用户名: 密码: 验证码:
石墨烯基无机纳米复合材料的可控合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于石墨烯具有独特的结构柔韧性、超高的电导率、优异的热稳定性以及巨大的比表面积,石墨烯在纳米材料的制备与应用领域具有广阔的发展前景,将拥有优异性能的石墨烯与其他功能纳米材料相结合制备石墨烯基纳米复合材料,是拓展石墨烯应用范围的有效途径。基于此,本论文旨在合成多种形貌和尺寸可控的石墨烯基二元以及三元纳米复合材料,发展制备石墨烯基纳米复合材料的新方法、探索其合成机理、考察复合结构的形貌和微结构,并将其运用于光催化、超级电容器、对硝基苯酚(4-NP)催化加氢等领域中。主要研究内容如下:
     1.利用Ag+与氧化石墨烯(GO)片层之间的静电相互作用,成功的制备出一种新颖的Ag2O/GO可见光光催化材料,并利用X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对所得产物进行表征。通过对亚甲基蓝(MB)的光催化降解来评价Ag2O/GO的光催化活性。结果表明,在可见光照射下,Ag2O/GO纳米复合材料光催化降解MB的催化性能明显高于单独Ag2O纳米粒子。催化活性提高的原因主要归因于与GO复合之后,Ag20纳米粒子的尺寸变小,光生电子-空穴对能有效的进行分离,吸附性能也显著提高。此外,我们研究了Ag2O/GO催化降解MB的动力学过程,提出了MB光催化降解的机理,为发展高活性的可见光响应的光催化剂提供了方向。
     2.采用原位生长与自组装的方法,成功的将Ce02纳米粒子复合到还原氧化石墨烯(RGO)片的表面。所得产物用XRD、Raman和TEM进行表征。结果表明与原位生长途径相比,采用自组装途径制备的RGO/CeO2纳米复合材料,其Ce02纳米粒子负载更为均匀,且负载密度可以通过简单的改变Ce02的起始加料量而加以调控。与RGO复合之后,Ce02纳米粒子的光生电子-空穴对能有效的进行分离,吸附性能也显著提高。在模拟太阳光的照射下,RGO/CeO2纳米复合材料光催化降解MB的活性明显优于Ce02纳米粒子。而且RGO/CeO2的光催化活性可以通过改变Ce02的负载量而简单加以调节。这种简单的自组装方法可以推广到在石墨烯表面负载分布高度均匀的其他功能纳米材料,从而在催化、传感和能源等方面得到应用。
     3.采用自组装与高温煅烧相结合的方法成功制备出具有优异超级电容性能的RGO/CeO2纳米复合材料。系统研究了其结构、形貌与组成。发现RGO作为载体能有效阻止CeO2纳米粒子在煅烧时发生团聚。在5mV s-1的扫速下,RGO/CeO2作为超级电容器电极材料的单位比电容为265F g-1,且循环1000次后电容不发生明显衰减。该复合材料电化学性能提高的原因可归因于RGO与Ce02的协同作用机制。优异的电化学性能使得RGO/CeO2纳米复合材料在超级电容器领域具有潜在的应用价值。
     4.利用十八胺(ODA)作为还原剂与分散剂,我们开发出了一种合成半导体量子点(SQDs)/石墨烯复合材料的通用方法,成功地将一系列金属氧化物与硫化物SQDs均匀的附着于RGO的表面。采用XRD, Raman,红外光谱(FT-IR),X-射线光电子能谱(XPS)与TEM等对合成产物进行了表征。通过紫外-可见(UV-vis)与光致发光(PL)光谱系统研究了制备的RGO/SQDs纳米复合材料的光学性质。我们将RGO/NiO应用于超级电容器电极材料,以探索RGO/SQDs纳米复合材料的潜在应用。研究表明,RGO/NiO显示出增强的电容特性与优异的循环稳定性能。这类RGO/SQDs纳米复合材料在能源、催化、光敏、光电等领域具有良好的应用前景。
     5.发展了一种简易的两步合成方法,将贵金属(Pt、Au和Ag)纳米粒子成功复合于CeO2修饰的RGO片表面。Pt、Au和Ag纳米粒子的尺寸分别为5、2与10nm。以NaBH4还原4-NP为模型反应,考察了制备的贵金属/RGO/CeO2二元纳米复合材料的催化性能。发现在这些三元复合体系中,CeO2的引入可以显著提高RGO/Pt、RGO/Au和RGO/Ag纳米复合材料的催化性能,同时提出了三元复合体系催化性能增强的可能机理。
     6.采用一种简易的环境友好的合成方法制备出由RGO、Fe3O4和Ag纳米粒子构成的三元复合体系。研究表明,Ag与Fe3O4纳米粒子密集而均匀的附着于RGO的表面。RGO/Ag/Fe3O4显示室温超顺磁行为。Fe3O4的引入可以调节Ag纳米粒子在RGO表面的分散,减小其粒径,同时有效提高RGO/Ag纳米复合材料对4-NP加氢的催化性能。催化反应结束后,RGO/Ag/Fe3O4可以在外磁场的作用下方便地回收再利用。我们提出了Ag纳米粒子粒径减小以及三元复合体系催化性能增强的可能机理。RGO/Ag/Fe3O4简易的制备方法以及优异的磁性与催化性能对设计合成具有多种功能的其他石墨烯基三元纳米复合材料具有参考价值。
Graphene has been emerging as a fascinating material because its remarkable structural flexibility, high electronic conductivity, superior thermal stability, large specific surface area and wide-spread potential applications in energy, environment, nanoelectronics and nanodevices. The combination of these attractive properties of graphene with the excellent characteristics of other functional nanomaterials has become a popular pathway for achieving applications in multiple fields. In this paper, we try to develop new methods to fabricate graphene-based binary and ternary nanocomposites with controlled shape and size, study the formation mechanism of the graphene-based nanocomposites, and explore their potential applications in many fields such as photocatalysis, supercapacitor and the reduction of4-nitrophenol (4-NP). The main points are as follows:
     1. A novel Ag2O/GO (GO=graphene oxide) nanocomposite as a visible-light induced photocatalyst has been fabricated by a simple solution route. The electrostatic interaction between positively charged Ag+and negatively charged GO sheets is responsible for the formation of Ag2O/GO nanocomposite. The well anchoring of Ag2O nanoparticles on the GO nanosheets was verified by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic degradation of Methylene Blue (MB) under visible-light irradiation was conducted to evaluate the photocatalytic performance of the Ag2O/GO nanocomposites. Due to the enhanced adsorption performance, smaller size of Ag2O nanoparticles and improved separation of electron-hole pairs after incorporation with GO sheets, the Ag2O/GO nanocomposites show enhanced photocatalytic activity compared with bare Ag2O nanoparticles. In addition, the kinetics of the photocatalytic degradation reaction and a detailed photocatalytic mechanism were also proposed. Our study paves a way to design highly efficient visible-light responsive photocatalysts for the removal of organic pollutants for water purification.
     2. Two different strategies, including in situ growth and self-assembly approach, have been developed to load CeO2nanoparticles onto reduced graphene oxide (RGO) nanosheets. The microstructure and morphology of the as-synthesized RGO/CeO2 nanocomposites were investigated by XRD, Raman and TEM. The results revealed that CeO2nanoparticles with well-controlled size and a uniform distribution on RGO sheets with tunable density can be achieved through the self-assembly approach. The significantly enhanced photocatalytic activity of the RGO/CeO2nanocomposites in comparison with bare CeO2nanoparticles was revealed by the photocatalytic degradation of MB under simulated sunlight irradiation, which can be ascribed to the enhanced separation of electron-hole pairs and enhanced adsorption performance due to the presence of RGO. A suitable loading content of CeO2on RGO was found to be crucial for optimizing the photocatalytic activity of the nanocomposites. It is expected that this convenient assembly approach with high controllability can be extended to the attachment of other functional nanoparticles to RGO sheets, and the resultant RGO-supported highly dispersed nanoparticles are attractive for catalysis and power source applications.
     3. RGO/CeO2nanocomposites with improved capacitance performance were designed and synthesized by a facile two-step approach, the assembly followed by thermal annealing process. The structure, morphology and composition of the resulting RGO/CeO2nanocomposites were studied systematically. The presence of RGO can prevent the aggregation and control the structures of the CeO2nanocrystals in annealing process. The nanocomposites were used as electrode materials for supercapacitor application. We demonstrate that it is capable of delivering high specific capacitance of265F g-1at a scan rate of5mV s-1with excellent cycling stability. The enhanced high-rate electrochemical activity may be ascribed to the synergetic effects between RGO and CeO2. The excellent power performance offer great promise for applications in electrode material for supercapacitors.
