用户名: 密码: 验证码:
大型火力发电水冷机组凝汽器强化传热关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器是许多工业生产过程的关键设备,其应用领域包括冶金、石化、能源及核能、航空等。强化换热技术是提高换热设备换热效率,减小换热体积,降低成本的关键技术。本文依托“十二五”科技支撑项目,以研发强化换热效果更高而水阻更低的“洁能芯”装置为目标,通过理论分析、数值模拟及试验对管程组合转子的强化传热特性进行了系统的研究,并在国电、中石化电厂凝汽器开展工程应用,取得了良好应用效果。本文主要研究工作如下:
     一、管程单元组合转子强化传热机理分析
     在层流和低雷诺数湍流对流传热过程中,温度梯度存在于整个流体通道截面,流体温度分布为抛物线型。因此,层流与低雷诺数湍流传热的强化应着眼于加强整个通道截面内流体的径向混合,也就是要改变流体通道内的速度场分布。增加传热方向的速度分量(横向速度),场协同数将会大幅增加进而换热强化。通道截面内的横向速度分量可引发纵向涡与横向涡。在低雷诺数湍流状态下,纵向涡具有较好的传热强化效果,并且在换热相同的情况下,纵向涡较横向涡造成的阻力压降增幅更小。管程单元组合转子可在换热管内诱导占主导地位的纵向涡,同时局部伴随有少量横向涡。
     随着流动雷诺数的增大,流体的流动将由层流状态渐变为湍流状态。湍流状态下,流动边界层和热边界层的厚度成一定的比例关系,减薄流动边界层与减薄热边界层是相互关联的。由此提出管程单元组合转子实现强化传热机理:①转子叶片扰动边界层;②离心流体冲击边界层;③切向流体剪切边界层。
     二、管程单元组合转子强化传热及阻力特性研究
     基于湍流区域内以破坏流体边界层的层流底层方式实现强化传热工作机理,在螺旋三叶片和叶片间断型转子的结构形式的基础上,创新提出了三种新型结构形式转子螺旋两叶片转子、螺旋阶梯两叶片转子和开槽螺旋两叶片转子,通过自行研制的强化换热综合性能实验装置,对上述五种不同结构形式的管程组合转子的强化传热特性进行实验研究。
     强化传热实验研究结果表明:在实验雷诺数范围内,不同结构形式及结构参数的管程组合转子可不同程度地提高换热过程的换热量、管程对流传热系数和传热努塞尔数Nu,同时也相应地增加了管程压降;增大转子外径对传热强化的贡献明显,阻力系数也相应有所增大;在不同结构形式的组合转子中,开槽螺旋叶片转子的强化传热综合性能最佳,增大转子外径对阻力系数的影响微弱,却能较大增强管程流体的换热效果;在实验研究的转子中,外径为22mm、导程为150mm的开槽螺旋叶片转子具有最佳的综合性能。
     三、管程单元组合转子传热及流动的数值模拟研究
     利用FLUENT软件对叶片外径为22mm、导程为200mm的螺旋叶片转子进行了数值模拟研究,获得了该种内置组合转子换热管管内流体的速度场和温度场分布。此外,采用数值模拟方法对外径均为22mm,导程分别为100mm、150mm和200mm的螺旋叶片组合转子进行了模拟研究,通过数值分析方法研究比较了转子导程对强化管努塞尔数和阻力系数的影响规律。数值模拟结果表明:在相同条件下,强化管的努塞尔数和阻力系数都会随着转子叶片导程的减小而增大。
     四、管程单元组合转子在线防垢除垢特性研究及结构创新
     管程单元组合转子防垢除垢实验结果表明:安装有单元组合转子的有机玻璃管与光管相比达到污垢动态平衡状态的周期更长,达到动态平衡状态后的污垢沉积程度为未安装转子有机玻璃管污垢沉积程度的50%。管程单元组合强化换热装置的在线除垢功能具体体现在:(1)破坏污垢生长的流速条件,延长污垢生长诱导期;(2)增强近壁区流体的剪切作用,加速已生成污垢的剥落;(3)减薄热边界层,增大近壁区的温度梯度,使得已生成污垢因热应力剥落;(4)增强管程中心流体对壁面污垢的冲击作用;(5)利用转子的物理磨蚀作用除垢。
     同时,基于湍流强化传热机理分析,以实验和数值模拟结果为依据,以改进阻垢除垢性能、增大边界层扰流、减薄边界层、提高综合换热效果为目标,再次对转子的结构进行改进,创新性的提出了边界层减薄型转子、带导热除垢纤毛螺旋两叶片转子两种新结构。
     五、管程单元组合转子工业应用试验
     蚌埠电厂以及茂名石化动力厂的凝汽器经过洁能芯节能技术改造后,凝汽器内换热效果明显提升;真空提高了0.28~2.01KPa,在真空度有一定上升的基础上,循环水的使用量也有所减少。依托茂名石化动力厂及蚌埠电厂凝汽器改造项目,充分展示本装置应用前景广阔,为后续优化装置结构和工业应用推广打下坚实的基础。
