 2006, 37(10): 1234-1257.
    [4] Chapman, R. S., Watkinson, W. P., Dreher, K. L., et al. Ambient particulate matter and respiratory and cardiovascular illness in adults: particle-borne transition metals and the heart-lung axis. Environmental Toxicology and Pharmacology. 1997, 4(3-4): 331-338.
    [5] Brook, J. R., Wiebe, A. H., Summers, P. W., et al. Aerosol acidity in Canada and the link with respiratory health. Journal of Aerosol Science. 1992, 23(Supplement 1): 977-981.
    [6] Bai, N., Khazaei, M., van Eeden, S. F., et al. The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacology & Therapeutics. 2007, 113(1): 16-29.
    [7] Donaldson, K., MacNee, W. Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). International Journal of Hygiene and Environmental Health. 2001, 203(5-6): 411-415.
    [8] Neas, L. M. Fine particulate matter and cardiovascular disease. Fuel Processing Technology. 2000, 65-66: 55-67.
    [9] Chen, L. H., Knutsen, S. F., Beeson, L., et al. The association between ambient particulate air pollution and fatal coronary heart disease among persons with respiratory symptoms/disease. Annals of Epidemiology. 2005, 15(8): 642-1199.
    [10] Hosseinpoor, A. R., Forouzanfar, M. H., Yunesian, M., et al. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study. Environmental Research. 2005, 99(1): 126-131.
    [11] Stebbings, J. H., Hayes, C. G. Panel studies of acute health effects of air pollution : I. Cardiopulmonary symptoms in adults, New York, 1971-1972. Environmental Research. 1976, 11(1): 89-111.
    [12] Kloner, R. A. Natural and unnatural triggers of myocardial Infarction. Progress in Cardiovascular Diseases. 2006, 48(4): 285-300.
    [13] Veronesi, B., Oortgiesen, M. Neurogenic inflammation and particulate matter (PM) air pollutants. NeuroToxicology. 2001, 22(6): 795-810.
    [14] Mohorovic, L. First two months of pregnancy--critical time for preterm delivery and low birthweight caused by adverse effects of coal combustion toxics. Early Human Development. 2004, 80(2): 115-123.
    [15] Dickey, J. H. Selected topics related to occupational exposures Part VII. Air pollution: Overview of sources and health effects. Disease-a-Month. 2000, 46(9): 566-589.
    [16] Schwartz, J. Particulate air pollution and chronic respiratory disease. Environmental Research. 1993, 62(1): 7-13.
    [17] Dockery, D. W., Pope, C. A., Xu, X., et al. An association between air-pollution and mortality in 6 U.S. cities. New England Journal of Medicine. 1993, 329(24): 1753-1759.
    [18] Pope, C. A., Thun, M. J., Namboodiri, M. M., et al. Particulate air pollutions as a predictor of mortality in a prospective U.S. adults. American Journal Respiratory Critical Care Medicine. 1995, 151(3 Pt 1): 669-674.
    [19] Wilson, J. G., Kingham, S., Pearce, J., et al. A review of intraurban variations in particulate air pollution: Implications for epidemiological research. Atmospheric Environment. 2005, 39(34): 6444-6462.
    [20] Jerrett, M., Buzzelli, M., Burnett, R. T., et al. Particulate air pollution, social confounders, and mortality in small areas of an industrial city. Social Science & Medicine. 2005, 60(12): 2845-2863.
    [21] Borrego, C., Tchepel, O., Costa, A. M., et al. Traffic-related particulate air pollution exposure in urban areas. Atmospheric Environment. 2006, 40(37): 7205-7214.
    [22] McClellan, R. O. Setting ambient air quality standards for particulate matter. Toxicology. 2002, 181-182: 329-347.
    [23] Sondreal, E. A., Benson, S. A., Pavlish, J. H. Status of research on air quality: mercury, trace elements, and particulate matter. Fuel Processing Technology. 2000, 65-66: 5-19.
    [24] Seaton, A., Godden, D., MacNee, W., et al. Particulate air pollution and acute health effects. The Lancet. 1995, 345(8943): 176-178.
    [25] Stevens, R. K., Dzubay, T. G., Lewis, C. W., et al. Non health effects of airborne particulate matter. Atmospheric Environment (1967). 1983, 17(4): 899-900.
    [26]国家环境保护总局. 2006年中国环境状况公报. 2007.
    [27] The World Bank and the Chinese State Environment Protection Agency. Cost of pollution in China: Economic estimates of physical damages. in: Call for a Green China. Beijing, China: 2007.
    [28]徐肇翊,金福杰.辽宁城市大气污染造成的居民健康损失及其货币化估计.环境与健康杂志. 2003, 20(2): 67-71.
    [29]阚海东,陈秉衡,汪宏.上海市城区大气颗粒物污染对居民健康危害的经济学评价.中国卫生经济. 2004, 23(2): 8-11.
    [30] BP Statistical Review of World Energy 2007. www.bp.com/statisticalreview.
    [31] China Clean Energy Newsletter. 2003, (3): 1-4.
    [32]汪建平.中国电力工业“十五”回顾和“十一五”展望.浙江能源. 2006, (4): 4-7.
    [33]刘金荣.“静电-布袋”联合除尘在燃煤电厂的应用前景.工业安全与环保. 2006, 32(11): 19-20.
    [34]米建华.我国火电行业资源利用分析.中国电力企业管理. 2005, (2): 32-34.
    [35] Neville, M., Quann, R. J., Haynes, B. S., et al. Vaporization and condensation of mineral matter during pulverized coal combustion. Proceedings of the Combustion Institute. 1981, 18: 1267-1274.
    [36] Quann, R. J., Neville, M., Janghorbani, M., et al. Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system. Environmental Science Technology. 1982, 16(11): 776-781.
    [37] Flagan, R. C., Sarofim, A. F. Coal generated inorganic aerosols: A review. First International Aerosol Conference. 1984: 778-782.
    [38] Quann, R. J. Ash vaporization under simulated pulverized coal combustion conditions: [Ph.D. thesis]. Department of Chemical Engineering, MIT, 1982.
    [39] McElroy, M. W., Carr, R. C., Ensor, D. S., et al. Size distribution of fine particles from coal combustion. Science. 1982, 215(4528): 13-19.
    [40] Senior, C. L., Flagan, R. C. Ash vaporization and condensation during combustion of a suspended coal particle. Aerosol Science and Technology. 1982, 1(4): 371-383.
    [41] Senior, C. L., Bool Iii, L. E., Srinivasachar, S., et al. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal. Fuel Processing Technology. 2000, 63(2-3): 149-165.
    [42] Quann, R. J., Sarofim, A. F. Vaporization of refractory oxides during pulverized coal combustion. in: Nineteenth International Symposium on Combustion. Haifa, Israel: The Combustion Institute, Pittsburgh, PA, USA 1982. 1429-1440.
    [43] Quann, R. J., Neville, M., Sarofim, A. F. Influence of coal composition on the vaporization of SiO2, CaO, and MgO during pulverized coal combustion. in: International Conference on Coal Science. Pittsburgh, PA, USA: Pittsburgh EnergyTechnology Center, ETATS-UNIS 1983. 587-590.
    [44] Helble, J. J., Neville, M., Sarofim, A. F. Shape and size distribution of combustion generated aerosols. in: First International Aerosol Conference. Minneapolis, MN, USA: Elsevier, New York, NY, USA, 1984. 749-752.
