用户名: 密码: 验证码:
化学法制备负热膨胀性ZrW_2O_8粉体及薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负热膨胀(Negative thermal expansion,简称NTE)材料研究是材料科学中近年来新兴的学科分支,其中负热膨胀性金属氧化物具有负热膨胀系数大、响应温度范围宽等优点,在光学平面镜、光纤通信领域、医用材料、低温传感器、热电偶及日常生活等方面有巨大的潜在应用价值。特别是新型氧化物ZrW_2O_8材料,在很宽的温度范围内(-272.7-777℃)表现为良好的各向同性负热膨胀特性,热膨胀系数达到-8.7×10~(-6)℃~(-1)。鉴于ZrW_2O_8的独特性质,本文围绕着ZrW_2O_8粉体、薄膜的制备及其负热膨胀特性开展了相关的研究工作。
     以硝酸氧锆[ZrO(NO_3)_2·5H_2O]和钨酸铵[N_5H_(37)W_6O_(24)·H_2O]为原料,分别通过共沉淀法、溶胶凝胶法和水热合成法制备ZrW_2O_8粉体,考察不同反应条件、添加剂种类,如聚乙二醇(PEG)、十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化铵(CTAB)、聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)等对粉体粒径及形貌的影响并探讨其作用机理,进而考察负热膨胀特性与粉体粒径的关系。采用溶胶凝胶和水热法制备ZrW_2O_8薄膜,以柠檬酸、酒石酸、PVA等为添加剂,并通过旋涂法进行镀膜,考察薄膜的形成工艺、初步探索薄膜的形成机理以及负热膨胀特性,揭示薄膜制备工艺关键因素对薄膜化学组成及结构的影响规律。
     对所得粉体的前驱体进行热重一差热(TG-DSC)分析:以X射线衍射仪(XRD)对所得粉体及薄膜进行物相分析;以扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及原子力显微镜(AFM)对粉体及薄膜的形貌进行表征。利用变温X射线衍射仪精确收集粉体在不同温度下的XRD数据,以Powder X、Material Studio软件分别计算在不同温度下的晶胞参数,进而计算其负热膨胀系数。以X射线光电子能谱仪(XPS)对薄膜的化学组成和状态进行分析。
     所得结果如下:
     ZrW_2O_8粉体:(1)采用共沉淀法制备得到单一立方相ZrW_2O_8粉体,加入不同类型的添加剂后,有效的减小粉体颗粒尺寸。其中PEG(20000)当加入量为n_(PEG)/n_(metal iron)=0.032时,由于单层吸附提供的空间位阻效应得到平均尺寸约为0.4×0.4μm的超细ZrW_2O_8粉体。添加剂对热膨胀系数的影响较小,从室温到500℃范围内平均热膨胀系数约为-6.00×10~(-6)℃~(-1)。(2)只有HCl和HNO_3才能提供用于溶胶-凝胶法制备ZrW_2O_8粉体合成的酸性介质,所得粉体形貌从纳米颗粒变为棒状且负热膨胀系数随颗粒的减小而减小。(3)采用水热法在570℃保温6h制备得到ZrW_2O_8粉体。所得粉体为规则的棒状,平均尺寸约为1.2×1.2×10μm。粉体具有良好的负热膨胀特性,从室温到500℃,热膨胀系数约为-6.30×10~(-6)℃~(-1)。采用HNO_3为介质时,当将水热温度降至160℃时,所得粉体的颗粒尺寸降至纳米级,呈现纳米球形状。加入添加剂SDBS后,粉体颗粒尺寸从原来的1.2×1.2×10μm减小至0.4μm,形状逐渐由棒状转变为类球形、层状圆盘。SDBS的加入对粉体整体的负热膨胀性能无影响,从室温到500℃的平均热膨胀系数约为-5.8×10~(-6)℃~(-1)。
     ZrW_2O_8薄膜:(1)采用溶胶凝胶法制备薄膜时,以柠檬酸为添加剂,随着柠檬酸量的增加,改善了ZrW_2O_8薄膜的开裂现象,所得薄膜致密、无明显的裂纹和孔洞,但表面较粗糙。薄膜和基片的结合力提高至9.01N。薄膜表现为良好的负热膨胀性能,从室温到500℃范围内的平均热膨胀系数随着柠檬酸量的增加从-12.82×10~(-6)℃~(-1)变为-9.84×10~(-6)℃~(-1)。(2)采用原位水热法制备得到的ZrW_2O_8薄膜由棒状颗粒组成,没有形成连续的薄膜。当以柠檬酸和酒石酸为添加剂时,均能制备得到连续ZrW_2O_8薄膜,薄膜由相互交叠,形成网状结构的纳米棒颗粒组成。所得薄膜具有良好的负热膨胀性能,两者从室温到500℃范围内平均热膨胀系数分别约为-10.76×10~(-6)℃~(-1)和-12.24×10~(-6)℃~(-1)。(3)所有ZrW_2O_8薄膜在可见光区域完全透光。与粉体相比,ZrW_2O_8薄膜α-ZrW_2O_8向β-ZrW_2O_8相转变的温度区间降低至100℃到150℃温度范围内。
Negative thermal expansion (NTE) material becomes a new branch of materials science in recent years. Their potential uses include electronic, optics, fuel cell, oxygen sensors, thermostats and dental filling products. Particularly, ZrW_2O_8 exhibits large isotropic NTE property over its entire stability range from -272.7℃to 777℃, the thermal expansion coefficient is -8.7×10~(-6)℃~(-1). Due to the excellent properties and potential applications of ZrW_2O_8, the synthesis of ZrW_2O_8 powders and film were reported, and the NTE property of the obtained products were also studied in this paper.