     4. A facile and general method was developed for the first time to synthesize a variety of semiconductor quantum dots (SQDs) supported on reduced graphene oxide (RGO) sheets, including RGO/metal oxides and RGO/metal sulfides nanocomposites. The obtained nanocomposites were investigated by Raman spectroscopy, XRD, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and TEM. It was found that by using octadecylamine (ODA) as both reductive and dispersing agent, the resulting metal oxides and sulfides SQDs were all homogeneously deposited on the surface of RGO sheets. The optical properties of the as-synthesized RGO/SQDs nanocomposites were studied through Ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopy. To demonstrate one potential application, the RGO/NiO nanocomposites were used as electrode materials for electrochemical supercapacitor, which exhibit enhanced capacitive activity and long cycle life. It is expected that our prepared RGO/SQDs nanocomposites could serve as promising candidates for power source, catalysis, optical sensitizer and optoelectronic applications.
     5. We developed a facile two-step approach to disperse noble metal (Pt, Au and Ag) nanoparticles on the surface of CeO2functionalized reduced graphene oxide (RGO) nanosheets. It was shown that Pt, Au and Ag with average diameters of about5,2and10nm are well dispersed on the surface of RGO/CeO2. The reduction of4-NP to4-aminophenol (4-AP) by NaBH4was used as a model reaction to quantitatively evaluate the catalytic performance of the as-synthesized RGO-based ternary nanocomposites. In such triple-component catalysts, CeO2nanocrystals provide unique and critical roles for optimizing the catalytic performance of noble metallic Pt, Au and Ag, allowing them to express enhanced catalytic activities in comparison with RGO/Pt, RGO/Au and RGO/Ag catalysts. In addition, a possible mechanism for the enhanced catalytic activities of the ternary catalysts in the reduction of4-NP was proposed.
     6. A three-component composite composed of RGO, Fe3O4and Ag nanoparticles was designed and synthesized by a simple and environmentally friendly strategy. It was shown that Ag and Fe3O4nanoparticles are uniformly dispersed on the surface of RGO sheets. Magnetic studies revealed a room-temperature superparamagnetic behavior of the RGO/Ag/Fe3O4nanocomposites. The results revealed that the presence of Fe3O4not only has a great influence on the size of the Ag nanoparticles formed on RGO, but also can significantly improve the catalytic activity and stability of them towards the reduction of4-NP. Moreover, after completion of the reaction the nanocomposit catalysts can be easily re-collected from the reaction system by a magnet. Possible mechanisms for the reduced size of Ag nanoparticles and the enhanced catalytic performance of RGO/Ag nanocomposites after combining with Fe3O4were proposed. The facile synthesis of RGO/Ag/Fe3O4nanomaterials together with their superior magnetic and catalytic performance provides a potentially new approach for the design and construction of graphene-based ternary nanostructured composites with various functions.
引文
[1]A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater.,2007,6,183-191.
    [2]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science,2004, 306,666-669.
    [3]R.J. Young,I.A. Kinloch, G. Lei, K.S. Novoselov, The mechanics of graphene nanocomposites:a review, Compos. Sci. Technol.,2012,72,1459-1476.
    [4]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L.Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun.,2008,146, 351-355.
    [5]A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett.,2008,8,902-907.
    [6]A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon,2001,39,507-514.
    [7]A.K. Geim, Graphene:status and prospects, Science,2009,324,1530-1534.
    [8]C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science,2008,321,385-388.
    [9]M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett.,2008,8,3498-3502.
    [10]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater.,2007,6,652-655.
    [11]V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem., Int. Ed.,2010,49,2154-2157.
    [12]P. Avouris, Z.H. Chen, V.Perebeinos, Carbon-based electronics, Nat. Nanotechnol.,2007,2, 605-615.
    [13]K. Mullen, J.P. Rabe, Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work, Acc. Chem. Res.,2008,41, 511-520.
    [14]G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics, Nano Lett., 2009,9,814-818.
    [15]G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction, J. Am. Chem. Soc.,2009,131, 8262-8270.
    [16]S.S. Yu, W.T. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons, Nanoscale,2010,2, 1069-1082.
    [17]G.H. Lu, S. Park, K.H. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J.H. Chen, Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations, ACS Nano,2011,5,1154-1164.
    [18]W.R. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors:should you use nanotubes or graphene? Angew. Chem., Int. Ed., 2010,49,2114-2138.
    [19]R.S. Edwards, K.S. Coleman, Graphene synthesis:relationship to applications, Nanoscale, 2013,5,38-51.
    [20]S.H. Hur, J.N. Park, Graphene and its application in fuel cell catalysis:a review, Asia-pac. J. Chem. Eng.,2013,8,218-233.
    [21]C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A. Marchenkov, E. Conrad, P. First, W. Heer, Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B,2004,108,19912-19916.
    [22]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. First, W. Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science,2006,312,1191-1196.
    [23]W.C. Ren, L.B. Gao, L.P. M, H.M. Cheng, Preparation of graphene by chemical vapor deposition, New Carbon Mater.,2011,26,71-80.
    [24]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science,2009,324,1312-1314.
    [25]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature,2009,457,706-710.
    [26]M. Choucair, P. Thordarson, J. A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol.,2009,4,30-33.
    [27]A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene, J. Mater. Chem.,2011,21,9491-9493.
    [28]J. Zhao, Y. Guo, Z. Li, Q. Guo, J. Shi, L. Wang, J. Fan, An approach for synthesizing graphene with calcium carbonate and magnesium, Carbon,2012,50,4939-4944.
    [29]C.D. Kim, B.K. Min, W. S. Jung, Preparation of graphene sheets by the reduction of carbon monoxide, Carbon,2009,47,1610-1612.
    [30]G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation, Carbon,2009,47,3242-3246.
    [31]C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano,2011,5,2332-2339.
    [32]D.A.C. Brownson, J.P. Metters, D.K. Kampouris, C.E. Banks, Graphene electrochemistry: surfactants inherent to graphene can dramatically effect electrochemical processes, Electroanalysis,2011,23,894-899.
    [33]P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device, Nano Lett.,2008,8,1704-1708.
    [34]Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol.,2008,3,563-568.
    [35]Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery, Langmuir, 2009,26,3208-3213.
    [36]L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature,2009,458,877-880.
    [37]D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M.Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature,2009,458,872-877.
    [38]B.C. Brodie, On the atomic weight of graphite, Philos. Trans. Roy. Soc. Lond.1859,149, 249-259.
    [39]L. Staudenmaier, Verfahren zur darstellung der graphitsaure, Ber Deutsche Chem. Ges.,1898, 31,1481-1487.
    [40]W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc.,1958,80, 1339-1339.
    [41]B.F. Machadoab, P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol.,2012, 2,54-75.
    [42]H. Bai, C. Li, G.Q. Shi, Functional composite materials based on chemically converted graphene, Adv. Mater.,2011,23,1089-1115
    [43]W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem.,2009,1,403-408.
    [44]D. Chen, H.B. Feng, J.H. Li, Graphene oxide:preparation, functionalization, and electrochemical applications, Chem. Rev.,2012,112,6027-6053.
    [45]K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and Electronic Structure of Graphene-Oxide, Nano Lett.,2009,9, 1058-1063.
    [46]S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 2009,4,217-224.
    [47]F. Kim, L.J. Cote, J.X. Huang, Graphene oxide:surface activity and two-dimensional assembly, Adv. Mater.2010,22,1954-1958.
    [48]G. Eda, M. Chhowalla, Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics, Adv. Mater.2010,22,2392-2415.
    [49]C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater.2009,19,2577-2583.
    [50]G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol.2008,3,270-274.
    [51]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007,45,1558-1565.
    [52]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature,2006,442, 282-286.
    [53]H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater.,2009,19,1987-1992.
    [54]G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C,2008,112,8192-8195.
    [55]X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, Reducing graphene oxide via hydroxylamine:a simple and efficient route to grapheme, J. Phys. Chem. C,2011,115, 11957-11961.
    [56]L. Sun, H. Yu, B. Fugetsu, Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution, J. Hazard. Mater., 2010,203,101-110.
    [57]V.H. Pham, T.V. Cuong, S.H. Hur, E. Oh, E.J. Kim, E.W. Shin, J.S. Chung, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone, J. Mater. Chem.,2011,21,3371-3377.
    [58]S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon,2010,48, 4466-4474.
    [59]S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.B.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate, J. Mater. Chem.,2006,16,155-158.
    [60]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol.,2008,3,101-105.
    [61]Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon,2010,48, 1686-1689.
    [62]Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, J. Feng, Y. Ren, L.P. Song, F. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide, ACS Nano,2011,5, 191-198.
    [63]R.S. Dey, S. Hajra, R.K. Sahu, C.R. Raj, M.K. Panigrahi, A rapid room temperature chemical route for the synthesis of graphene:metal-mediated reduction of graphene oxide, Chem. Commun,2012,48,1787-1789.
    [64]M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films, Chem. Eur. J., 2009,15,6116-6120.
    [65]T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale,2013,5,52-71.
    [66]J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun.,2010,46,1112-1114.
    [67]M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-fernandez, A. Martinez-alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C,2010,114,6426-6432.
    [68]D.R. Dreyer, S. Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem.,2010,21,3443-3447.
    [69]X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation, Adv. Mater., 2008,20,4490-4493.
    [70]C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets, ACS Nano,2010,4,2429-2437.