    [45] Flagan, R. C. Submicron particles from coal combustion. in: Seventeenth Symposium (International) on Combustion. Leeds, England: The Combustion Institute: Pittsburgh, PA, 1979. 97-104.
    [46] Helble, J. J., Sarofim, A. F. Factors determining the primary particle size of flame-generated inorganic aerosols. Journal of Colloid and Interface Science. 1989, 128(2): 348-362.
    [47] Miller, S. F., Schobert, H. H. Effect of the occurrence and composition of silicate and aluminosilicate compounds on ash formation in pilot-scale combustion of pulverized coal and coal-water slurry fuels. Energy & Fuels. 1994, 8(6): 1197-1207.
    [48] Miller, S. F., Schobert, H. H. Effect of mineral matter particle size on ash particle size distribution during pilot-scale combustion of pulverized coal and coal-water slurry fuels. Energy & Fuels. 1993, 7(4): 532-541.
    [49] Miller, S. F., Schobert, H. H. Effect of fuel particle and droplet size distribution on particle size distribution of char and ash during pilot-scale combustion of pulverized coal and coal-water slurry fuels. Energy & Fuels. 1993, 7(4): 520-531.
    [50] Yan, L., Gupta, R. P., Wall, T. F. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion. Fuel. 2001, 80(9): 1333-1340.
    [51] Wigley, F., Williamson, J. Modelling fly ash generation for pulverised coal combustion. Progress in Energy and Combustion Science. 1998, 24(4): 337-343.
    [52] Yan, L., Gupta, R. P., Wall, T. F. A mathematical model of ash formation during pulverized coal combustion. Fuel. 2002, 81(3): 337-344.
    [53] Helble, J. J., Srinivasachar, S., Boni, A. A. Factors influencing the transformation ofminerals during pulverized coal combustion. Progress in Energy and Combustion Science. 1990, 16(4): 267-279.
    [54] Erickson, T. A., Ludlow, D. K., Benson, S. A. Fly ash development from sodium, sulphur and silica during coal combustion. Fuel. 1992, 71(1): 15-18.
    [55] Kang, S. G., Sarofim, A. F., Beer, J. M. Effect of char structure on residual ash formation during pulverized coal combustion. in: Twenty-Fourth International Symposium on Combustion. Sydney: The Combustion Institute, Pittsburgh, PA, USA, 1992. 1153-1159.
    [56] Kang, S. G., Kerstein, A. R., Helble, J. J., et al. Simulation of residual ash formation during pulverized coal combustion: Bimodal ash particle size distribution. Aerosol Science and Technology. 1990, 13(4): 401-412.
    [57] Barta, L. E., Toqan, M. A., Beer, J. M., et al. Prediction of fly ash size and chemical composition distributions: the random coalescence model. in. Sydney, Engl: Publ by Combustion Inst, Pittsburgh, PA, USA, 1992. 1135-1144.
    [58] Raask, E. Flame vitrification and sintering characteristics of silicate ash. in: "Mineral Matter and Ash in Coal", ACS Symposium series 301. Philadelphia, PA, USA: ACS, Washington, DC, USA, 1986. 138-155.
    [59] Srinivasachar, S., Helble, J. J., Boni, A. A., et al. Mineral behavior during coal combustion 2. Illite transformations. Progress in Energy and Combustion Science. 1990, 16(4): 293-302.
    [60] Wu, H., Bryant, G., Benfell, K., et al. An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy & Fuels. 2000, 14(2): 282-290.
    [61] Helble, J. J., Sarofim, A. F. Influence of char fragmentation on ash particle size distributions. Combustion and Flame. 1989, 76(2): 183-196.
    [62] Baxter, L. L. Char fragmentation and fly ash formation during pulverized-coal combustion. Combustion and Flame. 1992, 90(2): 174-184.
    [63] Wu, H., Wall, T., Liu, G., et al. Ash liberation from included minerals during combustion of pulverized coal: The relationship with char structure and burnout. Energy & Fuels. 1999, 13(6): 1197-1202.
    [64] Liu, G., Wu, H., Gupta, R. P., et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel. 2000, 79(6): 627-633.
    [65] Bailey, C. W., Bryant, G. W., Matthews, E. M., et al. Investigation of the high-temperature behavior of excluded siderite grains during pulverized fuel combustion. Energy & Fuels. 1998, 12(3): 464-469.
    [66] Hurley, J. P., Schobert, H. H. Ash formation during pulverized subbituminous coal combustion. 2. Inorganic transformations during middle and late stages of burnout. Energy & Fuels. 1993, 7(4): 542-553.
    [67] Srinivasachar, S., Helble, J. J., Boni, A. A. Mineral behavior during coal combustion. 1. Pyrite transformations. Progress in Energy and Combustion Science. 1990, 16(4): 281-292.
    [68] Yan, L., Gupta, R., Wall, T. Fragmentation behavior of pyrite and calcite during high-temperature processing and mathematical simulation. Energy & Fuels. 2001, 15(2): 389-394.
    [69] ten Brink, H. M., Eenkhoorn, S., Weeda, M. Behaviour of coal mineral carbonates in a simulated coal flame. Fuel Processing Technology. 1996, 47(3): 233-243.
    [70] Baxter, L. L. The evolution of mineral particle size distributions during early stages of coal combustion. Progress in Energy and Combustion Science. 1990, 16(4): 261-266.
    [71] Allen, R. M., Mitchell, R. E. Mineral matter transformations during the combustion of a pulverized fuel in a laminar flow reactor. in: International Conference on Coal Science. Sydney, Aust: Pergamon Press, Sydney, Aust, 1985. 401-404.
    [72] Allen, R. M., VanderSande, J. B. Analysis of sub-micron mineral matter in coal viascanning transmission electron microscopy. Fuel. 1984, 63(1): 24-29.
    [73] Seames, W. S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Processing Technology. 2003, 81(2): 109-125.
    [74] Zhang, L., Ninomiya, Y. Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. Proceedings of the Combustion Institute. 2007, 31(2): 2847-2854.
    [75] Holve, D. J. In situ measurements of flyash formation from pulverized coal. Combustion Science and Technology. 1986, 44(5-6): 269-288.
    [76] Linak, W. P., Miller, C. A., Seames, W. S., et al. On trimodal particle size distributions in fly ash from pulverized-coal combustion. Proceedings of the Combustion Institute. 2002, 29: 441-447.
    [77] Wendt, J. O. L. Pollutant formation in furnaces: NOx and fine particulates. IFRF Combustion Journal. 2003, Article No. 200301.
    [78] O'Gorman, J. V., Walker, P. L., Mineral matter and trace elements in U.S. coals, Technical Office Coal research, U.S. Department of the Interior, 1972; p 184.
    [79]郭崇涛.煤化学.北京:化学工业出版社, 1992.
    [80] Yan, L. CCSEM analysis of mineral in pulverized coal and ash formation modeling: [Ph. D. thesis]. The University of Newcastle, 2000.
    [81] Lester, T. W., Seeker, W. R., Merklin, J. F. Influence of oxygen and total pressure on the surface oxidation rate of bituminous coal. Proceedings of the Combustion Institute. 1981, 18: 1257-1265.
    [82] Smoot, L. D., Smith, P. J. Coal combustion and gasification. New York: Plenum Press, 1985.
    [83] McLennan, A. R., Bryant, G. W., Bailey, C. W., et al. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions. Energy & Fuels. 2000, 14(2): 308-315.