     ZrW_2O_8 powders were synthesized using co-precipitation, Sol-Gel and hydrothermal method using ZrO(NO_3)_2·5H_2O and N_5H_(37)W_6O_(24)·H_2O as raw materials. In order to control the particle size and morphology, different additions were added in the experiment, such as polyethylene glycol (PEG), sodium dodecyl benzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) et al. The influence of the additions on particle size and morphology was investigated and the mechanism was also discussed. Influece of particle size on NTE coefficient was studied. Sol-Gel method and hydrothermal method were used to synthesize the film with different addition, such as citric acid, tartaric acid, polyvinyl alcohol (PVA) et al. The reaction conditions, growth mechanism of film and the property of negative thermal expansion were investigated.
     The precursors of ZrW_2O_8 powders were studied by Thermogravimetric and differential scanning calorimetry (TG-DSC). The structure of the products was studied by Powder X-ray diffraction (XRD) and the morphology of the resulting products was characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscope (AFM). The NTE coefficient was calculated using the lattice constants obtained by Powder X and Material Studio software using the data collected at different temperatures by in Situ X-ray measurement. The chemical composition and state were tested by X-ray phptoelectron Spectroscopy (XPS).
     The results were following:
     ZrW_2O_8 powders (1) Cubic ZrW_2O_8 powders were synthesized by co-precipitaiton method. When different additions were used, the particle size reduced. Among them, When the value of n_(PEG)(20000)/n_(metal iron) was 0.032, due to the steric effect, the smallest particle with an average dimension of 0.4×0.4um was obtained and the average thermal expansion coefficient was -6.00×10~(-6)℃~(-1) from room temperature to 500℃. (2) Only HCl and HNO_3 can used to synthesize single cubic phase ZrW_2O_8 powders by Sol-Gel method. The morphology of resulting powders changed from nano-particles to rod-like. The NTE coefficient decreased with the decreasing of particle size from room temperature to 500℃. (3) Cubic ZrW_2O_8 powders were synthesized by hydrothermal method heated at 570℃for 6h with the shape of rod-like and an average dimension of 1.2×1.2×10μm. The average thermal expansion coefficient of resulting powders was -6.30×10~(-6)℃~(-1) from room temperature to 500℃. HNO_3 was also used in hydrothermal method, when reaction temperature reduced to 160℃, nano-sphere with an average diameter of 30nm was obtained. When SDBS was added, with increasing the amount of SDBS, morphology and particle size changed from rod-like with an average dimension of 1.2μm×1.2μm×10μm to layered column with an average diameter of 0.4μm and the amount of SDBS had no influence on the average thermal expansion coefficients. The thermal expansion coefficients were about similar with an average value of -5.80×10~(-6)℃~(-1) from room temperature to 500℃.
     ZrW_2O_8 film (1) Citric acid was used as addition to prepare ZrW_2O_8 film by Sol-Gel method. With the increasing amount of citric acid, the quality of resulting film was improved and the resulting film had no obvious holes and cracks, whereas the surface was roughness and the film-substrate cohesion was improved to 9.01N. ZrW_2O_8 film had strong NTE property and the thermal expansion coefficient changed from -12.82×10~(-6)℃~(-1) to -9.84×10~(-6)℃~(-1)at the temperature range from room temperature to 500℃. (2) In-situ hydrothermal method was used to prepare ZrW_2O_8 film and the resulting film was discontinuous and formed by inhomogeneous particles. When citric acid and tartaric acid were used as additions, ZrW_2O_8 film was obtained and formed by network structure rod-like particles with no obvious cracks. ZrW_2O_8 film had strong NTE property and the thermal expansion coefficient was -10.76×10~(-6)℃~(-1) and -12.24×10~(-6)℃~(-1) respectively from room temperature to 500℃. (3) All the ZrW_2O_8 films were completely light transmission in visible band. Compared with powders, the temperature range of the structure transition fromαtoβstructure reduced from 150℃-175℃to 100℃-150℃.