    [71]D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid, Nanotechnology,2010,22,325601.
    [72]T.A. Pham, J.S. Kim, J.S. Kim, Y.T. Jeong, One-step reduction of graphene oxide with L-glutathione, Colloids Surf., A,2011,384,543-548.
    [73]C.Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.H. Tsai, Y. Huang, L.J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano,2010,4,5285-5292.
    [74]E.C. Salas, Z. Sun, A. Luttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration, ACS Nano,2010,4,4852-4856.
    [75]L.Q. Xu, W.J. Yang, K.G. Neoh, E.T. Kang, G.D. Fu, Dopamine-induced reduction and functionalization of graphene oxide nanosheets, Macromolecules,2010,43,8336-8339.
    [76]Y. Wang, Z.X. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites, ACS Appl. Mater. Interfaces,2011,3, 1127-1133.
    [77]S. Mao, H.H. Pu, J.H. Chen, Graphene oxide and its reduction:modeling and experimental progress, RSC Adv.,2012,2,2643-2662.
    [78]C.K. Chua, M. Pumera, Chemical reduction of graphene oxide:a synthetic chemistry viewpoint, Chem. Soc. Rev.,2014,43,291-312.
    [79]H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'home, R. Car, D.A. Savilley, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B,2006,110,8535-8539.
    [80]D.X. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A.V. Jr, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon,2009,47,145-152.
    [81]X.L. Li, H.L. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H.J. Dai, Simultaneous nitrogen doping and reduction of graphene oxide, J. Am. Chem. Soc.,2009,131,15939-15944.
    [82]M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide, Nat. Mater.,2010,9, 840-845.
    [83]P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu, D. Zhou, W. Hu, B.H. Han, M. Liu, Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices, Adv. Mater.,2010,22,5008-5012.
    [84]C.G. Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Atomic structure of reduced graphene oxide, Nano Lett.,2010,10,1144-1148.
    [85]W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon,2010,48,1146-1152.
    [86]Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J. Phys. Chem. Lett., 2010,1,2607-2612.
    [87]Vasilios Georgakilas, Michal Otyepka, Athanasios B. Bourlinos, Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza, Radek Zboril, and Kwang S. Kim, Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications, Chem. Rev.,2012,112,6156-6214.
    [88]M.C. Hsiao, S.H. Liao, M.Y. Yen, P.I. Liu, N.W. Pu, C.A. Wang, C.C.M. Ma, Preparation of covalently functionalized graphene using residual oxygen-containing functional groups, ACS Appl. Mater. Interfaces,2010,2,3092-3099
    [89]S. Bai, X.P. Shen, Graphene-inorganic nanocomposites, RSC Adv.,2012,2,64-98.
    [90]N. Li, M.H. Cao, C.W. Hu, Review on the latest design of graphene-based inorganic materials, Nanoscale,2012,4,6205-6218.
    [91]X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev.,2012, 41,666-686.
    [92]Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc.,2011,133,10878-10884.
    [93]Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater.,2011,10, 780-786.
    [94]H.X. Chang, H.K. Wu, Graphene-based nanocomposites:preparation, functionalization, and energy and environmental applications, Energy Environ. Sci.,2013,6,3483-3507.
    [95]C. Xu, X. Wang, J. W. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. C.,2008, 112,19841-19845.
    [96]L.F. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S.F. Hou, Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon,2010,48,781-787.
    [97]C.V. Rao, A.L.M. Reddy, Y. Ishikawa, P.M. Ajayan, Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles, Carbon,2011, 49,931-936.
    [98]Y.K. Kim, H.K. Na, D.H. Min, Influence of surface functionalization on the growth of gold nanostructures on graphene thin films, Langmuir,2010,26,13065-13070.
    [99]Y.K. Kim, H.K. Na, Y.W. Lee, H. Jang, S.W. Han, D.H. Min, The direct growth of gold rods on graphene thin films, Chem. Commun.,2010,46,3185-3187.
    [100]K. Jasuja, V. Berry, Implantation and growth of dendritic gold nanostructures on graphene derivatives:electrical property tailoring and raman enhancement, ACS Nano,2009,3, 2358-2366.
    [101]Z.M. Luo, L.H. Yuwen, B.Q. Bao, J. Tian, X.R. Zhu, L.X. Weng, L.H. Wang, One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells, J. Mater. Chem.,2012,22,7791-7796.
    [102]X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Synthesis of hexagonal close-packed gold nanostructures, Nat. Commun.,2011,2, 292.
    [103]S. Guo, S. Dong and E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation, ACS Nano,2009,4,547-555.
    [104]D.W.P. Pang, F.W.Yuan, Y.C. Chang, G.A. Li, H.Y. Tuan, Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents, Nanoscale,2012,4, 4562-4570.
    [105]S. Sharma, A. Ganguly, P. Papakonstantinou, X.P. Miao, M.X. Li, J.L. Hutchison, M. Delichatsios, S. Ukleja, Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol, J. Phys. Chem. C, 2010,114,19459-19466.
    [106]P. Kundu, C. Nethravathi, P.A.Deshpande, M. Rajamathi, G. Madras, N. Ravishankar, Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: synergistic co-reduction mechanism and high catalytic activity, Chem. Mater.,2011,23, 2772-2780.
    [107]K. Jasuja, J. Linn, S. Melton, V. Berry, Microwave-reduced uncapped metal nanoparticles on graphene:tuning catalytic, electrical, and raman properties, J. Phys. Chem. Lett.,2010,1, 1853-1860.
    [108]H.M.A. Hassan, V. Abdelsayed, A.E.R.S. Khder, K.M. AbouZeid, J. Terner, M.S. El-Shall, S.I. Al-Resayes, A.A. El-Azhary, Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem.,2009,19,3832-3837.
    [109]J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon,2010,48,3825-3833.
    [110]J. Yan, T. Wei, W. Qiao, B. Shao, Q. Zhao, L. Zhang, Z. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors, Electrochim. Acta, 2010,55,6973-6978.
    [111]A.F. Zedan, S. Sappal, S. Moussa, M.S. El-Shall, Ligand-controlled microwave synthesis of cubic and hexagonal CdSe nanocrystals supported on graphene. Photoluminescence quenching by graphene, J. Phys. Chem. C,2010,114,19920-19927.
    [112]X.J. Liu, L.K. Pan, T. Lv, G. Zhu, Z. Sun, C.Q. Sun, Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(Ⅵ), Chem. Commun.,2011,47,11984-11986.
    [113]H.T. Hua, X.B. Wang, F.M. Liu, J.C. Wang, C.H. Xu, Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites:Optical and photocatalytic properties, Synth. Met.,2011,161,404-410.
    [114]M. Zhang, D.N. Lei, X.M. Yin, L.B. Chen, Q.H. Li, Y.G. Wang, T.H. Wang, Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries, J. Mater. Chem.,2010,20,5538-5543.
    [115]M. Zhang, D. Lei, Z.F. Du, X.M. Yin, L.B. Chen, Q.H. Li, Y.G. Wang, T.H. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions, J. Mater. Chem.,2011,21,1673-1676.
    [116]X.J. Liu, L.K. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun, C.Q. Sun, Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI), Catal. Sci. Technol.,2011, 1,1189-1193.
    [117]J.J. Guo, S.M. Zhu, Z.X. Chen, Y. Li, Z.Y. Yong, Q.L. Liu, J.B. Li, C.L. Feng, D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem.,2011,18,1082-1090.
    [118]J.J. Shi, G.H. Yang, J.J. Zhu, Sonoelectrochemical fabrication of PDDA-RGO-PdPt nanocomposites as electrocatalyst for DAFCs, J. Mater. Chem.,2011,21,7343-7349.
    [119]X. Huang, X.Z. Zhou, S.X. Wu, Y.Y. Wei, X.Y. Qi, J. Zhang, F. Boey, H. Zhang, Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains, Small,2010,6,513-516.
    [120]J.F. Shen, M. Shi, B. Yan, H.W. Ma, N. Li, M.X. Ye, One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid, J. Mater. Chem.,2011,21, 7795-7801.
    [121]R.J. Zou, Z.Y. Zhang, L. Yu, Q.W. Tian, Z.G. Chen, J.Q. Hu, A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications, Chem. Eur. J.,2011,17,13912-13917.
    [122]S. Park, J.H. An, I.W. Jung, R.D. Piner, S.J. An, X.S. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Lett.,2009,9,1593-1597.
    [123]D.Y. Chen, G.Ji, Y. Ma, J.Y. Lee, J.M. Lu, Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries, ACS Appl. Mater. Interfaces,2011,3,3078-3083.
    [124]Y.Q. Zou, Y. Wang, NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries, Nanoscale,2011,3,2615-2620.
    [125]C. Nethravathi, B. Viswanath, J. Michael, M. Rajamath, Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries, Carbon,2012,50,4839-4846.
    [126]H.L. Wang, L.F. Cui, Y.A. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui, H.J. Dai, Mn3O4-Graphene hybrid as a high-capacity anode material for lithium ion batteries, J. Am. Chem. Soc.,2010,132,13978-13980.