Shell-and-tube heat exchangers are key equipments of manyindustrial processes and are widely used in metallurgy, petrochemical,energy and nuclear power, aviation, etc. Heat transfer enhancement is thekey technology of improving heat transfer efficiency, minimizing thevolume and reducting the cost of the heat exchangers. Based on National"Twelfth Five-Year" Plan for Science&Technology Support and aimingat developing the tube side assembled rotors (TSAR) with better heattransfer enhancement performance and lower resistance, the papersystematically studied heat transfer enhancement performance of TSARthrough theoretical analysis, numerical simulation and experiment;meanwhile, TSAR were applied in condensers of guodian, sinopec powerplant and achieved good application effect. The main research studieswere listed as follows:
     1. Analysis of heat transfer mechanism
     In laminar flow and low Reynolds number turbulent flow, there wastemperature gradient existing in the entire cross section of the tube andthe temperature distributes as a parabola. Therefore, in laminar flow andlow turbulent Reynolds number, heat transfer enhancement should focuson the strengthening of the fluid radial mixing in the whole cross sectionof the tube. That was to say, by changing the distribution of velocity fieldin the tube, velocity component (horizontal speed) in the direction of heattransfer was enhanced and the field synergy degree increased greatly, which made the heat transfer enhanced. The horizontal velocitycomponent in the cross section of the tube made many kinds of vortexessuch as longitudinal vortex and transverse vortex. In turbulent flow withlow Reynolds numbers, compared with transverse vortex, longitudinalvortex could get better heat transfer results and lower resistance increase.TSAR made many beneficial longitudinal vortexes with some transversevortexes.
     With the increase of Reynolds number, the fluid changed fromlaminar flow to turbulence. In case of turbulence, thinning the flowboundary layer and the thermal boundary layer, whose thicknesses areproportional to each other, was relevant. TSAR could enhance the heattransfer effect in three points summarized as follows:(1) the blade ofrotor disturbed the boundary layer of the fluid;(2) the centrifugal fluidstruck the boundary layer of the fluid;(3) the tangential fluid cut theboundary layer of the fluid.