    [84] McLennan, A. R., Bryant, G. W., Stanmore, B. R., et al. Ash formation mechanisms during pf combustion in reducing conditions. Energy and Fuels. 2000, 14(1): 150-159.
    [85] Liu, Y., Gupta, R., Wall, T. Ash Formation from Excluded Minerals Including Consideration of Mineral-Mineral Associations. Energy Fuels. 2007, 21(2): 461-467.
    [86] Kauppien, E. I., Pakkanen, T. A. Coal combustion aerosols. A field study. Environmental Science and Technology. 1990, 24(12): 1811-1818.
    [87] Helble, J. J. Mechanisms of ash formation and growth during pulverized coal combustion: [Ph. D. thesis]. Department of Chemical Engineering, M.I.T., 1987.
    [88] Schmidt, E. W., Gieseke, J. A., Allen, J. M. Distribution of fine particulate emissions from a coal-fired power plant. Atmos. Environ. 1976, 10: 1065.
    [89] Neville, M., Quann, R. J., Haynes, B. S., et al. Vaporization and condensation of mineral matter during pulverized coal combustion. in: Eighteenth International Symposium on Combustion: The Combustion Institute, Pittsburgh, PA, USA, 1981. 1267-1274.
    [90] Padia, A. S., Sarofim, A. F., Howard, J. B. Behavior of ash in pulverized coal under simulated combustion conditions. IEEE Transactions on Power Apparatus and Systems. 1976: 45.
    [91] Neville, M., Sarofim, A. F. Stratified composition of inorganic submicron particles produced during coal combustion. in: The Nineteenth International Symposium on Combustion. Haifa, Israel: The Combustion Institute, Pittsburgh, PA, USA, 1982. 1441-1449.
    [92] Neville, M., McCarthy, J. F., Sarofim, A. F. Size fractionation of submicrometer coal combustion aerosol for chemical analysis. Atmospheric Environment (1967). 1983, 17(12): 2599-2604.
    [93] Sarofim, A. F., Neville, M., Quann, R. Formation of condensation aerosols incoal-fired combustors. in: National Meeting - American Chemical Society, Division of Environmental Chemistry. St Louis, MO, USA: ACS, Washington, DC, USA, vol. 24, 1984. 114-116.
    [94] Neville, M., Sarofim, A. F. The fate of sodium during pulverized coal combustion. Fuel. 1985, 64(3): 384-390.
    [95] Swaine, D. J. Trace Elements in Coal. London: Butterworths, 1990.
    [96] Quyn, D. M., Wu, H., Bhattacharya, S. P., et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel. 2002, 81(2): 151-158.
    [97] Wu, H., Quyn, D. M., Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature. Fuel. 2002, 81(8): 1033-1039.
    [98] Lee, S. H. D., Teats, F. G., Swift, W. M., et al. Alkali-vapor emission from PFBC of Illinois coals. Combustion Science and Technology. 1992, 86(1-6): 327-336.
    [99] Srinivasachar, S., Helble, J. J., Ham, D. O., et al. Kinetic description of vapor phase alkali transformations in combustion systems. Progress in Energy and Combustion Science. 1990, 16(4): 303-309.
    [100] Manzoori, A. R., Agarwal, P. K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium, high sulphur low rank coals. Fuel. 1992, 71(5): 513-522.
    [101] Quyn, D. M., Wu, H., Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel. 2002, 81(2): 143-149.
    [102] Crossley, H. F. Research work at the fuel research station, D.S.I.R., on boilerdeposits. in: Boiler Availability Session of the "Fuel and Future" Conference. London: 1946.
    [103] Marskell, W. G., Miller, J. M. Some aspects of deposit formation in pilot-scale pulverized-fuel-fired installations. J. Inst. Fuel. 1956, 29(188): 380-387.
    [104] Burrell, M. V., Samms, J. A. C., Further experiments on the release of Cl, S, and alkalies from coals, Technical BCURA Doc. No. BA/20: 1960.
    [105] Wickert, K. Laboratory experiments on the behaviour of salty coal ash in boiler furnaces, Part II. Energie. 1960, 12: 240.
    [106] Raask, E. The behaviour of potassium silicates in pulverized coal firing. VGB Mitteilungen. 1968, 48: 348.
    [107] Lindner, E. R., Wall, T. F. An experimental study of sodium-ash reaction during combustion of pulverized coal. in: Fourth Engineering Foundation Conference on Mineral Matter and Ash in Coal. California: 1988.
    [108] Wibberley, L. J., Wall, T. F. Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: the thermodynamic aspects involving silica, sodium, sulphur and chlorine. Fuel. 1982, 61(1): 87-92.
    [109] Wibberley, L. J., Wall, T. F. Alkali-ash reactions and deposit formation in pulverized-coal-fired boilers: experimental aspects of sodium silicate formation and the formation of deposits. Fuel. 1982, 61(1): 93-99.
    [110] Graham, K. A. Submicron ash formation and interaction with sulfur oxides during pulverized coal combustion: [Ph.D. thesis]. Department of Chemical Engineering, MIT, 1990.
    [111] Osann, B. Volatilization of blast-furnace slag. Stahl. u. Eisen. 1903, 23(5): 870-872.
    [112] Schneider, B. The behaviour of the mineral constituents of coal during combustion. Gluckauf. 1956, 92: 895-905.
    [113] Schick, H. L. A thermodynamic analysis of the high-temperature vaporization properties of silica. Chemical Reviews. 1960, 60(4): 331 - 362.
    [114] Nagelberg, A. S., Mar, R. W., Carling, R. W. Calculation of the role of coal constituent elements on the enhanced vaporization of silica. High Temperature Science. 1985, 19(1): 3-16.
    [115] Senior, C. L., Flagan, R. C. Synthetic chars for the study of ash vaporization. in: Twentieth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1984. 921-929.
    [116] Raask, E. Mineral impurities in coal combustion: Behaviour, problems and remedial measures. Hemisphere Publication Corporation, 1985.
    [117] Brewer, L. The thermodynamic properties of the oxides and their vaporization processes. Chemical Reviews. 1953, 52(1): 1-75.
    [118] Nenniger, R. D. Aerosols produced from coal pyrolysis: [Ph.D. thesis]. Department of Chemical Engineering, Massachusetts Institute of Technology, 1986.
    [119] Mitchell, R. S., Cluskoter, H. J. Mineralogy of ash of some American coals: Variations with temperature and source. Fuel. 1976, 55(2): 90-96.
    [120] Seames, W. S. The partitioning of trace elements during pulverized coal combustion: [Ph.D. thesis]. University of Arizona, 2000.
    [121] Meij, R., Te Winkel, H. The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD. Fuel Processing Technology. 2004, 85(6-7): 641-656.
    [122] Helble, J. J., Mojtahedi, W., Lyyranen, J., et al. Trace element partitioning during coal gasification. Fuel. 1996, 75(8): 931-939.
    [123] Clarke, L. B. The fate of trace elements during coal combustion and gasification: an overview. Fuel. 1993, 72(6): 731-736.
    [124] Clarke, L. B., Sloss, L. L. Trace elements - emission from coal combustion and gasification. London: IEA Coal Research, 1992.
    [125] Zevenhoven, R., Kilpinen, P. Control of pollutants in flue gases and fuel gases. Helsinki University of Technology, Espoo, Finland: The Laboratory of EnergyEngineering and Environmental Protection, 2004.
