用户名: 密码: 验证码:
中亚热带三种优势树种水分生理特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用热扩散探针法和碳稳定同位素技术对福建省万木林自然保护区三种优势树种杉木(Cunninghamia lanceolata)、木荷(Schima superba)、罗浮栲(Castanopsis fabri)进行测定,以树干液流特征值(sap flow velocities,SFV)和叶片碳稳定同位素组成(δ13C)值为指标,并结合自动气象站同步连续监测太阳辐射、空气温度、空气相对湿度等环境因子,对三种优势树种的水分生理特征进行研究,探讨中亚热带常绿阔叶林生态系统中针阔叶树对环境的适应机制。
     研究结果表明:
     (1)不同季节三种优势树种树干液流日进程总体趋势有所不同。其中,杉木树干单位面积液流速率平均值和峰值从非生长季到生长季不断上升,液流速率平均值波动范围为0.65±0.82 cm·h-1~2.40±2.94cm·h-1,峰值波动幅度为1.55cm·h-1~8.10cm·h-1;而木荷和罗浮栲则是先升高后下降的趋势,表现为木荷树干单位面积液流速率平均值波动范围为3.50±4.56cm·h-1~-8.09±9.69cm·h-1;峰值波动幅度为12.20cm·h-1~25.45cm·h-1;罗浮栲树干单位面积液流速率平均值波动范围为3.41±3.57cm·h-1~7.11±7.39 cm-h-1;峰值波动幅度13.32 cm·h-1~19.35cm·h-1。在一天中,三种优势树种生长季树干液流启动时间早于非生长季,液流持续时间也较非生长季长。不论在非生长季还是生长季,两种阔叶树木荷和罗浮栲树干单位面积液流速率平均值和峰值远大于针叶树杉木。
     (2)晴天条件下,三种优势树种受环境因子影响大小为:水蒸气压亏缺>空气相对湿度>太阳辐射>空气温度;阴天条件下,除罗浮栲对太阳辐射最为敏感外,杉木和木荷受空气相对湿度影响最大,而空气温度对三种树种的影响最弱;雨天条件下,三种优势树种受环境因子的影响基本一致,水蒸气压亏缺对三种优势树种的影响最大,太阳辐射的影响则最弱。
     (3)两种阔叶树木荷和罗浮栲叶片δ13C(木荷-30.85‰、罗浮栲-32.55‰)均低于针叶树杉木(-29.46‰),但蒸腾速率较针叶树杉木高,表现为木荷和罗浮栲树干单位面积液流速率平均值分别为杉木的6倍和5倍。在日照、水分充足的生境下,由于较低的WUE和较高的蒸腾速率的水分利用策略决定了木荷和罗浮栲较快的生长速率,所以两种阔叶树竞争优势明显大于针叶树杉木。
     研究结果初步表明中亚热带针阔叶树的水分生理生态特性及对特定生境的生态适应和针阔叶树种间水分利用生理特性的差异,为中亚热带常绿阔叶林生理生态研究提供理论和实践参考。
Targeting at sap flow velocities(SFV) and foliarδ13C value, the characteristic of three mid-subtropical dominant species (Cunninghamia lanceolata, Schima superba and Castanopsis fabri) in Wanmulin Nature Reserve of Fujian Province were respectively measured by using thermal dissipation probe method and stable carbon isotope technic. Meanwhile, the related environmental factors were also associated with, including photosynthetically active radiation, air temperature and relative air humidity recorded continuously by using automatic weather station, so as to probe deeply into the adaptation mechanism of conifer and broad-leaves species in mid-subtropical forest ecosystem of the three particular kinds of dominant species(Cunninghamia lanceolata, Schima superba and Castanopsis fabri).
     The results showed that:
     (1) The overall sap flow velocities trend of the three dominant species varies in different seasons. The mean and peak value of sap flow velocities of Cunninghamia lanceolata was continuously increased from non-growing season to growing season, and the mean value from 0.65±0.82cm-h-1~2.40±2.94cm-h"1, the peak value from 1.55cm-h-1~8.10cm·h-1;while Schima superba and Castanopsis fabri were presented as increased at first and then decreased from non-growing season to growing seasons, and the mean and peak value respectively expressed like these, Schima superba from 3.50±4.56cm-h-1~8.09±9.69cm·h-1、12.20cm·h-1~25.45cm·h-1; Castanopsis fabri from 3.41±3.57cm-h"1-7.11±7.39cm·h-1、13.32 cm·h-1~19.35cm·h-1. The start-up time for sap flow velocities of the three dominant species started earlier and the durations lasted longer in growing seasons than in non-growing season during the daytime. No matter in non-growing season or growing season, the average and peak value of sap flow velocities of the two broad-leaves species were much higher than conifer.