引文
[1]谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料,2003,4(34):353-356
    [2]蔡方硕,黄荣进,李来风.负热膨胀材料研究进展[J].科技导报,2008,26(12):84-88
    [3]梁源,周鸿颖,梁二军等.负热膨胀材料研究进展[J].无机化学学报,2008,24(10):1551-1557
    [4]殷海荣,吕承珍,李慧等.先进负热膨胀材料的最新研究进展[J],中国陶瓷,2008,44(9):14-17
    [5]Büssem W, Bluth M, Grochmann G. R(?)ntgenographic measurements of expansion of crystalline masses [J]. Ber Deut Keram Ges, 1935, 16:381-392
    [6]Wright A F, Leadbetter A J. The structure of the β-cristobalite phase of SiO_2 and A1PO_4 [J]. Philos Mag, 1975,31:1391-1401
    [7]Humme F A. Thermal expansion properties of some synthetic lithia minerals [J]. J Am Ceram Soc, 1951, 34:235-239
    [8]康利军,刘彤,苏志梅等.β-锂霞石负膨胀微晶玻璃的制备技术及结构特征[J].功能材料,2005,36(6):825-827
    [9]Korthuis V, Khosrovani N, Sleight A W, et al. Negative Thermal Expansion and Phase Transition in the ZrV_(2-x)P_xO_7 Series[J]. Chem Mater, 1995,7:412-417
    [10]Heine V, Welche. P R L. Geometrical Origin andTheory of Negative Thermal Expansion in FrameworkStructures [J]. J Am Ceram Soc, 1999,82(7): 1793-1802
    [11]Sleight A W, Mary T A, Evans J S O. Negative Thermal Expansion Materials [P]. U S A, Patent: No.5514360, May 7,1995
    [12]Mary T A, Evans J S O, Vogt T, et al. Negative Thermal Expansion from 0.3-1.50 Kelvin in ZrW_2O_8[J]. Science, 1996, 272(5): 90-92
    [13]Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in a large Molybdate and Tungstate Famiy [J]. J Solid State Chem, 1997, 133: 580-583
    [14]Khosrovani N, Sleight A W. Structure of ZrV_2O_7 from -263 to 470℃ [J]. J. Solid State Chem, 1997,132: 355-369
    [15]Evans J S O, Mary T A, Sleight A W. Negative Thermal Expansion in Sc_2(WO_4)_3 [J]. J Solid State Chem, 1998, 137:148-160
    [16]Forster P M, Yokochi A, Sleight A W. Enhanced Negative Thermal Expansion in Lu_2W_3O_(12) [J]. J Solid State Chem, 1998, 140:157-158
    [17]Lind C, Wilkinson P A, Hu Zhongbo, et al. Synthesis and Properties of the Negative Thermal Expansion Material Cubic ZrMo_2O_8 [J]. Chem. Mater, 1998,10(9):2335-2337
    [18]David A W, Philip L. Negative Thermal Expansion in the Siliceous Zeolites Chabazite and ITQ-4: A Neutron Powder Diffraction Study [J]. Chem Mater, 1999,11(9): 2508-2514
    [19] Verdon C, Dunand D C. High-temperature reactivity in the ZrW_2O_8-Cu system [J]. Scripta Materialia, 1997, 36(9): 1075-1080
    [20] Holzer Hermann, Dunand D C. Phase transformation and thermal expansion of Cu/ZrW_2O_8 metal matrix composites [J]. J Mater Res, 1999, 14(3): 780-789
    [21]Yilmaz S, Dunand D C. Finite-element analysis of thermal ex-pansion and thermal composite mismatch stresses in a Cu-60vol% ZrW_2O_8[J]. Comps Sci Technol, 2004,64:1895-1898
    [22]Lommens P, De Meyer C, Bruneel E, et al. Synthesis and thermal expansion of ZrO2/ZrW_2O_8 composites[J]. J Eur Ceram Soc, 2005,25: 3605-3610
    [23]Wilkinson P A, Lind C, Pattanaik S. A New Polymorph of ZrW_2O_8 Prepared Using Nonhydrolytic Sol-Gel Chemistry [J]. Chem Mater, 1999, 11(1):101-108
    [24]Takenaka K, Takagi H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Applied Physics Letters, 2005,87(26): 1902
    [25]Catafesta J, Zorzi J E, Perottoni C A, et al. TunableLinear Thermal Expansion Coefficient of Amorphous Zirconium Tungstate[J]. J Am Ceram Soc, 2006, 89(7):2341-2344
    [26]Sumithra S, Umarji A M. Hygroscopicity and bulk thermalexpansion in Y_2W_3O_(12) [J]. Materials Research Bulletin, 2005,40:167-176
    [27]Sumithra S, Tyagi A K, Umarji A M. Negative thermal expansion in Er_2W_3O_(12) and Yb_2W_3O_(12) by high temperature X- ray diffraction [J]. Materials Science and Engineering B, 2005,116:14-18