    [127]A.N. Cao, Z. Liu, S.S. Chu, M.H. Wu, Z.M. Ye, Z.W. Cai, Y.L. Chang, S.F. Wang, Q.H. Gong, Y.F. Liu, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater.,2010,22,103-106.
    [128]L.W. Ji, H.L.L. Xin, T.R. Kuykendall, S.L. Wu, H.M. Zheng, M.M. Rao, E.J. Cairns, V. Battaglia, Y.G. Zhang, SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage, Phys. Chem. Chem. Phys.,2012,14,6981-6986.
    [129]P. Chen, T.Y. Xiao, H.H. Li, J.J. Yang, Z. Wang, H.B. Ya, S.H. Yu, Nitrogen-doped graphene/ZnSe nanocomposites:hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities, ACS Nano,2012,6,712-719.
    [130]H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc.,2010,132, 7472-7477.
    [131]H.L. Wang, J.T. Robinson, G. Diankov, H.J. Dai, Nanocrystal growth on graphene with various degrees of oxidation, J. Am. Chem. Soc.,2010,132,3270-3271.
    [132]L.F. Shen, C.Z. Yuan, H.J. Luo, X.G. Zhang, S.D. Yang, X.J. Lu, In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries, Nanoscale,2011,3,572-574.
    [133]Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y.P. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability, J. Mater. Chem.,2012,22,16465-16470.
    [134]E.P. Gao, W.Z. Wang, M. Shang, J.H. Xu, Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite, Phys. Chem. Chem. Phys.,2011,13, 2887-2893.
    [135]S. Bai, X.P. Shen, X. Zhong, Y. Liu, G.X. Zhu, X. Xu, K.M. Chen, One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal, Carbon,2012,50,2337-2346.
    [136]C.B. Liu, K. Wang, S.L. Luo, Y.H. Tang, L.Y Chen, Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films, Small,2011,7, 1203-1206.
    [137]Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells, Chem. Commun.,2010,46,5951-5953.
    [138]Y.J. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C.X. Cai, Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation, Phys. Chem. Chem. Phys.,2011,13,4083-4094.
    [139]Z.Y. Yin, S.X. Wu, X.Z. Zhou, X. Huang, Q.C. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, Small,2010,6,307-312.
    [140]G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett.,2011,11,2905-2911.
    [141]N. Li, M.H. Cao, C.W. Hua, Review on the latest design of graphene-based inorganic materials, Nanoscale,2012,4,6205-6218.
    [142]F.A. He, J.T. Fan, F. Song, L.M. Zhang, H.L.W. Chan, Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods, Nanoscale,2011,3, 1182-1188.
    [143]J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide:formation and applications in SERS and catalysis, Nanoscale,2010,2,2733-2738.
    [144]S.R. Sun, L. Gao, Y.Q. Liu, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett.,2010,96,083113.
    [145]J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide, J. Am. Chem. Soc.,2010,132,7279-7281.
    [146]J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by grapheme, Adv. Mater.,2012,24,1084-1088.
    [147]S. Yang, X. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage, Angew. Chem., Int. Ed.,2010,49,8408-8411.
    [148]A.P. Yu, H.W. Park, A. Davies, D.C. Higgins, Z.W. Chen, X.C. Xiao, Free-standing lyer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries, J. Phys. Chem. Lett.,2011,2,1855-1860.
    [149]K.K. Manga, Y. Zhou, Y.L. Yan, K.P. Loh, Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties, Adv. Funtc. Mater.,2009,19,3638-3643.
    [150]Q.J. Xiang, J.G. Yu, Graphene-based photocatalysts for hydrogen generation, graphene-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett.,2013,4, 753-759.
    [151]X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev.,2010,110,6503-6570.
    [152]W.G. Tu, Y. Zhou, Z.G. Zou, Versatile graphene-promoting photocatalytic performance of semiconductors:basic principles, synthesis, solar energy conversion, and environmental applications, Adv. Funct. Mater.,2013,23,4996-5008.
    [153]D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Am. Chem. Soc,2008, 130,10697-10701.
    [154]T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H.S. Teng, Graphite oxide as a photocatalyst for hydrogen production from water, Adv. Funct. Mater.,2010,20,2255-2262.
    [155]J. C. Liu, H.W. Bai, Y.J. Wang, Z.Y. Liu, X.W. Zhang, D.D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications, Adv.Funct. Mater.,2010,20,4175-4181.
    [156]H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano,2010,4,380-386.
    [157]T.D. Nguyen-Phan, V. H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim, S.H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites, Chem. Eng. J.,2011,170,226-232.
    [158]G.D. Jiang, Z.F. Lin, C. Chen, L.H. Zhu, Q. Chang, N. Wang, W. Wei, H.Q. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon,2011,49,2693-2701.
    [159]J.C. Liu, L. Liu, H.W. Bai, Y.J. Wang, D.D. Sun, Gram-scale production of graphene oxide-TiO2 nanorod composites:Towards high-activity photocatalytic materials, Appl. Catal. B,2011,106,76-82.
    [160]E. Lee, J.Y. Hong, H. Kang, J. Jang, Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation, J. Hazard. Mater.,2012,219,13-18.
    [161]C.B. Liu, Y.R. Teng, R.H. Liu, S.L. Luo, Y.H. Tang, L.Y. Chen, Q.Y. Cai, Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application, Carbon,2011,49, 5312-5320.
    [162]Q.Q. Zhai, T. Bo, G.X. Hu, High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts:Preparation and characterization, J. Hazard. Mater.,2011,198, 78-86.
    [163]S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal.,2012,2,949-956.
    [164]P. Song, X.Y. Zhang, M.X. Sun, X.L. Cui, Y.H. Lin, Graphene oxide modified TiO2 nanotube arrays:enhanced visible light photoelectrochemical properties, Nanoscale,2012,4, 1800-1804.
    [165]I.Y. Kim, J.M. Lee, T.W. Kim, H.N. Kim, H.I. Kim, W. Choi, S.J. Hwang, A strong electronic coupling between graphene nanosheets and layered titanate nanoplates:a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity, Small,2012,8,1038-1048.
    [166]W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, Large ultrathin anatase TiO2 nanosheets with exposed{001} facets on graphene for enhanced visible light photocatalytic activity, J. Phys. Chem. C,2012,116,19893-19901.
    [167]B.J. Jiang, C.G. Tian, Q.J. Pan, Z. Jiang, J.Q. Wang, W.S. Yan, H.G. Fu, Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets, J. Phys. Chem. C,2011,115,23718-23725.
    [168]B.T. Liu, Y.J. Huang, Y. Wen, L.J. Du, W. Zeng, Y.R. Shi, F. Zhang, G. Zhu, X.H. Xu, Y.H. Wang, Highly dispersive{001} facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst, J. Mater. Chem.,2012,22,7484-7491.
    [169]L. Sun, Z.L. Zhao, Y.C. Zhou, L. Liu, Anatase TiO2 nanocrystals with exposed{001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 2012,4,613-620.
    [170]J.T. Zhang, Z.G. Xiong, X.S. Zhao, Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation, J. Mater. Chem.,2011,21,3634-3640.
    [171]T.G. Xu, L.W. Zhang, H.Y. Cheng, Y.F. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal., B, 2011,101,382-387.
    [172]M.S. Zhu, P.L. Chen, M.H. Liu, Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst, ACS Nano,2011, 5,4529-4536.
    [173]X.F. Zhang, X. Quan, S. Chen, H.T. Yu, Constructing graphene/InNbO4 composite with excellent adsorptivity and charge separation performance for enhanced visible-light-driven photocatalytic ability, Appl. Catal., B,2011,105,237-242.
    [174]P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water, Int. J. Hydrogen Energy,2012,37,2224-2230.
    [175]G.Z. Liao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem., 2012,22,2721-2726.
    [176]X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem.,2010,20,2801-2806.
    [177]A. Mukherji, B. Seger, G.Q. Lu, L.Z. Wang, Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production, ACS Nano,2011,5,3483-3492.
    [178]L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation, J. Phys. Chem. C,2011,115,11466-11473.
    [179]S.X. Min, G.X. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene, J. Phys. Chem. C,2012,116,25415-25424.
    [180]P.D. Tran, S.K. Batabyal, S.S. Pramana, J. Barber, L.H. Wong, S.C.J. Loo, A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation:employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O, Nanoscale,2012,4,3875-3878.
    [181]J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W.J. Moon, D.M. Song, Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water, RSC Adv.,2012,2,1356-1363.
    [182]S. Wang, Y. Peng, Natural zeolites as effective adsorbents in water and waste water treatment, Chem. Eng. J.,2010,156,11-24.
    [183]M. Seredych, T.J. Bandosz, Removal of ammonia by graphite oxide via its intercalation and reactive adsorption, Carbon,2007,45,2130-2132.
    [184]M. Seredych, T.J. Bandosz, Graphite oxide/AlZr polycation composites:Surface characterization and performance as adsorbents of ammonia, Mater. Chem. Phys.,2009, 117,99-106.