     (2) Under the circumstance of sunny weather, the correlation between the three dominant species and environment was as follows:water vapor pressure deficit>relative humidity>solar radiation>air temperature. Under the circumstance of cloudy weather, except Castanopsis fabri's more sensitive to solar radiation, the other two were impacted the most by relative humidity, but all three were impacted the least by air temperature. Under the circumstance of rainy weather, the influences affected by environmental factors, water vapor pressure deficit and solar radiation were respectively as follows:basically the same, the most sensitive and least sensitive.
     (3) The foliarδ13C value of two kinds of broad-leaves species (Schima superba-30.85%o and Castanopsis fabri-32.55%o) were lower than conifer species (Cunninghamia lanceolata -29.46%‰), whereas the transpiration rate of Schima superba and Castanopsis fabri were higher, with the mean SFV value respectively as six or five as Cunninghamia lanceolata. Due to lower WUE and higher transpiration rate, the two kinds of broad-leaves species had faster growth rate, which meant a significant competitive edge of Schima superba and Castanopsis fabri under the circumstance of plenteous sunshine and moisture.
     The results revealed the characteristic of water physiological and ecological on conifer and broad-leaves species especially in mid-subtropical natural forest ecosystems, reflected the differences trait of water use on conifer and broad-leaves species, which provide theory basis for exploring mid-subtropical evergreen broad-leaved secondary succession in both physiological and ecological aspects.
引文
[1]Saeijs HL, Van Berkel MJ. Global water crisis:the major issue of the 21st century, a growing and explosive problem[J]. Eur Water Pollut Control 1995,5(4):26-40.
    [2]Jimenez MS, Cermak J, Kucera J, et al. Laurel forests in Tenerife, Canary Islands: the annual course of sap flow in Laurus trees and stand[J]. Journal of Hydrology, 1996,183(3-4):307-321.
    [3]Cermak J, Kucera J, Nadezhdina N. Sap flow measurements with some thermody-namic methods, flow integration within trees and scaling up from sample trees to entire forest stands[J]. Trees:Structure and Function,2004,18(5):529-546.
    [4]郑怀舟,福建长汀重建生态系统植物树干液流特征研究[D],2007.
    [5]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [6]Lambers H, Chapin Ⅲ F S, Pon TL.植物生理生态学.张国平,周伟军译.浙江:浙江大学出版社,2003:113-153.
    [7]曹全,银杏、杨梅、毛竹植物水分生理生态研究[D],2009.
    [8]孙慧珍,李夷平,王翠,等.不同木材结构树干液流对比研究[J].生态学杂志,2005,24(12):1434-1439.
    [9]许振柱,周广胜,王玉辉.植物的水分阈值与全球变化[J].水土保持学报,2003,17(3):155-158.
    [10]Kramer PJ, Kozlowski TT. Physiology of woody plants[M]. New York:Academic Press,1979.
    [11]李海涛,向乐,夏军,等.应用热扩散技术对亚热带红壤区湿地松人工林树干边材液流的研究[J].林业科学,2006,42(10):31-38.
    [12]Vilagrosa A, Bellot J, Vallejo VR, et al. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought[J]. Journal of Experimental Botany,2003,54(390):2015-2024.
    [13]Kumagai T, Aoki S, Nagasawa H, et al. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar[J]. Agricultural and Forest Meteorology,2005,135(1-4):110-116.
    [14]Palomo MJ, Diaz-Espejo A, Fernandez JE, et al. Using sap flow measurem-ents to quantify water consumption in the olive tree[J]. Water and the Environ-mental, London,1998,205-212.
    [15]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology,1987,3(4):309-320.
    [16]Nadezhdina N, Nadezhdin V, Ferreira MI, et al. Variability with xylem depth in sap flow in trunks and branches of mature olive trees[J]. Tree Physiology,2007,27(1): 105-113.
    [17]Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance[J]. Plant, Cell and Environment,2002,25:17-28.