    [28]Kiyanagi R, Fieramosc J S, Hu Zhongbo, et al. Thermal expansion properties of A_2(MO_4)_3 (A= Ho and Tm; M= W and Mo) [J]. Solid State Sciences, 2008, 10(3):321-325
    [29]Toshihiro I, Yusuke K, Mamoru M, etal. Pressureless sintering of negative thermal expansion ZrW_2O_8/Zr_2WP_2O_(12) composites [J]. Mater Lette, 2008, 62: 3913-3915
    [30]Sun L, Sneller A, Kwon P. ZrW_2O_8-containing composites with near-zero coefficient of thermal expansion fabricated by various methods: Comparison and optimization [J].Compos Sci Technol, 2008, 68: 3425-3430
    [31]Ruiqi Zhaoa, Xiaojing Yanga, Huiliang Wang. A novel route to synthesize cubic ZrW_(2-x)Mo_xO_8 (x=0-1.3) solid solutions and their negative thermal expansion properties [J]. Journal of Solid State Chemistry, 2007, 180: 3160-3165
    [32]Huang R J, Xu W, Xu X D, et al. Negative thermal expansion and electrical properties of Mn_3(Cu_(0.6)Nb_xGe_(0.4-x))N (x=0.05-0.25) compounds [J]. Materials Letters, 2008, 62: 2381- 2384
    [33]黄远辉,杨海涛,尚福亮.Y_2W_3O_(12)和Yb_2W3O_(12)的制备及其负热膨胀性能[J].中国钨业,2008,123(5):26-29
    [34]武梅梅,李俊宏,韩松柏等.钼酸盐Er_(1.6)Cr_(0.4)Mo_3O_(12)热膨胀性能的研究[J].基础和应用基础研究.核物理,2007,00:187
    [35]谭澄宇,郑学斌,赵旭山等.Cu-ZrW_2O_8复合镀层的制备[J].中南大学学报(自然科学版), 2008,39(2):234-238
    [36]王征,李强,袁婕等.La_2(MoO_4)_3材料激光快速合成及热膨胀性研究[J].郑州轻工业学院学报(自然科学版),2008,23(4):26-29
    [37]王鑫,冯猛,张建福等.低膨胀钨酸锆(ZrW_2O_8)复合材料的研究现状[J].金属功能材料,2008,15(5):43-48
    [38]XING Xianran, XING Qifeng, YU Ranbo, et al. Hydrothermal synthesis of ZrW_2O_8 nanorods [J]. Physical B, 2006, 371: 81-84
    [39]谭强强,方克明.复合氧化物材料的负热膨胀机理[J].耐火材料,2001,35(5):296-298
    [40]Sleight A W. Compound that Contract on Heating [J]. Inorg Chem, 1998, 37: 2854-2860
    [41]Evans J S O. Negative Thermal Expansion [J]. J Chem Soc, Dalton Trans, 1999: 3317-3326
    [42]刑献然.氧化物材料负热膨胀机理[J].北京科技大学学报,2000,1(22):56-58
    [43]Schulz H. Thermal Exoansion of beta Eucryptite [J]. J Am Ceram Soc, 1974,57(7):313
    [44]Withers R L, Evans J S O, Hanson J, et al. An in situ Temperature-dependent Electron and X-Ray Diffraction Study of Structural Phase Transition in ZrV_2O_7 [J]. J Solid State Chem, 1998,137:161-167
    [45]Pryde Alexandra K A, Hammonds Kenton D, Dove Martin T, et al. Origin of the negative thermal expansion in ZrW_2O_8 and ZrV_2O_7 [J]. J Phys Condens Marret, 1996, 8: 10973-10982
    [46]Pryde Alexandra K A, Hammonds Kenton D, Dove Martin T, et al. Simulation studies of ZrW_2O_8 at high pressure [J]. J. Phys Condens Marret, 1998,10:8417-8428
    [47]Sleight A W, Rev A. Isotropic negative thermal expansion[J]. Mater Sci, 1998,28:29-43
    [48]赵淑华.热致收缩化合物[J].化学通报,1998,11:19-24
    [49]Evans J S O, David W I F, Sleight A W. Structural investigation of the negative-thermal-expansion material ZrW_2O_8 [J]. Acta Cryst, Sect B: Struct Sci, 1999, B55:333-340
    [50]Chang L L Y, Scroger M G, Philips B. Condensed Phase Relations in the Systems ZrO_2-WO_2-WO_3 and HfO_2-WO_2-WO_3 [J]. J Am Ceram Soc, 1967,50(2):211-215
    [51]Evans J S O, Mary T A, Vogt T. Negative thermal expansion in ZrW_2O_8 and HfW_2O_8 [J]. Chem Mater, 1996,8:2808-2823
    [52]Kowach G R. Growth of Single Crystals of ZrW_2O_8[J]. J Cryst Growth, 2000,212: 167-172
    [53]杜学丽,田华,郭瑞松等.新型负膨胀系数材料ZrW_2O_8的合成与特性[J].天津理工学院学报,2002,3(18):64-66
    [54]Yamamura Y, Tsuji T, Saito K, et al. Heat Capacity and Order-disorder Phase Transition in Negative Thermal Expansion Compound ZrW_2O_8[J]. J Chem Thermodynamics, 2004, 36: 525-531