    [185]M. Seredych, T.J. Bandosz, Effects of surface features on adsorption of SO2 on graphite oxide/ZrOH4 composites, J. Phys. Chem. C,2010,114,14552-14560.
    [186]Y.C. Lee, J.W. Yang, Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal, J. Ind. Eng. Chem.,2012,18,1178-1185.
    [187]L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, Y. Lv, SiO2/graphene composite for highly selective adsorption of Pb(Ⅱ) ion, J. Colloid Interface Sci.,2012,369,381-387.
    [188]Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, J. Ma, Graphene/MnO2 composite as adsorbent for the removal of nickel ions from wastewater, Chem. Eng. J.,2011,175,1-7.
    [189]H. Sun, L. Cao, L. Lu, Magnetite/reduced graphene oxide nanocomposites:One step solvothermal synthesis and use as a novel platform for removal of dye pollutants, Nano Research,2011,4,550-562.
    [190]M. Liu, C. Chen, J. Hu, X. Wu, X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(Ⅱ) removal, J. Phys. Chem. C,2011,115,25234-25240.
    [191]V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano,2010,4, 3979-3986.
    [192]S.B. Wang, H.Q. Sun, H.M. Ang, M.O. Tade, Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials, Chem. Eng. J.,2013,226,336-347.
    [193]X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Preparation of novel 3D graphene networks for supercapacitor applications, small,2011,7,3163-3168.
    [194]P. Simon,Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater.,2008,7, 845-854.
    [195]L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev.,2009,38,2520-2531.
    [196]X. Zhao, L.L. Zhang, S. Murali, M.D. Stoller, Q.H. Zhang, Y.W. Zhu, R.R. Ruoff, Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors, ACS Nano,2012,6,5404-5412.
    [197]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano,2010,4,2822-2830.
    [198]C.C. Hu, Y.T. Wu, K.H. Chang, Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals:determinant influence of oxidants, Chem. Mater.,2008,20, 2890-2894.
    [199]Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater.,2010,20,3595-3602.
    [200]S. Chen, J. Zhu, X. Wang, One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties, J. Phys. Chem. C,2010,114,11829-11834.
    [201]Y. Xin, J.G. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, Z. Zou, Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, J. Power Sources,2011,196,1012-1018.
    [202]H.P. Cong, X.C. Ren, S.H. Yu, Controlled synthesis of PtRu/graphene nanocatalysts with enhanced methanol oxidation activity for fuel cell, ChemCatChem,2012,4,1555-1559.
    [203]K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, J. Zhao, J. Liu, J. Jia, H. Li, Effects of acid Treatment of Pt-Ni alloy nanoparticles@graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions, J. Phys. Chem. C,2010,115, 379-389.
    [204]H. Zhang, X.Q. Xu, P. Gu, C.Y. Li, P. Wu, C.X. Cai, Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation, Electrochim. Acta,2011,56,7064-7070.
    [205]C.V. Rao, C.R. Cabrera, Y. Ishikawa, Graphene-supported PtAu alloy nanoparticles:a highly efficient anode for direct formic acid fuel cells, J. Phys. Chem. C,2011,115, 21963-21970.
    [206]Y. Zhang, Y.E. Gu, S. Lin, J. Wei, Z. Wang, C. Wang, Y. Du, W. Ye, One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity, Electrochim. Acta,2011,56,8746-8751.
    [207]M.S. Wietecha, J. Zhu, G. Gao, N. Wang, H. Feng, M. L. Gorring, M. L. Kasner, S. Hou, Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation, J. Power Sources,2012,198,30-35.
    [208]R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem.,2010,20,7114-7117.
    [209]S.B. Yang, X.L. Feng, X.C. Wang, K. Mullen, Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions, Angew. Chem. Int. Ed., 2011,50,5339-5343.
    [210]G. Cappelletti, C.L. Bianchi, S. Ardizzone, Nano-titania assisted photoreduction of Cr(VI): The role of the different TiO2 polymorphs, Appl. Catal., B,2008,78,193-201.
    [211]L. Han, P. Wang, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Facile solvothermal synthesis of cube-like Ag@AgCl:a highly efficient visible light photocatalyst, Nanoscale,2011,3,2931-2935.
    [212]H. Kato, H. Kobayashi, A. Kudo, Role of Ag+in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure, J. Phys. Chem. B,2002, 106,12441-12447.
    [213]R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates, Phys. Chem. Chem. Phys.,2003, 5,3061-3065.
    [214]T. Kako, N. Kikugawa, J. Ye, Photocatalytic activities of AgSbO3 under visible light irradiation, Catal. Today,2008,131,197-202.
    [215]P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Ag@AgCl: A highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 2008,47,7931-7933.
    [216]Z.G Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater.,2010,9,559-564.
    [217]X.F. Wang, S.F. Li, H.G. Yu, J.G. Yu, S.W. Liu, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity, Chem. Eur. J.,2011,17,7777-7780.
    [218]Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc.,2011,133, 6490-6492.
    [219]G. Wang, X.C. Ma, B.B. Huang, H.F. Cheng, Z.Y. Wang, J. Zhan, X.Y. Qin, X.Y. Zhang, Y. Dai, Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities, J. Mater. Chem.,2012,22,21189-21194.
    [220]C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do, Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity, Chem. Commun.,2011,47,7797-7799.
    [221]H.C. Zhang, H. Huang, H. Ming, H.T. Li, L.L. Zhang, Y. Liu, Z.H. Kang, Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light, J. Mater. Chem.,2012,22,10501-10506.
    [222]B.Y. Yu, S.Y. Kwak, Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts, J. Mater. Chem.,2012,22, 8345-8353.
    [223]K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites, Adv. Mater.,2009,21,2233-2239.
    [224]Q.H. Liang, Y. Shi, W.J. Ma, Z. Li, X.M. Yang, Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets, Phys. Chem. Chem. Phys.,2012,14,15657-15665.
    [225]Q.J. Xiang, J.G Yu, M. Jaroniec, Synergetic Effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 2012,134,6575-6578.
    [226]Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano,2010,4,7303-7314.
    [227]P.V. Kamat, Graphene-based nanoassemblies for energy conversion, J. Phys. Chem. Lett., 2011,2,242-251.
    [228]L. Liu, J.C. Liu, D.D. Sun, Graphene oxide enwrapped Ag3PO4 composite:towards a highly efficient and stable visible-light-induced photocatalyst for water purification, Catal. Sci. Technol.,2012,2,2525-2532.
    [229]M.S. Zhu, P.L. Chen, M.H. Liu, Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions:a comparison of sunlight energized plasmonic photocatalytic activity, Langmuir,2012,28,3385-3390.
    [230]L. Han, P. Wang, S.J. Dong, Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst, Nanoscale,2012,4,5814-5825.
    [231]X.F. Yang, H.Y. Cui, Y. Li, J.L. Qin, R.X. Zhang, H. Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal.,2013,3,363-369.
    [232]Z.J. Zhang, W.Z. Wang, W.Z. Yin, M. Shang, L. Wang, S.M. Sun, Inducing photocatalysis by visible light beyond the absorption edge:Effect of upconversion agent on the photocatalytic activity of Bi2WO6, Appl. Catal., B,2010,101,68-73.
    [233]Z.Y. Ji, X.P. Shen, M.Z. Li, H. Zhou, G.X. Zhu, K.M. Chen, Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties, Nanotechnology,2013,24, 115603.
    [234]T. Nakajima, A. Mabuchi, R. Hagiwara, A new structure model of graphite oxide, Carbon, 1988,26,357-361.
    [235]C. Xu, X.D. Wu, J.W. Zhu, X. Wang, Synthesis of amphiphilic graphite oxide, Carbon,2008, 46,386-389.
    [236]J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces, J. Am. Chem. Soc.,2010,132,8180-8186.
    [237]X.L. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania, Chem. Phys. Lett.,2006,429,606-610.
    [238]M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination, J. Phys. Chem. B,2004,108, 17269-17273.
    [239]Q.J. Xiang, J.G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev.,2012,41,782-796.
    [240]C.H. An, S.N. Peng, Y.G. Sun, Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst, Adv. Mater.,2010,22,2570-2574.
    [241]N. Zhang, Y.H. Zhang, Y.J. Xu, Recent progress on graphene-based photocatalysts:current status and future perspectives, Nanoscale,2012,4,5792-5813.
    [242]W.G. Wang, J.G. Yu, Q. J. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air, Appl. Catal., B,2012,119120,109-116.
    [243]J. Zhang, J.G. Yu, M. Jaroniec, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance, Nano Lett.,2012,12,4584-4589.
    [244]Y.Y. Wen, H.M. Ding, Y.K. Shan, Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite, Nanoscale,2011,3,4411-4417.
    [245]X.H. Lu, T. Zhai, H.N. Cui, J.Y. Shi, S.L. Xie, Y.Y. Huang, C.L. Liang, Y.X. Tong, Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods, J. Mater. Chem., 2011,21,5569-5572.
    [246]F. Zhang, Y.H. Deng, Y.F. Shi, R.Y. Zhang, D.Y. Zhao, Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals, J. Mater. Chem.,2010,20,3895-3900.