    [18]Wang HT, Ma LY. Measurement of whole tree's water consumption with Thermal dissipation sap flow probe (TDP)[J]. Acta Phytoecologica Sinica,2002,26:661-667.
    [19]张雷,孙鹏森,刘世荣.树干液流对环境变化响应研究进展[J].生态学报,2009,29(10):5600-5610.
    [20]Tyree MT, Davis SD, Cochard H. Biophysical perspectives of xylem evoluti-on: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction [J]. International Association of Wood Anatomists Journal,1994,15,355-360.
    [21]Domec JC, Gartner BL. Age-and position-related changes in hydraulic versus mechanical dysfunction of xylem:inferring the design criteria for Douglas-fir wood structure[J]. Tree Physiology,2002,22(2-3),91-104.
    [22]Comstock JP, Sperry JS. Theoretical considerations of optimal conduit length for water transport in vascular plants[J]. New Phytologist,2000,148,195-218.
    [23]Becker P, Gribben RJ, Lim CM. Tapered conduits can buffer hydraulic conductance from path-length effects[J]. Tree Physiology,2000,20(14),965-967.
    [24]James SA, Meinzer FC, Goldstein G, et al. Axial and radial water transport and internal water storage in tropical forest canopy trees[J]. Oecologia,2003,134(1), 37-45.
    [25]Spicer R, Gartner BL. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood[J]. Trees: Structure and Function,2001,15(4),222-229.
    [26]范泽鑫,曹坤芳,邹寿青.云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化[J].植物生态学报,2005,29(6):968-975.
    [27]王华田,马履一.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    [28]Xiong W, Wang YH, Xu DY. Regulations of water use for transpiration of Larix principi-rupprechtii plantation and its response on environmental factors in southern Ningxia hilly area[J]. Scientia Silvae Sinicae,2003,39(2):1-7.
    [29]Cohen Y, Cohen S, Cantuarias AT, et al. Variations in the radial gradient of sap velocity in trunks of forest and fruit trees[J]. Plant and Soil,2007,305(1-2):49-59.
    [30]Ford CR, Mcguire MA, Mitchell RJ, et al. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use[J]. Tree Physiology,2004,24(3):241-249.
    [31]Schiller G, Cohen S, Ungar ED, et al. Estimating water use of sclerophyllous species under East-Mediterranean climate III. Tabor oak forest sap flow distribution and transpiration[J]. Forest Ecology and Management,2007,238(1-3):147-155.
    [32]Phillips N, Bond BJ, Mcdowell NG, et al. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees[J]. Functional Ecology, 2003,17:832-840.
    [33]Edwards WRN, Becker P. A unified nomenclature for sap flow measure-ments[J]. Tree Physiology,1997,17(1):65-67.
    [34]Nadezhda N. Sap flow index as an indicator of plant water status[J]. Tree Physiology,1999,19(13):885-891.
    [35]Becker P. Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods[J]. Tree Physiology,1996,16(1-2):295-299.
    [36]Zhou GY, Huang ZH, Morris J, et al. Radial Variation in sap flux density as a function of sapwood thickness in two eucalyptus (Eucalyptus urophylla) plant-ations[J]. Acta Botanica Sinica,2002,44(12):1418-1424.
    [37]Irvine J, Perks MP, Magnani F, et al. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance [J]. Tree Physiology, 1998,18(6):393-402.
    [38]Andrade JL, Meinzer FC, Goldstein G, et al. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest[J]. Trees:Structure and Function,2005,19(3):282-289.
    [39]Cermak J, Hzulak J, Penka M. Water potential and sap flow rate in adult trees with moist and dry soil as used for the assessment of root system depth[J]. Biologia Plantarum,1980,22(1):34-41.
    [40]Cermak J, Ulehla J, Kucera J, et al. Sap flow rate and transpiration dynamics in the full-grow oak (Quercus robus L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions[J]. Biologia Plantarum, 1982,24(6):446-460.
    [41]Teskey RO, Sheriff DW. Water use by Pinus radiata trees in a plantation[J]. Tree Physiol,1996,16(1-2):273-279.
    [42]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究.林业科学,2004,40(2):174-177.
    [43]茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究,2005,12(2):135-140.
    [44]李守中,郑怀舟,陈金梅,等.环境因子对树干液流的影响[J].安徽农业科学,2008,36(25):10758-10759.