    [55]Nakajima N, Yamamura Y, Tsuji T. Phase Transition of Negative Thermal Expansion Zr_(1-x)Hf_xW_2O_8 Solid Solutions [J]. J Therm Anal Cal, 2002,70:337-344
    [56]Evans J S O, Hu Z, Jorgensen J D, et al. Compressibility, Phase Transition, and Oxygen Migration in Zirconium Tungstate, ZrW_2O_8 [J]. Science, 1997,275(3):61-65
    [57]Perottoni C A, Da Jornada J A H. Pressure-induced amorphization and negative thermal expansion in ZrW_2O_8 [J]. Science, 1998, 280(8): 886-889
    [58]Hu Z, Jorgensen J D, Teslic S, et al. Pressure-induced Phase Transformation in ZrW_2O_8 Compresibility and Thermal Expansion of the Orthorhombic Phase [J]. Physica B, 1998, 241-243: 370-372
    [59]Muthu D V S, Chen B, Sleight A W, et al. ZrW_2O_8 and HfW_2O_8: Band Gap Shifts under Pressure [J]. Solid State Commu, 2002,122:25-28
    [60]沈容,王聪,王天民.“负热膨胀”氧化材料ZrW_2O_8的研究现状[J].无机材料学报,2002,6(17):1089-1094
    [61]Jorgensen J D, Hu Z, Teslic S, et al. Pressure-induced cubic-to-orthorhombic phase transition in ZrW_2O_8 [J]. Phys Rev B, 1999, 59(l):215-225
    [62]Forster P M, Sleight A W. Negative thermal expansion in Y_2W_3O_(12) [J]. Inter J of Inorg Mater, 1999,1:123-127
    [63]Yamamura Y, Nakjima N, Tsuji T. Heat capacity anomaly due to the α-to-β structural phase transition in ZrW_2O_8 [J]. Solid State Commu, 2000,114:453-455
    [64]Tao J Z, Sleight A W. The Role of Rigid Unit Modes in Negative Thermal Expansion [J]. J Solid State Chem, 2003,173:442-448
    [65]Ramirez A P, Kowach G R. Large Low Temperature Specific Heat in the Negative Thermal Expansion Compound ZrW_2O_8 [J]. Phys Rev Lett, 1998,80(22):4903-4906
    [66]Ernst G, Broholm C, Kowach G R, et al. Phonon density of states and negative thermal expansion in ZrW_2O_8 [J]. Nature, 1998,396(12):147-149
    [67]Mittal R, Chaplot S L. Lattice dynamical calculation of isotropic negative thermal expansion in ZrW_2O_8 over 0-1050 K [J]. Phys Rev B, 1999,60(10):7234-7237
    [68]Cao D, Bridges F, Kowach G R, et al. Frustrated Soft Modes and Negative Thermal Expansion in ZrW_2O_8[J]. Phys Rev Lett, 2002, 89(21): 215902-1-215902-4
    [69]程晓农,张美芬,严学华.负热膨胀化合物材料ZrW_2O_8的机理与制备技术[J].江苏大学学报(自然科学版),2004,3(25):243-246
    [70]Woodcock David A, Lightfoot Philip, Ritter Clemens. Negative Thermal Expansion in Y_2(WO_4)_3 [J]. J Solid State Chem, 2000,149:92-98
    [71]Evans J S O, Mary T A. Structural phase transitions and negative thermal expansion in Sc_2(MoO_4)_3 [J]. Inter J of Inorg Mater, 2000,2:143-151
    [72]李淑欢,赵新华.稀有金属与硬质合金[J],2002,1(30):4-32
    [73]Seo D K, Whangbo M H. Symmetric Stretching Vibrations of Two-coordinate Oxygen Bridges as a Cause for Negative Thermal Expansion in ZrV_xP_(2-x)O_7 and AW_2O_8 (A=Zr, Hf) at High Temperature [J]. J Solid State Chem, 1997,129:160-163
    [74]李钢,姚杰,王克宇等.一种负热膨胀性材料的物相结构分析[J].南京师大学报(自然科 学版),2000(1):56-59
    [75]孔向阳,吴建生,曾振鹏.ZrW_2O_8微波合成、表征及负热膨胀行为研究[J].1999,3(27):265-269
    [76]Kameswari U, Sleight A W, Evans J S O. Rapid Synthesis of ZrW_2O_8 and Related Phase, and Structure Refinement of ZrWMoO_8 [J]. Inter J Inorg Mater, 2000, 2:333-337
    [77]Lind C, Wilkinson A P. Seeding and the Non-Hydrolytic Sol-Gel Synthesis of ZrW_2O_8 and ZrMo_2O_8 [J]. J Sol-Gel Sci and Techn, 2002,25:51-56
    [78]Wilkinson A P, Lind C, Pattanaik S. A New Polymorph of ZrW_2O_8 Prepared Using Nonhydrolytic Sol-Gel Chemistry [J]. Chem Mater, 1999,11:101-108
    [79]Closmann C, Sleight A W. Low-Temperature Synthesis of ZrW_2O_8 and Mo-Substituted ZrW_2O_8 [J]. J Solid State Chem, 1998(139):424-426