    [247]M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad, High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors, Nano Lett.,2008,8,3834-3838.
    [248]F. Zhang, G.B. Braun, Y.F. Shi, Y.C. Zhang, X.H. Sun, N.O. Reich, D.Y. Zhao, G. Stucky, Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging:tuning of the upconversion fluorescence with silver nanoparticles, J. Am. Chem. Soc.,2010,132, 2850-2851.
    [249]X.W. Liu, K.B. Zhou, L. Wang, B.Y. Wang, Y.D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc.,2009,131,3140-3141.
    [250]X. Feng, D.C. Sayle, Z.L. Wang, Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science,2006,312,1504-1508.
    [251]H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B,2005,109,24380-23385.
    [252]N. Izu, W. Shin, Evaluation of response characteristics of resistive oxygen sensors based on porous cerium oxide thick film using pressure modulation method, Sens. Actuators B,2006, 113,207-213.
    [253]P. Jasinski, T. Suzuki, H.U. Anderson, Nanocrystalline undoped ceria oxygen sensor, Sens. Actuators B,2003,95,73-77.
    [254]P.F. Ji, J.L. Zhang, F. Chen, M. Anpo M, Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica:formation, characterization and photocatalytic activity, J. Phys. Chem. C,2008,112,17809-17813.
    [255]Y.S. Chaudhary, S. Panigrahi, S. Nayak, B. Satpati, S. Bhattacharjee, N. Kulkarni, Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light, J. Mater. Chem.,2010,20,2381-2385.
    [256]P. Borker, A.V. Salker, Solar assisted photocatalytic degradation of naphthol blue black dye using Ce1-x Mnx O2, Mater. Chem. Phys.,2007,103,366-370.
    [257]G. Wang, J.T. Bai, Y.H. Wang, Z.Y. Ren, J.B. Bai, Prepartion and electrochemical performance of a cerium oxide-graphene nanocomposite as the anode material of a lithium ion battery, Scr. Mater.,2011,65,339-342.
    [258]Y. Wang, C.X. Guo, J.H. Liu, T. Chen, H.B. Yang, C.M. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor, Dalton Trans.,2011,40,6388-6391.
    [259]T.Y. Yu, J. Zeng, B. Lim, Y.N. Xia, Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties, Adv. Mater.,2010,22,5188-5192.
    [260]B.S. Kong, J.X. Geng, H.T. Jung, Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions, Chem. Commun., 2009,2174-2176.
    [261]F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys.,1970,53,1126-1130.
    [262]D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single-and few-layer graphene, Nano Lett.,2007,7, 238-242.
    [263]A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett.,2006,97,187401.
    [264]S.J. Guo, S.H. Sun, FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction, J. Am. Chem.Soc.,2012,134,2492-2495.
    [265]J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells, J. Phys. Chem. C,2011,115,15639-15645.
    [266]Z.Y. Ji, X.P. Shen, G.X. Zhu, K.M. Chen, G.H. Fu, L. Tong, Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation, J. Electroanal. Chem.,2012,682,95-100.
    [267]Y. Yang, L.L. Ren, C. Zhang, S. Huang, T.X. Liu, Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property, ACS Appl. Mater. Interfaces,2011,3,2779-2785.
    [268]M.J. Fernandez-Merino, J.I. Paredes, S. Villar-Rodil, L. Guardia, P. Solis-Fernandez, D. Salinas-Torres, D. Cazorla-Amoros, E. Morallon, A. Martinez-Alonso, J.M.D. Tascon, Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films, Carbon,2012,50, 3184-3194.
    [269]Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surfaces of silver nanowires, J. Phys. Chem. B,2004,108,12877-12881.
    [270]J.H. Zhang, H.Y. Liu, Z.L. Wang, N.B. Ming, Z.R. Li, A.S. Biris, Polyvinylpyrrolidone-Directed Crystallization of ZnO with Tunable Morphology and Bandgap, Adv. Funct. Mater.,2007,17,3897-3905.
    [271]D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature,2007, 448,457-460.
    [272]D.Q. Wu, F. Zhang, H.W. Liang, X.L. Feng, Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets*, Chem. Soc. Rev.,2012,41,6160-6177.
    [273]H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, Y.Y. Yang, Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors, J. Mater. Chem.2011,21,10504-10511.
    [274]Z.F. Liu, Q. Liu, Y. Huang, Y.F. Ma, S.G. Yin, X.Y. Zhang, W. Sun, Y.S. Chen, Organic photovoltaic devices based on a novel acceptor material:graphene, Adv. Mater.,2008,20, 3924-3930.
    [275]Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res.,2011,50, 7210-7218.
    [276]M. Shang, W.Z. Wang, S.M. Sun, J. Ren, L. Zhou, L. Zhang, Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4, J. Phys. Chem. C, 2009,113,20228-20233.
    [277]R.R. Bi, X.L. Wu, F.F. Cao, L.Y. Jiang, Y.G. Guo, L.J.. Wan, Highly dispersed RuO2 nanoparticles on carbon nanotubes:facile synthesis and enhanced supercapacitance performance, J. Phys. Chem. C,2010,114,2448-2451.
    [278]J.W. Zhu, S. Chen, H. Zhou, X. Wang, Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance, Nano Res.,2012, 5,11-19.
    [279]E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal., B,2009, 88,1-24.
    [280]R.T. Lv, T.X. Cui, M.S. Jun, Q. Zhang, A.Y. Cao, D.S. Su, Z.J. Zhang, S.H. Yoon, J. Miyawaki, I. Mochida, F.Y. Kang, Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support, Adv. Funct. Mater.,2011,21, 999-1006.
    [281]W. Lv, F. Sun, D.M. Tang, H.T. Fang, C. Liu, Q.H. Yang, H.M. Cheng, A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance, J. Mater. Chem.,2011,21,9014-9019.
    [282]W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Fabrication of Co3O4 -reduced graphene oxide scrolls for high-performance supercapacitor electrodes, Phys. Chem. Chem. Phys.,2011,13,14462-14465.
    [283]X.R. Wang, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science,2009,8,768-771.
    [284]J. Chen, S. Patil, S. Seal, J.F. McGinnis, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides, Nat. Nanotechnol.,2006,1,142-150.
    [285]R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett.,2005,5,2573-2577.
    [286]S. Patil, S. Reshetnikov, M.K. Haldar, S. Seal, S. Mallik, Surface-derivatized nanoceria with human carbonic anhydrase Ⅱ inhibitors and fluorophores:a potential drug delivery device, J. Phys. Chem. C,2007,111,8437-8442.
    [287]T. Pirmohamed, J.M. Dowding, S. Singh, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun.,2010,46,2736-2738.
    [288]C.L. Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, D.R. Rolison, Sol-gel-derived ceria nanoarchitectures:synthesis, characterization, and electrical properties, Chem. Mater.,2006,18,50-58.
    [289]F. Zhou, X. Zhao, H. Xu, C. Yuan, CeO2 spherical crystallites:synthesis, formation mechanism, size control, and electrochemical property study, J. Phys. Chem. C,2007,111, 1651-1657.
    [290]M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett.,2010,10,751-758.
    [291]M.M. Lucchese, F. Satavle, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon,2010,48,1592-1597.
    [292]C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene:the new two-dimensional nanomaterial, Angew. Chem. Int. Ed.,2009,48,7752-7777.
    [293]B. Krauss, T. Lohmann, D.H. Chae, M. Haluska, K. von Klitzing, J. H. Smet, Laser-induced disassembly of a graphene single crystal into a nanocrystalline network, Phys. Rev. B: Condens. Matter Mater. Phys.,2009,79,165428.
    [294]D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, S.I. Khondaker, Anchoring ceria nanoparticles on reduced graphene oxide and their electronic transport properties, J. Phys. Chem. C,2011,115,24494-24500.
    [295]J. Gao, F. Liu, Y.L. Liu, N. Ma, Z.Q. Wang, X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid, Chem. Mater.,2010,22, 2213-2218.
    [296]H.H. Zhang, Q. Liu, K. Feng, B. Chen, C.H. Tung, L. Z. Wu, Facile photoreduction of graphene oxide by an NAD(P)H Model:hantzsch 1,4-dihydropyridine, Langmuir,2012,28, 8224-8229.
    [297]B. Zhao, J.S. Song, P. Liu, W.W. Xu, T. Fang, Z. Jiao, H.J. Zhang, Y. Jiang, Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors, J. Mater. Chem., 2011,21,18792-18798.
    [298]H.L. Wang, C.M.B. Holt, Z. Li, X.H. Tan, B.S. Amirkhiz, Z.W. Xu, B.C. Olsen, T. Stephenson, D. Mitlin, Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading, Nano Res.,2012,5,605-617.
    [299]H.L. Wang, Q.L. Hao, X.J. Yang, L.D. Lu, X. Wang, A nanostructured graphene/polyaniline hybrid material for supercapacitors, Nanoscale,2010,2,2164-2170.
    [300]Z.J. Fan, J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater.,2011,21,2366-2375.