    [126] Smith, R. D., Campbell, J. A., Nielson, K. K. Mechanisms for trace element enrichment in fly ash during coal combustion. Preprints of Papers - American Chemical Society, Division of Fuel Chemistry. 1978, 23(1): 196-205.
    [127] Swaine, D. J. Trace elements in coal and their dispersal during combustion. Fuel Processing Technology. 1994, 39(1-3): 121-137.
    [128] Vassilev, S. V. Trace elements in solid waste products from coal burning at some Bulgarian thermoelectric power stations. Fuel. 1994, 73(3): 367-374.
    [129] Senior, C. L., Helble, J. J., Sarofim, A. F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technology. 2000, 65-66: 263-288.
    [130] Liu, S., Wang, Y., Yu, L., et al. Volatilization of mercury, arsenic and selenium during underground coal gasification. Fuel. 2006, 85(10-11): 1550-1558.
    [131] Bool, L. E., III, Helble, J. J. A laboratory study of the partitioning of trace elements during pulverized coal combustion. Energy & Fuels. 1995, 9(5): 880-887.
    [132] Benson, S. A. Mercury control in coal-fired power systems. Fuel Processing Technology. 2003, 82(2-3): v-vi.
    [133] Frandsen, F., Dam-Johansen, K., Rasmussen, P. Trace elements from combustion and gasification of coal - an equilibrium approach. Progress in Energy and Combustion Science. 1994, 20(2): 115-138.
    [134] Galbreath, K. C., Toman, D. L., Zygarlicke, C. J., et al. Trace element partitioning and transformations during combustion of bituminous and subbituminous US coals in a 7-kW combustion system. Energy & Fuels. 2000, 14(6): 1265-1279.
    [135] Lighty, J. S., Veranth, J. M., Sarofim, A. F. Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air and Waste Management Association. 2000, 50(9): 1565-1618.
    [136] Seinfeld, J. H., Pandis, S. N. Atmospheric chemistry and physics: from air pollutionto climate change. New York: Wiley, 1998.
    [137] Neville, M., Sarofim, A. F. Nucleation and growth of aerosols in the reactive boundary layer of a burning char particle. Aerosol Science and Technology. 1983, 2(2): 227.
    [138] Flagan, R. C., Friedlander, S. K. Particle formation in pulverized coal combustion: A review. in Recent Developments in Aerosol Science. New York: Wiley-Interscience, 1978.
    [139]于敦喜,徐明厚,易帆,等.燃煤过程中颗粒物的形成机理研究进展.煤炭转化. 2004, 27(4): 7-12.
    [140] Zhang, L., Ninomiya, Y. Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties. Fuel. 2006, 85(2): 194-203.
    [141] Haynes, B. S., Neville, M., Quann, R. J., et al. Factors governing the surface enrichment of fly ash in volatile trace species. Journal of Colloid and Interface Science. 1982, 87(1): 266-278.
    [142] Vassilev, S. V., Braekman-Danheux, C., Laurent, P., et al. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste. Fuel. 1999, 78(10): 1131-1145.
    [143] Smith, R. D., Campbell, J. A., Nielson, K. K. Volatility of fly ash and coal. Fuel. 1980, 59(9): 661-665.
    [144] Li, Z., Clemens, A. H., Moore, T. A., et al. Partitioning behaviour of trace elements in a stoker-fired combustion unit: An example using bituminous coals from the Greymouth coalfield (Cretaceous), New Zealand. International Journal of Coal Geology. 2005, 63(1-2): 98-116.
    [145] Helble, J. J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators. Fuel Processing Technology. 2000, 63(2-3): 125-147.
    [146] Helble, J. J. Trace element behavior during coal combustion: results of a laboratory study. Fuel Processing Technology. 1994, 39(1-3): 159-172.
    [147] Sarofim, A. F., Howard, J. B., Padia, A. S. Physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion Science and Technology. 1977, 16(3-6): 187-204.
    [148] Helble, J. J., Neville, M., Sarofim, A. F. Aggregate formation from vaporized ash during pulverized coal combustion. in: Twenty-First International Symposium on Combustion: The Combustion Institute, Pittsburgh, PA, USA, 1986. 411-417.
    [149] Kang, S. G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation: [Ph.D. thesis]. Department of Chemical Engineering, MIT, 1991.
    [150] Ramsden, A. R. A microscopic investigation into the formation of fly-ash during the combustion of a pulverized bituminous coal. Fuel. 1969, 48(2): 121-137.
    [151] Quann, R. J., Sarofim, A. F. Scanning electron microscopy study of the transformations of organically bound metals during lignite combustion. Fuel. 1986, 65(1): 40-46.
    [152] Padia, A. S. The behavior of ash in pulverized coal under simulated combustion conditions: [Ph.D. thesis]. Department of Chemical Engineering, M.I.T, 1976.
    [153] Kerstein, A. R. Population-balance model of physical transformations of ash during char oxidation. Combustion and Flame. 1989, 77(2): 187-199.
    [154] Fong, W. S. Plasticity and agglomeration in coal pyrolysis: [Ph.D. thesis]. Department of Chemical Engineering, M.I.T., 1986.
    [155] Monroe, L. S. An experimental and modeling study of residua fly ash formation in combustion of a bituminous coal: [Ph.D. thesis]. Department of Chemical Engineering, MIT, USA, 1989.
    [156] Yu, D., Xu, M., Yu, Y., et al. Swelling behavior of a Chinese bituminous coal at different pyrolysis temperatures. Energy & Fuels. 2005, 19(6): 2488-2494.
    [157] Kerstein, A. R., Edwards, B. F. Percolation model for simulation of char oxidation and fragmentation time-histories. Chem. Eng. Sci. 1987, 42: 1629.
    [158] Gupta, R. P., Yan, L., Gupta, S. K., et al. CCSEM analysis of minerals in coal and thermal performance of pc-fired boilers. Clean Air: International Journal on Environmental Combustion Technologies. 2005, 6(2): 157-170.
    [159] Kang, S. W. Combustion and atomization studies of coal-water fuel in a laminar flow reactor and in a pilot-scale furnace: [Ph.D. thesis]. Department of Chemical Engineering, MIT, 1987.
    [160] Shendrikar, A. D., Ensor, D. S., Cowen, S. J., et al. Size-dependent penetration of trace elements through a utility baghouse. Atmospheric Environment (1967). 1983, 17(8): 1411-1421.
    [161] Mamane, Y., Miller, J. L., Dzubay, T. G. Characterization of individual fly ash particles emitted from coal- and oil-fired power plants. Atmospheric Environment. 1986, 20(11): 2125-2135.
    [162] Mamane, Y., Dzubay, T. G. Fly ash concentrations in Philadelphia aerosol determined by electron microscopy. Water, Air and Soil Pollution. 1988, 37(3-4): 389-405.
    [163] Kim, D. S., Hopke, P. K., Casuccio, G. S., et al. Comparison of particles taken from the ESP and plume of a coal-fired power plant with background aerosol particles. Atmospheric Environment (1967). 1989, 23(1): 81-84.
    [164] Canadas, L., Salvador, L., Cortes, V. Modelling of pulverized coal combustion with respect to fly ash particle size distribution. Fuel. 1990, 69(6): 690-695.
    [165] Joutsensaari, J., Kauppinen, E. I., Ahonen, P., et al. Aerosol formation in real scale pulverized coal combustion. Journal of Aerosol Science. 1992, 23(Suppl 1): 241-244.