    [80]Kessler V G, Panov A N, Borissevitch A YU, et al. Molecular Precursor Role in the Synthesis of ZrM_2~ⅥO_8, M~Ⅵ=Mo, W: Isolation and Properties of Zr_3Mo_8O_(24)(O~iPr)_(12)(~iPrOH)_4 [J]. J Sol-Gel Sci and Techn, 1998,12:81-85
    [81]De Buysser K, Van Driessche I, Schaubroeck J, etal. EDTA assisted sol-gel synthesis of ZrW_2O_8 [J]. J Sol-Gel Sci Technol, 2008, 46:133-136
    [82]Georgi C, Kern H. Preparation of zirconium tungstate (ZrW_2O_8) by the amorphous citrate process [J]. Ceramics International, 2009, 35:755-762
    [83]Noailles L D, Peng H h, Starkovich J. Thermal Expansion and Phase Formation of ZrW_2O_8 Aerogels [J]. Chem Mater, 2004, 16:1252-1259
    [84]Xing Qifeng, XingXianran, Yu Ranbo, etal. Single crystal growth of ZrW_2O_8 by hydrothermal route [J]. Journal of Crystal Growth, 2005, 283: 208-214
    [85]沈容,王天民,白海龙等.共沉淀法合成负热膨胀材料ZrW_2O_8[J].材料工程,2003,3:3-6
    [86]Meyer C D, Driessche I V, Hoste S. Synthesis of the Negative Thermal Expansion Compound ZrW_2O_8 by the Spray Dying Technique [J]. Engineering Materials, 2002,206-213:11-14
    [87]李晨松,徐廷献.无机薄膜的制备技术[J],2003,2:21-56
    [88]王力衡.薄膜技术[M].北京:清华大学出版社,1991
    [89]金原粲.薄膜的基本技术[M].北京:北京科学出版社,1982
    [90]刘衍余,裴桂芬,王苏平等.化工百科全书(第二卷)[M].北京:化学工业出版社,1991
    [91]Penning F M. Physica(utrecht) 1936:3873, United SteatesPatent,2146025.193
    [92]Cary Lo, Krishnaswamy S V, Rao K R, etal. Synthesis ofiron-nitrogen compounds by RF-sputtering.Materials [J]. Research Bulletin,1980,15(9): 1267-1272
    [93]Vispute R D, Narayan J, Budai J D. High quality optoelec-tronic grade epitaxial A1N films on α-Al_2O_3, Si and 6H-SiC by pulsed laser deposition [J]. Thin Solid Films, 1997,299: 94-103
    [94]Gupta R K, Ghosh K, Patel R. Preparation and characterization of highly conducting and transparent Al doped CdO thin films by pulsed laser deposition [J]. Current Applied Physics, 2009, 9: 673-677
    [95]Voevodin A A, Capano M A, Safriet A J, etal. Combined Magnetron Sputtering and pulsed laser depositon of carbidesand diamond-like carbon films[J]. Appl Phys Lett, 1996, 69(2): 188-190
    [96]张晋敏,谢泉,余平等.激光扫描磁控溅射Fe/Si膜直接形成α-FeS[J].功能材料.2008,7 (39):1087-1090
    [97]Laube S J P, Voevodin A A, Korenyi-Both A. Cathodic arc ti-tanium nitride in situ process feedback control for multi-layer deposition. Surface [J]. Coating Technology, 1998, 99: 281-286
    [98]Schneider J M, Sproul W D. Crystalline alumina deposited at low temperature by ionized magnetron sputtering [J]. J Vac Sci Technol A,1997, 15(3): 1084-1088
    [99]邝子奇,代明江,熊国刚等.钼基体上真空等离子体喷涂钨涂层的研究[J].真空科学与技术学报,2005,25(5):381-384
    [100]徐卫军,俞建长,胡胜伟.无机膜制备技术研究进展[J].中国陶瓷,2004,40(2):39-41
    [101]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994:118-135
    [102]Redondas X, Gonz(?)lez P, Le(?)n B, et al. Structural and com-positional studies of α-SiCH thin films obtained by ex-cimer lamp chemical vapor deposition from acetylene andsilane [J]. J Vac Sci Technol A, 1998, 16(2): 660-665
    [103]赵庆勋,韩佳宁,文钦若等.直流辉光等离子体辅助热丝CVD法沉积金刚石薄膜[J].光谱实验室,2002,19(1):137-139
    [104]Kueppers D, Koenings J, Wilson H. Application of the plas-ma-activated chemical vapor deposition (PCVD)process to the preparation of fluorine doped fibres[J]. NTG-Fachberichte, 1977, 59(14-16):12-14
    [105]潘应君,陈淑花,张细菊等.用PCVD法在1Cr18Ni9不锈钢表面沉积A1N薄膜的研究[J].金属热处理,2004, 29(12):20-22
    [106] Ong T P, Garcia S, Fiordalice R, et al. Void-free chemical lyvapor-deposited aluminum dual inlaid metalization schemesfor ultra-large-scale-integrated via interconnect applications[J]. Appl Phys Lett, 1998,73(1): 82-84
    [107]聂君兰,谷坤明,汤皎宁.ECR结合磁控溅射-制备DLC薄膜的新方法[J].工具技术,2008,42(3):69-71