    [301]X.J. Zhu, H.L. Dai, J. Hu, L. Ding, L. Jiang, Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors, J. Power Sources, 2012,203,243-249.
    [302]R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis, Angew. Chem., Int. Ed.,2008,47,7602-7625.
    [303]J.A. Smyder, T.D. Krauss, Coming attractions for semiconductor quantum dots, Mater.Today, 2011,14,382-387.
    [304]D.S. Wang, T. Xie, Q. Peng, S.Y. Zhang, J. Chen, Y.D. Li, Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals, Chem. Eur. J.,2008,14, 2507-2513.
    [305]R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem., Int. Ed.,2007,46,7778-7781.
    [306]E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors:preparation, characterization and application as chemical sensors, Prog. Mater. Sci.,2009,54,1-67.
    [307]S. Bai, X.P. Shen, G.X. Zhu, H. Zhou, H. Xu, G.H. Fu, Z. F. Ye, Optical properties and a simple and general route for the rapid syntheses of reduced graphene oxide-metal sulfide nanocomposites, Eur. J. Inorg. Chem.2013,2,256-262.
    [308]D.S. Wang, W. Zheng, C.H. Hao, Q. Peng, Y.D. Li, A synthetic method for transition-metal chalcogenide nanocrystals, Chem. Eur. J.,2009,15,1870-1875.
    [309]G.X. Wang, X.P. Shen, B. Wang, J. Yao, J. Park, Synthesis and characterisation of hydrophilic and organophilic grapheme nanosheets, Carbon,2009,47,1359-1364.
    [310]X.G. Mei, H.Q. Zheng, J.Y. Ouyang, Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes, J. Mater. Chem.,2012,22,9109-9116.
    [311]W.F. Chen, L.F. Yan, P.R. Bangal, Chemical reduction of graphene oxide to graphene by sulfur-containing compounds, J. Phys. Chem. C,2010,114,19885-19890.
    [312]W.J. Li, X.Z. Tang, H.B. Zhang, Z.G Jiang, Z.Z. Yu, X.S. Du, Y.W. Mai, Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites, Carbon,2011,49,4724-4730.
    [313]S.J. Yang, S. Nam, T. Kim, J.H.Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R.Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework, J. Am. Chem. Soc.,2013,135, 7394-7397.
    [314]H.K. He, C. Gao, Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles, ACS Appl. Mater. Interfaces, 2010,2,3201-3210.
    [315]T.A. Pham, B.C. Choi, Y.T. Jeong, Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets:preparation, characterization, and optical properties, Nanotechnology,2010,21,465603.
    [316]X. Wang, L.J. Zhi, N. Tsao, J.L. Tomovic, K. Mullen, Transparent carbon films as electrodes in organic solar cells, Angew. Chem. Int. Ed.,2008,47,2990-2992.
    [317]Z.Y. Ji, J.L. Wu, X.P. Shen, H. Zhou, H.T. Xi, Preparation and characterization of graphene/NiO nanocomposites, J Mater Sci,2011,46,1190-1195.
    [318]T. Kavitha, A.I. Gopalan, K.P. Lee, S.Y. Park, Glucose sensing, photocatalytic and antibacterial properties of grapheme-ZnO nanoparticle hybrids, Carbon,2012,50, 2994-3000.
    [319]J.L.Wu, X.P. Shen, L. Jiang, K. Wang, K.M. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci.,2010, 256,2826-2830.
    [320]M. Feng, R.Q. Sun, H.B. Zhan, Y. Chen, Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties, Nanotechnology,2010,21,075601.
    [321]J. Lin, M. Penchev, GP. Wang, R.K. Paul, J.B. Zhong, X.Y. Jing, M. Ozkan, C.S. Ozkan, Heterogeneous graphene nanostructures:ZnO nanostructures grown on large-area graphene layers, Small,2010,6,2448-2452.
    [322]C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide, Carbon,2009,47,2054-2059.
    [323]S.H. Choi, K. An, E.G. Kim, J.H. Yu, J.H. Kim, T. Hyeon, Simple and generalized synthesis of semiconducting metal sulfide nanocrystals, Adv. Funct. Mater.,2009,19,1645-1649.
    [324]Y. Jiang, D.D. Chen, J.S. Song, Z. Jiao, Q.L. Ma, H.J. Zhang, L.L. Cheng, B. Zhao, Y.L. Chu, A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors, Electrochim. Acta,2013,91,173-178.
    [325]B. Zhao, J.S. Song, P. Liu, W.W. Xu, T. Fang, Z. Jiao, H.J. Zhang, Y. Jiang, Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors, J. Mater. Chem.,2011,21,18792-18798.
    [326]Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv. Mater.,2010,22,3723-3728.
    [327]M.S. Yavuz, Y.Y. Cheng, J.Y. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J.W. Xie, C. Kim, K.H. Song, A.G Schwartz, Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater.,2009,8,935-939.
    [328]B. Lim, M.J. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X.M. Lu, Y.M. Zhu, Y.N. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science,2009,324, 1302-1305.
    [329]A. Halder, S. Patra, B. Viswanath, N. Munichandraiah, N. Ravishankar, Porous, catalytically active palladium nanostructures by tuning nanoparticle interactions in an organic medium, Nanoscale,2011,3,725-730.
    [330]S.J. Guo, S.J. Dong, E.K. Wang, Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker, Adv. Mater.,2010,22,1269-1272.
    [331]N. Tian, Z.Y. Zhou, S.G Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science,2007,316, 732-735.
    [332]H.G. Liao, Y.X. Jiang, Z.Y. Zhou, S.P. Chen, S.G Sun, Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angew. Chem., Int. Ed.,2008,47,9100-9103.
    [333]Y.G. Sun, Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002,298,2176-2179.
    [334]X. Wang, D.P. Liu, S.Y. Song, H.J. Zhang, Graphene oxide induced formation of Pt-CeO2 hybrid nanoflowers with tunable CeO2 thickness for catalytic hydrolysis of ammonia borane, Chem. Eur. J.,2013,19,8082-8086.
    [335]T.S. Sreeprasadl, S.M. Maliyekkall, K.P. Lisha, T. Pradeep, Reduced graphene oxide-metal/metal oxide composites:facile synthesis and application in water purification, J. Hazard. Mater.,2011,186,921-931.
    [336]X.Y. Li, X. Wang, S.Y. Song, D.P. Liu, H.J. Zhang, Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites:stable, recyclable, and magnetically separable catalysts, Chem. Eur. J.,2012,18,7601-7607.
    [337]F. Xiao, Y.Q. Li, X.L. Zan, K. Liao, R. Xu, H.W. Duan, Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors, Adv. Funct. Mater., 2012,22,2487-2494.
    [338]X. Wang, X.Y. Li, D.P. Liu, S.Y. Song, H.J. Zhang, Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties, Chem. Commun.,2012,48,2885-2887.
    [339]Z.Y. Ji, X.P. Shen, J.L. Yang, G.X. Zhu, K.M. Chen, A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite:green synthesis and catalytic properties, Appl. Catal.,B,2014,144,454-461.
    [340]P. Wang, L. Han, C.Z. Zhu, Y.M. Zhai, S.J. Dong, Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties, Nano Res.,2011,4,1153-1162.
    [341]C.Z. Zhu, P. Wang, L. Wang, L. Han, S.J. Dong, Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties, Nanoscale, 2011,3,4376-4382.
    [342]Z.Y. Zhang, C.L. Shao, P. Zou, P. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, X.H. Li, C.H. Wang, Y.C. Liu, In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, Chem. Commun.,2011,47,3906-3908.
    [343]E. Murugan, J. N. Jebaranjitham, Synthesis and characterization of silver nanoparticles supported on surface-modified poly (N-vinylimidazale) as catalysts for the reduction of 4-nitrophenol, J. Mol. Catal. A:Chem.,2012,365,128-135.
    [344]Y. Du, H.L. Chen, R.Z. Chen, N.P. Xu, Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts, Appl. Catal., A,2004,277,259-264.
    [345]R.X. Jin, Y. Xing, X.D. Yu, S.L. Sun, D.H. Yu, F.F. Wang, W.B. Wu, S.Y. Song, Facile synthesis of well-dispersed silver nanoparticles on hierarchical flower-like Ni3Si2O5(OH)4 with a high catalytic activity towards 4-nitrophenol reduction, Chem. Asian J.,2012,7, 2955-2961.
    [346]B. Zhang, P. Xu, X.M. Xie, H. Wei, Z.P. Li, N.H. Mack, X.J. Han, H.X. Xu, H.L. Wang, Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures, J. Mater. Chem.,2011,21,2495-2501.
    [347]N.C. Antonels, R. Meijboom, Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the langmuir-hinshelwood approach, Langmuir,2013,29,13433-13442.
    [348]J. Zeng, Q. Zhang, J.Y. Chen, Y.N. Xia, A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles, Nano Lett.,2010,10,30-35.
    [349]Y. Khalavka, J. Becker, C. Sonnichsen, Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity, J. Am. Chem. Soc.,2009,131, 1871-1875.