    [166] Ghosal, S., Self, S. A. Particle size-density relation and cenosphere content of coal fly ash. Fuel. 1995, 74(4): 522-529.
    [167] Hower, J. C., Robertson, J. D., Thomas, G. A., et al. Characterization of fly ash from Kentucky power plants. Fuel. 1996, 75(4): 403-411.
    [168] Senior, C. L., Sarofim, A. F., Zeng, T., et al. Gas-phase transformations of mercury in coal-fired power plants. Fuel Processing Technology. 2000, 63(2-3): 197-213.
    [169] Sandelin, K., Backman, R. Trace elements in two pulverized coal-fired power stations. Environment Science & Technology. 2001, 35(5): 826-834.
    [170] Nielsen, M. T., Livbjerg, H., Fogh, C. L., et al. Formation and emission of fine particles from two coal-fired power plants. Combustion Science and Technology. 2002, 174(2): 79 - 113.
    [171] Otero-Rey, J. R., Lopez-Vilarino, J. M., Moreda-Pineiro, J., et al. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Environment Science & Technology. 2003, 37(22): 5262-5267.
    [172] Zhang, C., Yao, Q., Sun, J. Characteristics of particulate matter from emissions of four typical coal-fired power plants in China. Fuel Processing Technology. 2005, 86(7): 757-768.
    [173] Goodarzi, F. Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel. 2006, 85(10-11): 1418-1427.
    [174] Goodarzi, F. Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel. 2006, 85(3): 273-280.
    [175] Goodarzi, F. The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel. 2006, 85(4): 425-433.
    [176] Nelson, P. F. Trace metal emissions in fine particles from coal combustion. Energy Fuels. 2007, 21(2): 477-484.
    [177]孙俊民,姚强,刘惠永,等.燃煤飞灰中铁质微珠的显微结构及其组成研究.燃料化学学报. 2005, 33(3): 263-266.
    [178]孙俊民,姚强,刘惠永,等.燃煤排放可吸入颗粒物中砷的分布与富集机理.煤炭学报. 2004, 29(1): 78-82.
    [179]孙俊民,温茂,刘惠永,等.燃煤排放可吸入颗粒物的显微结构与物质组成研究.地球化学. 2007, 36(1): 55-61.
    [180]孙俊民,韩德馨,姚强,等.燃煤飞灰的显微颗粒类型与显微结构特征.电子显微学报. 2001, 20(2): 140-147.
    [181]孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性的影响.煤炭学报. 2000, 25(5): 546-550.
    [182]赵承美,孙俊民,邓寅生,等.燃煤飞灰中细颗粒物(PM2.5)的物理化学特性.环境科学研究. 2004, 17(2): 71-73,80.
    [183]袁青青,马卫华,张强华,等.火电厂排烟中颗粒物及多环芳烃的研究.电力环境保护. 2007, 23(3): 48-50.
    [184]刘建忠,张光学,周俊虎,等.燃煤细灰的形成及微观形态特征.化工学报. 2006, 57(12): 2976-2980.
    [185]刘建忠,范海燕,周俊虎,等.煤粉炉PM10/PM2.5排放规律的试验研究.中国电机工程学报. 2003, 23(1): 145-149.
    [186]岳勇,陈雷,姚强,等.燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究.中国电机工程学报2005, 25(18): 74-79.
    [187]吕建燚,李定凯.添加CaO对煤粉燃烧后一次颗粒物特性影响的研究.热能动力工程. 2006, 21(4): 373-377.
    [188]吕建燚,李定凯.不同条件对煤粉燃烧后PM10、PM2.5、PM1排放影响的实验研究.中国电机工程学报. 2006, 26(20): 103-107.
    [189]吕建燚,李定凯.不同煤粉燃烧对一次颗粒物排放特性的影响.燃烧科学与技术. 2006, 12(6): 514-518.
    [190]吕建燚,李定凯.不同粒径煤粉燃烧后一次颗粒物的特性研究.热能动力工程. 2005, 20(5): 513-516.
    [191] Lind, T., Kauppinen, E. I., Srinivasachar, S., et al. Submicron agglomerate particle formation in laboratory and full-scale pulverized coal combustion. Journal of Aerosol Science. 1996, 27(Supplement 1): S361-S362.
    [192] Damle, A. S., Ensor, D. S., Ranade, M. B. Coal Combustion Aerosol Formation Mechanisms: A Review. Aerosol Science and Technology. 1982, 1(1): 119-133.
    [193] Markowski, G. R., Ensor, D. S., Hooper, R. G., et al. A submicron aerosol mode in flue gas from a pulverized coal utility boiler. Environmental Science & Technology. 1980, 14(11): 1400-1402.
    [194] Smith, R. D., Campbell, J. A., Nielson, K. K. Characterization and formation of submicron particles in coal-fired plants. Atmospheric Environment. 1979, 13(5): 607-617.
    [195] Linak, W. P., Peterson, T. W. Effect of coal type and residence time on the submicron aerosol distribution from pulverized coal combustion. Aerosol Science and Technology. 1984, 3(1): 77-95.
    [196] Morawska, L., Thomas, S., Jamriska, M., et al. The modality of particle size distributions of environmental aerosols. Atmospheric Environment. 1999, 33(27): 4401-4411.
    [197] Sadakata, M., Mochizuki, M., Sakai, T., et al. Formation and behavior of submicron fly ash in pulverized coal combustion furnace. Combustion and Flame. 1988, 74(1): 71-80.
    [198]隋建才.燃煤过程中亚微米颗粒形成与排放的研究: [博士学位论文].能源与动力工程学院,华中科技大学, 2006.
    [199]高翔鹏.燃煤过程中矿物质气化与亚微米颗粒形成的研究: [硕士学位论文].能源与动力工程学院,华中科技大学, 2006.
    [200] Smith, R. D. The trace element chemistry of coal during combustion and the emissions from coal-fired plants. Progress in Energy and Combustion Science. 1980, 6(1): 53-119.
    [201] Yu, D., Xu, M., Yao, H., et al. Use of elemental size distributions in identifying particle formation modes. Proceedings of the Combustion Institute. 2007, 31(2): 1921-1928.
    [202] Kauppinen, E. I., Pakkanen, T. A. Coal combustion aerosols: A field study. Environmental Science and Technology. 1990, 24(12): 1811-1818.
    [203] Zhang, L., Ninomiya, Y., Yamashita, T. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel. 2006, 85(10-11): 1446-1457.
    [204] Chen, Y., Shah, N., Huggins, F. E., et al. Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environmental Science and Technology. 2005, 39(4): 1144-1151.
    [205] Graham, K. A., Sarofim, A. F. Inorganic aerosols and their role in catalyzing sulfuric acid production in furnaces. Journal of the Air & Waste Management Association. 1998, 48(2): 106-112.
    [206] McNallen, M. J., Yurek, G. J., Elliot, J. F. The formation of inorganic particulates by homogeneous nucleation in gases produced by the combustion of coal Combustion and Flame. 1981, 42: 45-60.
    [207] Buhre, B. J. P., Hinkley, J. T., Gupta, R. P., et al. Submicron ash formation from coal combustion. Fuel. 2005, 84(10): 1206-1214.
    [208] Kang, S. G., Heble, J. J., Sarofim, A. F., et al. Time-resolved evolution of fly ash during pulverized coal combustion. Proceedings of the Combustion Institute. 1988, 22: 231-238.
    [209] Padia, A. S. The behavior of ash in pulverized coal under simulated combustion conditions: [Sc.D. thesis]. M.I.T., 1976.