    [108]贾宇明,郑昌琼,杨邦朝等.掺硼金刚石膜的热敏特性[J].材料研究学报,1996,10(4):415-418
    [109]Hua Cheng, Aimin Wu, Nanlin Shi, etal. Effect of Ar on Polycrystalline Si Film Deposited by ECR-PECVD using SiH_4 [J]. J Mater Sci Technol, 2008, 24(5): 690-692
    [110]李文漪,李刚,蔡峋等.LPCVD水解法制备TiO_2薄膜[J].材料科学与工程学报,2003,2(3):331-334
    [111]Shadi A Dayeh, Edward T Yu, Deli Wang, etal.Ⅲ-Ⅴ Nanowire Growth Mechanism: Ⅴ/Ⅲ Ratio and Temperature Effects [J]. Nanoletters, 2007,7: 82486-2490
    [112]Shadi A Dayeh, Edward T Yu, Deli Wang. Growth of InAs Nanowires on SiO_2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles [J]. J Phys Chem C, 2007,111(36): 13331-13336
    [113]邱胜桦,陈城钊,刘翠青等.氢稀释对高速生长纳米晶硅薄膜晶化特性的影响[J].物理学报,2009,58(1):565-569
    [114]吴文清,史同飞,张国斌等.Zn_(1-x)Co_xO稀磁半导体薄膜的结构及其磁性研究[J].物理学报,2008,57(7):4328-4333
    [115]WU AiMin, DENG WanTing, QIN FuWen. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films [J]. Sci China Ser E-Tech Sci, 2009, 52(1): 260-263
    [116]朱冬生,照朝晖,吴会军等.溶胶·凝胶法制备纳米薄膜的研究进展[J].材料导报,2003,17:53-55
    [117]卢旭晨,徐廷献.溶胶-凝胶法及其应用[J].陶瓷学报,1998,19:53-57
    [118]李宁,卢迪芬,陈森凤.溶胶-凝胶法制备薄膜的研究进展[J].玻璃与搪瓷,2004,32(6):50-55
    [119]王聪,王天民,沈容,梁敬魁.新型负热膨胀氧化物材料的研究[J].物理学报,2001,12:772-777
    [120]Fleming D A, et al. U S APatent:5694503(Dec 2,1997)
    [121]Catherine A Kennedy, Mary Anne White. Unusual thermal conductivity of the negative thermalexpansion material, ZrW_2O_8 [J]. Solid State Communications, 2005,34: 271-276
    [122]Tamas Varga, Cora Lind, Angus P Wilkinson, etal. Heats of Formation for Several Crystalline Polymorphs andPressure-Induced Amorphous Forms of AMo_2O_8(A=Zr, Hf) and ZrW_2O_8 [J]. Chem Mater, 2007, 19:468-476
    [123]Lisa M Sullivan, Charles M Lukehart. Zirconium Tungstate (ZrW_2O_8)/Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion [J]. Chem Mater, 2005, 17, 2136-2141
    [124]Yang Xinbo, Cheng Xiaonong, Li Hongjun, etal. Thermal and electric conductivity of near-zero thermal expansion ZrW_2O_8/ZrO_2 composites [J]. Journal of the Ceramic Society of Japan, 2008, 116(3): 471-474
    [125]Michael S Sutton. Zirconium Tungstate (ZrW_2O_8)-Based Micromachined Negative Thermal Expansion Thin Films [J]. Journal of Microelectromechanical Systems, 2004,13(4): 688-695
    [126]Zhaojuan Xiao, Xiaonong Cheng, Xuehua Yan. Effect of post-deposition annealing on ZrW_2O_8 thin films prepared by radio frequency magnetron sputtering [J]. Surface & Coatings Technology, 2007,201: 5560-5563
    [127]刘红飞,程晓农,张志萍等.负热膨胀ZrW_2O_8薄膜的制备和性能[J].材料研究学报,2008,22(1):83-86
    [128]程晓农,刘红飞,张志萍等.退火温度对ZrW_2O_8薄膜结构和结合力的影响[J].江苏大学学报(自然科学版),2008,29(2):127-130
    [129]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001
    [130]刘海涛,杨郦,张树军等.无机材料合成[M].北京:化学工业出版社,2003
    [131]Dong C. Powder X: Windows-95-based Program for Powder X-ray Diffraction Data Procession [J]. J Appl Cryst, 1999, 32: 838-838
    [132]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1984
    [133]Halloran J W. Role of Powder Agglomerates in Ceramic Processing[J]. Adv in Ceramics, 1984,9: 67
    [134]许珂敬,杨新春,刘风春等.高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用[J].中国陶瓷,1999,35(5):15-18
    [135]邓彤,赵学范.界面电现象[M].北京:北京大学出版社,1992.
    [136]徐如人,庞文琴.无机合成与制备[M].北京:高等教育出版社,2001
    [137]郑昌琼,冉军国.新型无机材料[M].北京:科学出版社.2003
    [138]于桂郁,杨南如.溶胶凝胶法简介 第三讲 溶胶凝胶法工艺过程[J].硅酸盐通报,1993,6:60-66
    [139]孙继红,范文浩,吴东等.溶胶-凝胶的化学及其应用[J].材料导报,2000,14(4):25-29
    [140]熊兆贤等.无机材料研究方法[M].厦门:厦门大学出版社,2001
    [141]聂秋林,郑遗凡,岳林海等.PVP为模板控制合成球形碳酸钙[J].无机化学学报,2003,19(4):445-448
    [142]席国喜,杨理,路迈西.废旧电池sol-gel法制备MnZn铁氧体的研究[J].人工晶体学报,2006,35(1):54-57.