    [45]周晓峰,康绍忠.叶斑病对白桦树干液流的影响[J].西北植物学报,2004,24(5):837-842.
    [46]张宁南,徐大平,Jim Morris,等.雷州半岛尾叶桉人工林树液茎流特征的研究[J].林业科学研究,2003,16(6):661-667.
    [47]Tognetti R, d'Andria R, Morelli G, et al. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees [J]. Plant and Soil, 2004,263(1):249-264.
    [48]Granier A, Claustres JP. Water relations of a Norway spruce (Picea abies) tree growing in natural condition:Variation within the tree[J]. Acta Oecol,1989,10(3): 295-310.
    [49]Davies WJ, Wilkinson S, Loveys B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J]. New Phytologist,2002,153:449-460.
    [50]聂立水,李吉跃,霍洪波.油松栓皮栎树干液流速率比较[J].生态学报,2005,25(8):1934-1939.
    [51]赵文飞,王华田,亓立云,等.春季麻栎树干边材木质部液流垂直变化及其滞后效应[J].植物生态学报,2007,31(2):320-325.
    [52]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002,24(3):23-27.
    [53]Sun SJ, Gu RZ, Cong RC et al. Change of trunk sap flow of Ginkgo biloba L. and its response to inhibiting transpiration treatment[J]. Scientia Silvae Sinicae,2006, 42(5):22-28.
    [54]Zhang XY, Kang ES, Si JH, et al. Stem sap flow of individual plant of Populus euphratica and its conversion to forest water consumption[J]. Scientia Silvae Sinicae,2006,42(7):28-32.
    [55]Sui HZ, Kang SO, Gong DZ. Influence of measurement position on calculating pear tree stem sap flow [J]. Chinese Journal of Applied Ecology,2006,17(11):2024-2028.
    [56]Ma LY, Wang HT, Lin P. Comparison of water consumption of some affore station species in Beijing area[J]. Journal of Beijing Forestry University,2003,25(2):1-7.
    [57]Zhao P, Rao XQ, Ma L. The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium[J]. Acta Ecologica Sinica,2006, 26(12):4050-4058.
    [58]Li JH, DugasWA, Hymus GJ, et al. Direct and indirect effect of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem[J]. Global Change Biology,2002,9(1):96-105.
    [59]Wullschleger SD, Gunderson CA, Hanson PJ, et al. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration-interacting variables and perspectives of scale[J]. New Phytologist,2002,153(3):485-496.
    [60]Ellsworth DS. CO2 enrichment in a maturing pine forest:are CO2 exchange and water status in the canopy affected[J]. Plant, Cell and Environment,1999,22:461-472.
    [61]Betts RA, Boucher 0, Collins M, et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide[J]. Nature,2007,448:1037-1041.
    [62]Tognetti R, Longobucco A, Miglietta F, et al. Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring[J]. Plant, Cell and Environment,2002,21(6):613-622.
    [63]Teskey RO. A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees[J]. Plant Cell and Environment,2006,18(5):565-573.
    [64]Kellomaki S, Wang KY. Sapflow in Scots pine growing under conditions of year round carbon dioxide enrichment and temperature elevation[J]. Plant, Cell and Environment,2002,21(10),968-981.
    [65]Ellsworth DS, Oren R, Huang C, et al. Leaf and canopy response to elevated CO2 in a pine forest under free-air CO2 enrichment[J]. Oecologia,1995,104(2):139-146.
    [66]Wullschleger SD, Norby RJ. Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE) [J]. New Phytologist,2001,150: 489-498.
    [67]Tognetti R, Longobucco A, Miglietta F, et al. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring[J]. Tree Physiology,1999,19(4-5):261-270.
    [68]Leuzinger S and Korner C. Water savings in mature deciduous forest trees under elevated CO2[J]. Global Change Biology,2007,13(12):2498-2508.
    [69]O'Leary MH. Carbon isotope in Photosynthesis (fractionation techniques may reveal new aspects of carbon dynamics in plants[J]. Bioscience,1988,38(5):328-336.
    [70]Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology.1982,33:317-345.
    [71]Farquhar GD, Ehleringer JR, Hubick KT. Carbon-isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989,40:503-537.
    [72]苏培玺,陈怀顺,李启森.河西走廊中部沙漠植物δ13C值的特点及其对水分利 用效率的指示[J].冰川冻土,2003,25(5):597-602.