    [210] Schure, M., Soltys, P. A., Natusch, D. F. S., et al. Surface area and porosity of coal fly ash. Environ. Sci. Technol. 1985, 19(1): 82-86.
    [211] Raask, E. Cenospheres in pulverized-fuel ash. Journal of the Institute of Fuel. 1968, 41: 339-344.
    [212] Goetz, G. J., Lao, T. C., Patel, R. L., et al., The fundamental role of iron in coal ash deposition, Technical Report EPRI Report, Combustion Engineering: Windsor, CT,1986.
    [213] Davison, R. L., Natusch, D. F. S., Wallace, J. R., et al. Trace elements in fly ash: Dependence of concentration on particle size. Environmental Science and Technology. 1974, 8(13): 1107-1113.
    [214] Campbell, J. A., Laul, J. C., Nielson, K. K., et al. Separation and chemical characterization of finely-sized fly-ash particles. Analytical Chemistry. 1978, 50(8): 1032-1040.
    [215] Raask, E., Goetz, L. Characteristics of captured ash, chimney solids and trace elements. Journal of the Institute of Energy. 1981, 54(420): 163-173.
    [216] Amdur, M. O., Sarofim, A. F., Neville, M., et al. Coal combustion aerosols and sulfur dioxide: an interdisciplinary analysis Environmental Science and Technology. 1986, 20(2): 138-145.
    [217] Erickson, T. A., Ludlow, D. K., Benson, S. A. Interaction of sodium, sulfur, and silica during coal combustion. Energy & Fuels. 1991, 5(4): 539-547.
    [218] Raask, E. Sulphate capture in ash and boiler deposits in relation to SO2 emission. Progress in Energy and Combustion Science. 1982, 8(4): 261-276.
    [219] Miller, S. F., Schobert, H. H. Effect of the occurrence and composition of iron compounds on ash formation, composition, and size in pilot-scale combustion of pulverized coal and coal-water slurry fuels. Energy & Fuels. 1993, 7(6): 1030-1038.
    [220] Holve, D. J., In situ particle counting for research and industry, Technical Report SAND-83-8847, Sandia National Labs., Livermore, CA (USA): 1983; p 32.
    [221] Trimble, A. S., Hower, J. C. Studies of the relationship between coal petrology and grinding properties. International Journal of Coal Geology. 2003, 54(3-4): 253-260.
    [222] Hower, J. C., Graese, A. M., Klapheke, J. G. Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. International Journal of Coal Geology. 1987, 7(3): 227-244.
    [223] Hower, J. C., Ban, H., Schaefer, J. L., et al. Maceral/microlithotype partitioningthrough triboelectrostatic dry coal cleaning. International Journal of Coal Geology. 1997, 34(3-4): 277-286.
    [224] Patrick, J. W., Walker, A., Hanson, S. The effect of coal particle size on pyrolysis and steam gasification. Fuel. 2002, 81(5): 531-537.
    [225]于敦喜,徐明厚,刘小伟,等.粒径及加热速率对烟煤膨胀特性的影响.燃料化学学报. 2006, 34(1): 1-4.
    [226]于敦喜,徐明厚,刘小伟,等.煤焦膨胀特性与残灰颗粒物的形成.华中科技大学学报. 2006, 34(2): 101-104.
    [227] Davis, H., Hottel, H. C. Combustion rate of carbon - combustion at a surface overlaid with stagnant gas. Industrial & Engineering Chemistry. 1934, 26(8): 889-892.
    [228] Timothy, L. D., Sarofim, A. F., Beer, J. M. Characteristics of single particle coal combustion. Proceedings of the Combustion Institute. 1982, 19: 1123-1130.
    [229] Feng, B., Bhatia, S. K. Percolative fragmentation of char particles during gasification. Energy and Fuels. 2000, 14(2): 297-307.
    [230] Zhang, X., Dukhan, A., Kantorovich, I. I., et al. Structural changes of char particles during chemically controlled oxidation. in. Napoli, Italy: Combustion Inst, Pittsburg, PA, USA, vol. 2, 1996. 3111-3118.
    [231] Mitchell, R. E., Jacob Akanetuk, A. E. Impact of fragmentation on char conversion during pulverized coal combustion. in. Napoli, Italy: Combustion Inst, Pittsburg, PA, USA, vol. 2, 1996. 3137-3144.
    [232] Hurt, R., Davis, K. Percolative fragmentation and spontaneous agglomeration. Combustion and Flame. 1999, 116(4): 662-670.
    [233] Kurose, R., Makino, H., Matsuda, H., et al. Application of percolation model to ash formation process in coal combustion. Energy and Fuels. 2004, 18(4): 1077-1086.
    [234] Kurose, R., Matsuda, H., Makino, H., et al. Characteristics of particulate matter generated in pressurized coal combustion for high-efficiency power generationsystem. Advanced Powder Technology. 2003, 14(6): 673-694.
    [235] Sahu, R., Flagan, R. C., Gavalas, G. R. Discrete simulation of cenospheric coal-char combustion. Combustion and Flame. 1989, 77(3-4): 337-346.
    [236] Kerstein, A. R., Niksa, S. Prediction and measurement of the critical porosity for fragmentation during char conversion. in: International Conference on Coal Science. Pittsburgh, PA, USA: 1983. 743-746.
    [237] Suzuki, A., Yamamoto, T., Aoki, H., et al. Percolation model for simulation of coal combustion process. Proceedings of the Combustion Institute. 2002, 29: 459-465.
    [238] Sahimi, M., Gavalas, G. R., Tsotsis, T. T. Statistical and continuum models of fluid-solid reactions in porous media. Chemical Engineering Science. 1990, 45(6): 1443-1502.
    [239] Song, H., Xuexing, S., Youhui, X., et al. Percolation Research on Fractal Structure of Coal Char. Energy Fuels. 2002, 16(5): 1128-1133.
    [240] Yamashita, T., Fujii, Y., Morozumi, Y., et al. Modeling of gasification and fragmentation behavior of char particles having complicated structures. Combustion and Flame. 2006, 146(1-2): 85-94.
    [241] Bar-Ziv, E., Kantorovich, I. I. Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science. 2001, 27(6): 667-697.
    [242] Kantorovich, I. I., Bar-Ziv, E. Role of the pore structure in the fragmentation of highly porous char particles. Combustion and Flame. 1998, 113(4): 532-541.
    [243] Weiss, Y., Benari, Y., Kantorovich, I. I., et al. Evolution of porosity and thermal conductivity during char oxidation. in: Twenty-Fifth Symposium (International) on Combustion: The Combustion Institute, 1994. 519-525.
    [244] Kantorovich, I. I., Bar-Ziv, E. The effect of microstructural transformation on the evolution of thermal conductivity of highly porous chars during oxidation. Combustion and Flame. 1997, 109(4): 521-535.
    [245] Hurt, R. H. Chemical and physical phenomena determining carbon gasificationreactivity: [Ph.D. thesis]. Department of Chemical Engineering, Massachusetts Institute of Technology, 1987.
    [246] Dudek, D. R. Single particle, high temperature, gas-solid reactions in an electrodynamic balance: [Ph.D. thesis]. Department of Chemical Engineering, Massachusetts Institute of Technology, 1988.
    [247] Kantorovich, I. I., Bar-Ziv, E. Processes in highly porous chars under kinetically controlled conditions: II. Pore reactivity. Combustion and Flame. 1994, 97(1): 79-87.