    [143]Keating C D, Kovaleskik M, Natanm J. Protein: colloid conjugates for surface enhanced ramanscattering: stability and control of protein orientation [J]. J Phys Chem B, 1998, 102 (47): 9404-9408.
    [144]蔡卫权,李会泉,张懿.表面活性剂辅助水热合成异形薄水铝石[J].材料科学与工艺,2008,16(2):207-210
    [145]董敏,苗鸿雁,谈国强.溶剂热合成纳米材料技术及其进展[J].材料导报,2005,19:27-36
    [146]汪信,郝青丽,张莉莉.软化学方法导论[M].北京:科学出版社,2007
    [147]施尔畏,夏长泰,王步国等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206
    [148]仲维卓.人工晶体(第二版)[M].北京:科学出版社,1994
    [149]施尔畏,夏长泰,王步国等.水热法制备陶瓷粉体中的聚集生长[J].中国科学(E辑),1997,27(2):126-133
    [150]Dawson W J. Hydrothermal synthesis of advanced ceramic powders[J]. American Ceramics Society of Bulletin, 1988,67(10): 1673-1678
    [151]仲维卓,刘光照,施尔畏.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学 B,1994,24(4):349-350
    [152]李竟先,吴基球,鄢程.纳米颗粒的水热法制备[J].中国陶瓷,2002,38(5):36-39
    [153]施尔畏,夏长泰,仲维卓等.水热条件下钛酸钡粉体晶粒形成机理[J].硅酸盐学报,1996,24(1):45-52
    [154]王秀峰,王拥兰,金志浩.水热法制备纳米陶瓷粉体[J].稀有金属材料与工程,1995,24(4):1-6
    [155]Aaron Puzder, Andrew J Willamson, Natalia Zaitseva, et al. The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab initio calculations [J]. Nano Letters, 2004, 4(12): 2361-2365.
    [156]余火根,余家国,郭瑞等.溶胶-凝胶薄膜的制备和应用[J].材料导报,2003,17(6):31-33
    [157]陈光华,邓金祥编.纳米薄膜技术与应用[M].北京:化学工业出版社,2004
    [158]Brinker C J, Hurd A J, Schun K P R, et al. Review of Sol-Gel thin film formation[J ]. Journal of Non-Crystalline Solids, 1992, 147-148: 424-436.
    [159]Bopnside D E, Macosko C W, Scriven L E. Spin-coating one-dimensional model [J ]. J Appl Phys,1989, 66 (11) : 5185-5193
    [160]杨列宇,关文译,顾卓明.材料表面薄膜技术[M].北京:人民交通出版社,1991
    [161]王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展,2003,23(1):1-61
    [162]王恩哥.薄膜生长中的表面动力学(Ⅱ)[J].物理学进展,2003,23(2):145-190
    [163]郑伟涛等编.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004
    [164]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001
    [165]L 埃克托瓦.薄膜物理学[M].北京:科学出版社,1986
    [166]刘军海,苏启生,陆明珠.膜层热膨胀系数测量系统[J].材料工程,1994,10:36-38
    [167]曲喜新,过璧君.薄膜物理[M].北京:电子工业出版社,1994.
    [168]Yao T Surface Physics [M]. ed X LI et al. Philadephia: Gordon and Breach Sci Publ,1992,124-135
    [169]黄晖,苗鸿雁,罗宏杰等.水热法制备薄膜技术[J].硅酸盐通报,2006,6:58-62
    [170]Landise R A. In: Dryburgh P M ed. Advanced Crystal Growth., New York, London, Sydney, Tokyo: Prentice Hall,1987,267
    [171]Yungi Lee, Tomoaki Watanabe, Tsuyoshi Takata, eral. Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermal-Electrochernical Synthesis [J]. Chem Mater, 2005, 17 (9): 2422-2426
    [172]De Yan, Pengxun Yan, Shuang Cheng, etal. Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO_2 Film with Amorphous Bottom Layers by Hydrothermal Method[J]. Cryst Growth Des, 2009, 9 (1): 218-222
    [173] Lange F F. Chemical solution routes to single-crystal thin films [J]. Science, 1996, 273(16): 903-909
    [174] Daniel J Haders, Alexander Burukhin, Eugene Zlotnikov, etal. TEP/EDTA Doubly Regulated Hydrothermal Crystallization of Hydroxyapatite Films on Metal Substrates [J]. Chem Mater, 2008, 20 (22): 7177-7187
    [175] Wojciech L Suchanek. Synthesis of Potassium Niobiate (KNbO3) Thin Films by Low-Temperature Hydrothermal Epitaxy [J]. Chem Mater, 2004, 16 (6): 1083-1090

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700