    [73]Casper BB, Forseth IN, Wait DA. Variation in carbon isotope discrimination in relation to plant performance in a natural population of Cryptantha flava[J]. Oecologia,2005,145(4):541-548.
    [74]Donovan LA, Dudley SA, Rosenthal DM, et al. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers[J]. Oecologia,2007,152(1):13-25.
    [75]Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon is-otope discrimination and the intercellular carbon dioxide concentration in leav-es[J]. Australian Journal of Plant Physiology,1982,9:121-137.
    [76]陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26(5):549-560.
    [77]Silim S, Guy R, Patterson T, et al. Plasticity in water-use efficiency of Picea sitchensis, P. glauca and their natural hybrids[J]. Oecologia,2001,128(3):317-325.
    [78]Mcdowell N, Brooks JR, Fitzgerald SA, et al. Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions[J]. Plant, Cell and Environment,2003,26(4):631-644.
    [79]Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field grown Medicago arborea and Medicago citrina under prolonged Mediterranean drought conditions [J]. Annals of applied Biology,2004,144(3): 299-307.
    [80]Niu SL, PengY, Jiang GM, et al. Differential responses to simulated precipitation exhibited by a typical shrub and a herb coexisted in hunshandak sandy land[J]. Acta Botanica Sinica,2004,46(10):1170-1177.
    [81]孙双峰,黄建辉,林光辉,等.三峡库区岸边共存松栎树种水分利用策略比较[J].植物生态学报,2006,30(1):57-63.
    [82]Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community stability and organization[J]. The American Naturalist,1977, 111(982):1119-1144.
    [83]Picon-Cochard C, Coll L, Balandier P. The role of below-ground competition during early stages of secondary succession:the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland[J]. Oecologia,2006,148(3): 373-383.
    [84]Wang GH. Differences in leaf δ13C among four dominant species in a secondary succession sere on the Loess Plateau of China[J]. Photosynthetica,2003,41(4): 525-531.
    [85]Lenssen JPM, Menting FBJ, Van der Putten WH, et al. Variation in species composition and species richness within Phragmites australis dominated riparian zones[J]. Plant Ecology,2000,147(1):137-146.
    [86]Li HT, Xia J, Xiang L, et al. Seasonal variation of δ13C of four tree species:a biological integrator of environmental variables[J]. Journal of Integrative Plant Biology,2005,47(12):1459-1469.
    [87]范泽鑫,曹坤芳,邹寿青.云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化[J].植物生态学报,2005,29(6):968-975.
    [88]李合生.现代植物生理学[M].北京:高等教育出版社,2001.
    [89]Granier A, Huc R, Barigah ST. Transpiration of natural rainforest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology,1996,78(1-2):19-29.
    [90]赵文飞,王华田,亓立云,等.春季麻栎树干边材木质部液流垂直变化及其滞后效应[J].植物生态学报,2007,31(2):320-325.
    [91]朱锦懋,姜志林,郑群瑞,等.福建万木林自然保护区森林群落物种多样性[J].南京林业大学学报,1997,21(4):11-15.
    [92]刘茂松,冯霞,姜志林,等.万木林主要森林群落特征及演替动态[J].南京林业大学学报,1998,22(2):5-10.
    [93]臧春鑫,杨劫,袁劫,等.毛乌素沙地中间锦鸡儿整株丛的蒸腾特征[J].植物生态学报,2009,33(4):719-727.
    [94]Campbell GS, Norman JM. Transpiration of natural rainforest and its dependence on climatic factors A introduction to environmental biophysics (second edition)[M]. US: Springer-verlag press,1998,40-45.
    [95]肖以华,陈步峰,陈嘉杰,等.马占相思树干液流的研究[J].林业科学研究, 2005,18(3):331-335.
    [96]陈崇,李吉跃,王玉涛,等.绦柳树干液流变化及其影响因子研究[J].北京林业大学学报,2008,30(4):82-88.
    [97]王瑞辉,马履一,奚如春,等.元宝枫生长旺季树干液流动态及影响因素[J].生态学杂志,2006,25(3):231-237.
    [98]Otieno DO, Schmidt MWT, Kinyamario JI, et al. Responses of Acacia tortilis and Acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya[J]. Journal of Arid Environments,2005,62(3):377-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700