    [248] Kantorovich, I. I., Bar-Ziv, E. Processes in highly porous chars under kinetically controlled conditions: I. Evolution of the porous structure. Combustion and Flame. 1994, 97(1): 61-78.
    [249] Kerstein, A. R., Niksa, S. Fragmentation during carbon conversion: Predictions and measurements. in: Twentieth Symposium (International) on Combustion: The Combustion Institute, Pittsburgh, PA, USA, 1984. 941-949.
    [250] Zhang, X., Dukhan, A., Kantorovich, I. I., et al. Fragmentation of highly porous char particles burning in regime I. Combustion and Flame. 1996, 106: 203-206.
    [251] Dunn-Rankin, D., Kerstein, A. R. Numerical simulation of particle size distribution evolution during pulverized coal combustion. Combustion and Flame. 1987, 69: 193-209.
    [252] Salatino, P., Micco, F., Massimilla, L. Combustion and percolative fragmentation of carbons. Combustion and Flame. 1993, 95(4): 342-350.
    [253] Broadbent, S. R., Hammersley, J. M. Percolation processes I. Crystals and mazes. Proceedings of the Cambridge Philosophical Society. 1957, 53: 629-641.
    [254]于敦喜,徐明厚.煤焦破碎的模拟研究.中国电机工程学报. 2005, 25(9): 90-93.
    [255]于敦喜,徐明厚,黄建辉,等.煤焦破碎成灰模型研究.工程热物理学报. 2005, 26(6): 1041-1044.
    [256] Miccio, F. Modeling percolative fragmentation during conversion of entrained charparticles. Korean Journal of Chemical Engineering. 2004, 21(2): 404-411.
    [257] Marban, G., Fuertes, A. B. Influence of percolation on the modification of overall particle properties during gasification of porous solids. Chemical Engineering Science. 1997, 52(1): 1-11.
    [258] Fuertes, A. B., Marban, G., Muniz, J. Modelling the gasification of carbon fibres. Carbon. 1996, 34(2): 223-230.
    [259] Wu, H., Bryant, G., Wall, T. Effect of pressure on ash formation during pulverized coal combustion. Energy and Fuels. 2000, 14(4): 745-750.
    [260] Khan, M. R., Walker, P. L., Jenkins, R. G. Swelling and plastic properties of coal devolatilized at elevated pressures of H2 and He : Influences of added iron oxides. Fuel. 1988, 67(5): 693-699.
    [261] Khan, M. R., Lee, C. W., Jenkins, R. G. Swelling and plastic behavior of coal devolatilized at elevated pressures of air in the absence and presence of calcium oxide. Fuel Processing Technology. 1987, 17(1): 63-71.
    [262] Khan, M. R., Jenkins, R. G. Influence of added calcium compounds on swelling, plastic, and pyrolysis behaviour of coal devolatilized at elevated pressures. Fuel. 1986, 65(9): 1203-1208.
    [263] Khan, M. R., Jenkins, R. G. Swelling and plastic properties of coal devolatilized at elevated pressures of H2 and He : Influence of potassium and silicon additives. Fuel. 1986, 65(9): 1291-1299.
    [264] Khan, M. R., Jenkins, R. G. Swelling and plastic properties of coal devolatilized at elevated pressures: An examination of the influences of coal type. Fuel. 1986, 65(5): 725-731.
    [265] Berkowitz, N. The chemistry of coal. Amsterdam, New York: Elsevier, 1985.
    [266] Solomon, P. R., Fletcher, T. H. Impact of coal pyrolysis on combustion. in: The Twenty-Fifth International Symposium on Combustion The Combustion Institute, Pittsburgh, PA, USA, 1994. 463-474.
    [267] Benfell, K. E. Assessment of char morphology in high pressure pyrolysis and combustion: [Ph.D. thesis]. Department of Geology, University of Newcastle, Newcastle, Australia, 2001.
    [268] Solomon, P. R., Fletcher, T. H., Pugmire, R. J. Progress in coal pyrolysis. Fuel. 1993, 72(5): 587-597.
    [269] Wall, T. F., Liu, G.-s., Wu, H.-w., et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science. 2002, 28(5): 405-433.
    [270] Yu, J. L., Strezov, V., Lucas, J., et al. A mechanistic study on char structure evolution during coal devolatilization - Experiments and model predictions. in. Sapporo, Japan: Combustion Institute, vol. 29, 2002. 467-473.
    [271] Yu, J., Harris, D., Lucas, J., et al. Effect of pressure on char formation during pyrolysis of pulverized coal. Energy and Fuels. 2004, 18(5): 1346-1353.
    [272] Yu, J., Lucas, J., Strezov, V., et al. Swelling and char structures from density fractions of pulverized coal. Energy & Fuels. 2003, 17(5): 1160-1174.
    [273] Yu, J., Lucas, J., Wall, T., et al. Modeling the development of char structure during the rapid heating of pulverized coal. Combustion and Flame. 2004, 136(4): 519-532.
    [274] Gray, V. R. The role of explosive ejection in the pyrolysis of coal. Fuel. 1988, 67(9): 1298-1304.
    [275] Bailey, J. G., Tate, A., Diessel, C. F. K., et al. A char morphology system with applications to coal combustion. Fuel. 1990, 69(2): 225-239.
    [276] Strezov, V., Lucas, J. A., Wall, T. F. Effect of pressure on the swelling of density separated coal particles. Fuel. 2005, 84(10): 1238-1245.
    [277] Yu, J., Lucas, J. A., Wall, T. F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review. Progress in Energy and Combustion Science. 2007, 33(2): 135-170.
    [278] Gibbins, J. R., Kandiyoti, R. The effect of variations in time-temperature history onproduct distribution from coal pyrolysis. Fuel. 1989, 68(7): 895-903.
    [279] Yu, J., Strezov, V., Lucas, J., et al. Swelling behaviour of individual coal particles in the single particle reactor. Fuel. 2003, 82(15-17): 1977-1987.
    [280]虞继舜.煤化学.北京:冶金工业出版社, 2000.
    [281] Gao, H., Murata, S., Nomura, M., et al. Experimental observation and image analysis for evaluation of swelling and fluidity of single coal particles heated with CO2 laser. Energy & Fuels. 1997, 11(3): 730-738.
    [282] Hackert, G., Kremer, H., Murza, S., et al. Observation of ignition processes of coal particles using a high-speed camera system. 1998: 7/1/1-7/1/6.
    [283] Hackert, G., Wirtz, S., Kremer, H. in: International Conference on Coal Combustion. Brisbane: 1999. 717-722.
    [284] Gale, T. K., Bartholomew, C. H., Fletcher, T. H. Decreases in the swelling and porosity of bituminous coals during devolatilization at high heating rates. Combustion and Flame. 1995, 100(1-2): 94-100.
    [285] Zygourakis, K. Effect of pyrolysis conditions on the macropore structure of coal-derived chars. Energy & Fuels. 1993, 7(1): 33-41.
    [286]容銮恩,袁镇福,刘志敏,等.电站锅炉原理.北京:中国电力出版社, 1997.
    [287] Benson, S. A., Sondreal, E. A., Hurley, J. P. Status of coal ash behavior research. Fuel Processing Technology. 1995, 44(1-3): 1-12.
    [288] Desrosiers, R. E., Riehl, J. W., Ulrich, G. D., et al. Submicron fly-ash formation in coal-fired boilers. in: Seventeenth Symposium (International) on Combustion. Pittsburgh, Pennsylvania: The Combustion Institute, 1978. 1395-1403.