    [350]C.Z. Zhu, L. Han, P. Hu, S.J. Dong, In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties, Nanoscale,2012,4,1641-1646.
    [351]B.M. Reddy, G. Thrimurthulu, L. Katta, Y. Yamada, S.E. Park, Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions, J. Phys. Chem. C, 2009,113,15882-15890.
    [352]Z.L. Wen, S.D. Yang, Y.Y. Liang, W. He, H. Tong, L. Hao, X.G. Zhang, Q.J. Song, The improved electrocatalytic activity of palladium/graphene nanosheets towards ethanol oxidation by tin oxide, Electrochim. Acta,2010,56,139-144.
    [353]S.P. Yu, Q.B. Liu, W.S. Yang, K.F. Han, Z.M. Wang, H. Zhu, Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells, Electrochim. Acta,2013,94,245-251.
    [354]P. Zhang, C.L. Shao, Z.Y. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, Y.C. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol, Nanoscale,2011,3,3357-3363.
    [355]S. Tang, S. Vongehr, X. Meng, Carbon spheres with controllable silver nanoparticle doping, J. Phys. Chem. C,2010,114,977-982.
    [356]B. Baruah, G.J. Gabriel, M.J. Akbashev, M.E. Booher, Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-Nitrophenol reduction, Langmuir,2013,29,4225-4234.
    [357]J. Lee, J.C. Park, H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol, Adv. Mater.,2008,20,1523-1528.
    [358]K.L. Wu, X.W. Wei, X.M. Zhou, D.H. Wu, X.W. Liu, Y. Ye, Q. Wang, NiCo2 Alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol, J. Phys. Chem.C,2011,115,16268-16274.
    [359]Y. Chi, Q. Yuan, Y.J. Li, J.C. Tu, L. Zhao, N. Li, X.T. Li, Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, J. Colloid Interface Sri.,2012,383,96-102.
    [360]J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel:synthesis, characterization and its use for catalytic reduction of 4-nitrophenol, J. Mater. Chem.,2012,22,8426-8430.
    [361]S. Bai, X.P. Shen, G.X. Zhu, M.Z. Li, H.T. Xi, K.M. Chen, In situ Growth of NixCoi00-x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties, ACS Appl. Mater. Interfaces,2012,4,2378-2386.
    [362]R. Prucek, J. Tucek, M. Kilianova, A. Panacek, L. Kvitek, J. Filip, M. Kolar, K. Tomankova, R. Zboril, The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles, Biomaterials,2011,32,4704-4713.
    [363]X.Q. Fu, F.L. Bei, X. Wang, S. O'Brien, J.R. Lombardi, Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives, Nanoscale,2010,2,1461-1466.
    [364]J.C. Qu, C.L. Ren, Y.L. Dong, Y.P. Chang, M. Zhou, X.G. Chen, Facile synthesis of multifunctional graphene oxide/AgNPs-FesO4 nanocomposite:a highly integrated catalysts, Chem. Eng. J.,2012,211-212,412-420.
    [365]A. Murugadoss, A. Chattopadhyay, A 'green' chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst, Nanotechnol.,2008,19,015603.
    [366]Z.P. Qu, W.X. Huang, M.J. Cheng, X.H. Bao, Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation, J. Phys. Chem. B,2005,109,15842-15848.
    [367]Y. Guo, M. Sakurai, H. Kameyama, Temperature programmed desorption/surface-reaction study of an anodic alumina supported Ag catalyst for selective catalytic reduction of nitric oxide with propene, Appl. Catal., B,2008,79,382-393.
    [368]M. Choi, Z.J. Wu, E. Iglesia, Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation, J. Am. Chem. Soc.,2010,132, 9129-9137.
    [369]K. Shimizu, H. Kawachi, S. Komai, K. Yoshida, Y. Sasaki, A. Satsuma, Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles, Catal. Today, 2011,175,93-99.
    [370]H. Sakai, T. Kanda, H. Shibata, T. Ohkubo, M. Abe, Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle, J. Am. Chem. Soc, 2006,128,4944-4945.
    [371]L.M. Chen, D. Ma, X.H. Bao, Hydrogen treatment-induced surface reconstruction: Formation of superoxide species on activated carbon over Ag/activated carbon catalysts for selective oxidation of CO in H-2-rich gases, J. Phys. Chem. C,2007,111,2229-2234.
    [372]N. Tanaka, H. Nishikiori, S. Kubota, M. Endo, T. Fujii, Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes, Carbon,2009,47,2752-2754.
    [373]X.Y. Qin, Y.L. Luo, W.B. Lu, G.H. Chang, A.M. Asiri, A.O.Al-Youbi, X.P. Sun, One-step synthesis of Ag nanoparticles-decorated reduced graphene oxide and their application for H2O2 detection, Electrochim. Acta,2012,79,46-51.
    [374]E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Appl. Catal., B,2012,123,52-68.
    [375]Y.M. Zhang, X. Yuan, Y. Wang, Y. Chen, One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline, J. Mater. Chem.,2012,22, 7245-7251.
    [376]T.S. Wu, S. Liu, Y.L. Luo, W.B. Lu, L. Wang, X.P. Sun, Surface plasmon resonance-induced visible light photocatalytic reductionof graphene oxide:Using Ag nanoparticles as a plasmonic photocatalyst, Nanoscale,2011,3,2142-2144.
    [377]J.Q. Tian, S. Liu, Y.W. Zhang, H.Y. Li, L. Wang, Y.L. Luo, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation, Inorg. Chem., 2012,51,4742-4746.
    [378]D.H. Yoo, T.V. Cuong, V.H. Luan, N.T. Khoa, NT, E.J. Kim, EJ, S.H. Hur, S.H. Hahn, Photocatalytic performance of a Ag/ZnO/CCG multidimensional heterostructure prepared by a solution-based method, J. Phys. Chem. C,2012,116,7180-7184.
    [379]S. Ghasemi, S.R. Setayesh, A. Habibi-Yangjeh, M.R. Hormozi-Nezhad, M.R. Gholami, Assembly of CeO2-TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants, J. Hazard. Mater.,2012, 199,170-178.
    [380]J.G Hou, C. Yang, Z. Wang, S.Q. Jiao, H.M. Zhu, Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed(001) facets on graphene sheets for enhanced visible-light photocatalytic performance, Appl. Catal. B,2013,129,333-341.
    [381]PR. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R.Pasricha, A.B. Mandale, M.Sastry, Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface, Langmuir,2004,20,7825-7836.
    [382]R. Pasricha, S.Gupta, A.K. Srivastava, A facile and novel synthesis of Ag-graphene-based nanocomposites, Small,2009,5,2253-2259.
    [383]J. Li, C.Y. Liu, Ag/graphene heterostructures:synthesis, characterization and optical properties, Eur. J. Inorg. Chem.,2010,8,1244-1248.
    [384]Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc.,2008,130, 5856-5857.
    [385]S. Praharaj, S. Nath, S.K. Ghosh, S. Kundu, T. Pal, Immobilization and recovery of Au nanoparticles from anion exchange resin:resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol, Langmuir,2004,20,9889-9892.
    [386]R. Narayanan, M.A. E1-Sayed, Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:electron-transfer reaction, J. Am. Chem. Soc.,2003, 125,8340-8347.
    [387]M.P. Pileni, Magnetic fluids:fabrication magnetic properties, and organization of nanocrystals, Adv. Funct. Mater.,2001,5,323-336.
    [388]S. Wu, Q.Y. He, C.M. Zhou, X.Y. Qi, X. Huang, Z.Y. Yin, Y.H. Yang, H. Zhang, Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst, Nanoscale,2012,4,2478-2483.
    [389]T. Zeng, X.L. Zhang, Y.R. Ma, H.Y. Niua, Y.Q. Cai, A novel Fe3O4-graphene-Au multifunctional nanocomposite:green synthesis and catalytic application, J. Mater. Chem., 2012,22,18658-18663.
    [390]R.G Charles, M.A. Pawlikowski, Comparative heat stabilities of some metal acetylacetonate chelates, J. Phys. Chem.,1958,62,440-444.
    [391]W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols, J. Colloid Interface Sci.,2007,305,366-370.
    [392]G.X. Zhu, Y.J. Liu, Z. Xu, T. Jiang, C. Zhang, X. Li, G. Qi, Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-assembly in solution, Chemphyschem.,2010,11,2432-2437
    [393]D.L.A. Faria, S.V. Silva, M.T. Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc.,1997,28,873-878.
    [394]J. Popplewell, L. Sakhnini, The dependence of the physical and magnetic properties of magnetic fluids on particle size, J. Magn, Magn. Mater.,1995,142,72-78.
    [395]D.H. Han, J.P. Wang, H.L. Luo, Crystallite size effect on saturation magnetization of fine ferrimagnetic particles, J. Magn. Magn. Mater.,1994,136,176-182.
    [396]J.Q. Wang, W. Cai, J.T. Feng, X.X. Meng, E.Z. Liu, In situ decoration of carbon nanotubes with nearly monodispersemagnetite nanoparticles in liquid polyols, J. Mater. Chem.,2007,17,1188-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700