    [289] Kramlich, J. C., Newton, G. H. Influence of coal rank and pretreatment on residual ash particle size. Fuel Processing Technology. 1994, 37(2): 143-161.
    [290] Kramlich, J. C., Chenevert, B. C., Park, J., et al., Suppression of fine ash formation in pulverized coal flames, Technical Report DE-FG22-92PC92546, Department of Mechanical Engineering, University of Washington: Seattle, Washington, USA,1996; p 105.
    [291] Dunn-Rankin, D., Kerstein, A. R. Influence of ash on particle size distribution evolution during coal combustion. Combustion and Flame. 1988, 74(2): 207-218.
    [292] Flagan, R. C., Taylor, D. D. Laboratory studies of submicron particles from coal combustion. Proceedings of the Combustion Institute. 1981, 18: 1227-1237.
    [293] Markowski, G. R., Filby, R. Trace element concentration as a function of particle size in fly ash from a pulverized coal utility boiler. Environmental Science and Technology. 1985, 19(9): 796-804.
    [294] Lockwood, F. C., Yousif, S. A model for the particulate matter enrichment with toxic metals in solid fuel flames. Fuel Processing Technology. 2000, 65: 439-457.
    [295] Buhre, B. J. P., Hinkley, J. T., Gupta, R. P., et al. Fine ash formation during combustion of pulverised coal-coal property impacts. Fuel. 2006, 85(2): 185-193.
    [296] Logan, R. G., Richards, G. A., Meyer, C. T., et al. A study of techniques for reducing ash deposition in coal-fired gas turbines. Progress in Energy and Combustion Science. 1990, 16(4): 221-233.
    [297] Ninomiya, Y., Zhang, L., Sato, A., et al. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Processing Technology. 2004, 85(8-10): 1065-1088.
    [298] Ward, C. R. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology. 2002, 50(1-4): 135-168.
    [299] Huggins, F. E. Overview of analytical methods for inorganic constituents in coal. International Journal of Coal Geology. 2002, 50(1-4): 169-214.
    [300] Wigley, F., Williamson, J., Gibb, W. H. Distribution of mineral matter in pulverized coal particles in relation to burnout behaviour. Fuel. 1997, 76(13): 1283-1288.
    [301] Yu, D., Xu, M., Zhang, L., et al. Computer-controlled scanning electron microscopy (CCSEM) investigation on the heterogeneous nature of mineral matter in six typical Chinese coals. Energy & Fuels. 2007, 21(2): 468-476.
    [302] Gupta, R. Advanced Coal Characterization: A Review. Energy & Fuels. 2007, 21(2): 451-460.
    [303] Gupta, R. P., Wall, T. F., Kajigaya, I., et al. Computer-controlled scanning electron microscopy of minerals in coal - implications for ash deposition. Progress in Energy and Combustion Science. 1998, 24(6): 523-543.
    [304] Zygarlicke, C. J., Stomberg, A. L., Folkedahl, B. C., et al. Alkali influences on sulfur capture for North Dakota lignite combustion. Fuel Processing Technology. 2006, 87(10): 855-861.
    [305] Takuwa, T., Naruse, I. Effect of mineral matters in coal on formation behaviors of particulate matter and alkali metal compounds during coal combustion. in. Toronto, ON, Canada: American Society of Mechanical Engineers, New York, NY 10016-5990, United States, 2005. 271-275.
    [306] Chen, Y., Shah, N., Huggins, F. E., et al. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. in. Arlington, VA., United States: Elsevier, vol. 85, 2004. 743-761.
    [307] Zhang, L., Sato, A., Ninomiya, Y. CCSEM analysis of ash from combustion of coal added with limestone. Fuel. 2002, 81(11-12): 1499-1508.
    [308] Wigley, F., Williamson, J., Gibb, W. H. The distribution of mineral matter in pulverised coal particles in relation to burnout behaviour. Fuel. 1997, 76(13): 1283-1288.
    [309] ten Brink, H. M., Eenkhoorn, S., Hamburg, G. A fundamental investigation of the flame kinetics of coal pyrite. Fuel. 1996, 75(8): 945-951.
    [310] Shah, A. D., Huffman, G. P., Huggins, F. E., et al. Behavior of carboxyl-bound potassium during combustion of an ion-exchanged lignite. Fuel Processing Technology. 1995, 44(1-3): 105-120.
    [311] Bool, I. I. I. L. E., Peterson, T. W., Wendt, J. O. L. The partitioning of iron during the combustion of pulverized coal. Combustion and Flame. 1995, 100(1-2):262-270.
    [312] Zygarlicke, C. J., Steadman, E. N., Benson, S. A. Studies of transformations of inorganic constituents in a Texas lignite during combustion. Progress in Energy and Combustion Science. 1990, 16(4): 195-204.
    [313] Huffman, G. P., Huggins, F. E., Shah, N., et al. Behavior of basic elements during coal combustion. Progress in Energy and Combustion Science. 1990, 16(4): 243-251.
    [314] Charon, O., Sarofim, A. F., Beer, J. M. Distribution of mineral matter in pulverized coal. Progress in Energy and Combustion Science. 1990, 16(4): 319-326.
    [315] Huffman, G. P., Huggins, F. E., Levasseur, A. A., et al. Investigation of the transformations of pyrite in a drop-tube furnace. Fuel. 1989, 68(4): 485-490.
    [316] Zygarlicke, C. J., Steadman, E. N. Advanced SEM techniques to characterize coal minerals. Scanning Electron Microscopy. 1990, 4(3): 579-590.
    [317] Liu, Y., Gupta, R., Sharma, A., et al. Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilisation. Fuel. 2005, 84(10): 1259-1267.
    [318] Wells, J. J., Wigley, F., Foster, D. J., et al. The nature of mineral matter in a coal and the effects on erosive and abrasive behaviour. Fuel Processing Technology. 2005, 86(5): 535-550.
    [319] Russell, N. V., Mendez, L. B., Wigley, F., et al. Ash deposition of a Spanish anthracite: effects of included and excluded mineral matter. Fuel. 2002, 81(5): 657-663.
    [320] Yan, R., Zhu, H., Zheng, C., et al. Emissions of organic hazardous air pollutants during Chinese coal combustion. Energy. 2002, 27(5): 485-503.
    [321] Gupta, R. P., Wall, T. F., Kajigaya, I., et al. Computer-controlled scanning electron microscopy of minerals in coal--Implications for ash deposition. Progress in Energy and Combustion Science. 1998, 24(6): 523-543.
    [322] Slater, P. N., Richards, G. H., Harb, J. N. Pyrite and illite associations in two eastern US bituminous coals. Fuel Processing Technology. 1995, 44(1-3): 55-69.
    [323] Ozbas, K. E., Hicyilmaz, C., Kok, M. V., et al. Effect of cleaning process on combustion characteristics of lignite. Fuel Processing Technology. 2000, 64(1-3): 211-220.
    [324] Bryers, R. W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science. 1996, 22(1): 29-120.
    [325] Wall, T. F., Lowe, A., Wibberley, L. J., et al. Mineral matter in coal and the thermal performance of large boilers. Progress in Energy and Combustion Science. 1979, 5(1): 1-29.
    [326] Reifenstein, A. P., Kahraman, H., Coin, C. D. A., et al. Behaviour of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel. 1999, 78(12): 1449-1461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700