     2. Experimental study on heat transfer and friction characteristics
     Based on the mechanism that heat transfer enhancement wasachieved by destroying the viscous sublayer of fluid boundary layer inturbulent region and the structure styles of helical three-blade rotors andblade-discreted rotors, three new structure styles of rotors were presented:the helical blade rotor, the helical ladder rotor, and the helical blade rotorwith ladders. An experimental apparatus to test heat transfer enhancementand pressure drop characteristics of TSAR was designed and built. Fivedifferent structural forms of TSAR presented above were experimentallystudied. The experiment results showed that in the range of experimentalReynolds number, different structures forms and structure parameters ofTSAR could increase the heat transfer rate, the tube convective heattransfer coefficient and heat transfer Nusselt number, and also inevitablyincreased the pressure drop; the increase of the rotor diameter could makea significant contribution to heat transfer enhancement, but the frictionfactor correspondingly increased due to the rotation of the rotors; Thehelical blade rotor with ladders had the best heat transfer performanceduring the different structure forms of the rotors. The increase of the rotor diameter had little influence on friction factor, but enhanced heat transferof the tube side fluid; Comprehensive performance evaluation indicatedthat the helical blade rotor with ladders of22-150had the bestperformance during the experimental rotors.
     3. Numerical study on heat transfer and friction characteristics
     The helical blade rotor whose diameter was22mm and lead was200mm was numerically studied by the software of FLUENT. Thedistribution of the fluid velocity field and temperature field in the tubeinserted with helical blade rotors was gained. In addition, the helicalblade rotors whose outer diameters were22mm and leads were100mm,150mm and200mm respectively were also numerically studied. And theeffect of rotor lead on Nusselt number and friction factor was analysed bynumerical analysis method. The simulation results revealed that theNusselt number and friction factor of the enhanced tube increasedfollowing with the decrease of rotor lead under the same conditions.
     4. Fouling experiment
     The anti-scale and de-scale experiments results of TSAR showedthat compared with the ordinary organic glass tube, the cycle that theorganic glass tube with rotors reached the state of fouling dynamicbalance was longer, but the dirt deposit degree is only half of that in theordinary organic glass tube after reaching the state of dynamic balance.The online cleaning performance of TSAR was listed as follows:(1) Itcould destroy the velocity conditions of fouling deposition and extend theinduction period of fouling deposition.(2) It could enhance the shearingeffect of the near wall fluid and speed up the peeling of the generatedfouling.(3) It could make thermal boundary layer thinner, increase thetemperature gradient near the wall, and make the generated dirt peelbecause of the thermal stress.(4) It could enhance the impact of the fluidin the center of the tube on the fouling of the wall.(5) It could removefouling by physical abrasion function of the rotor.
     Meanwhile, based on the mechanism analysis of turbulence heattransfer enhancement, according to the results of experiments andnumerical simulation, the structures of the rotors were changed with aiming at improving the performance of anti-scale and de-scale,enhancing the turbulence of boundary layer, thinning boundary layer andimproving overall heat transfer effect. Two new structures were novellypresented: the boundary layer shear rotor and helical two-blade rotor withthermal conducting and de-scaling cilia.
     5. Industrial applications and structure innovation
     After reformed by energy-saving technology of TSAR, the heattransfer performance of condensers in Bengbu power plant and maomingpetrochemical plant were greatly improved; the vacuum was improved by0.28~2.01KPa, and the usage of circulating water was also reduced. Thereforming projects of the condensors in maoming petrochemical plant andbengbu power plant fully displayed the wide application of TSAR, whichlaid a good foundation for the subsequent optimization and industrialapplication.
引文
[1]中华人民共和国国务院新闻办公室.《中国的能源状况与政策》白皮书.2007.
    [2]李雪丽,方淑芬.节能减排与我国火电企业可持续发展[J].硅谷.2009,9:192
    [3]我国两年内节能减排和生态工程将投入2100亿元[J].中国矿山工程.2009,2:52-52
    [4] Taborek. J. et al. Fouling-The Major Unresolved Problem in Heat Transfer[J]. ChemicalEngineering Progress,1972,68(7):69-78
    [5] M. Abu-Zaid, A Fouling Evaluation System for Industrial Heat Transfer EquipmentSubject to Fouling[J]. Int. Comm. Heat Mass Transfer,2000,27(6):815-824
    [6]李锋平;刘金祥;陈鹏;徐稳龙;陈晓春,肋片几何参数对肋片管表冷器性能影响的数值模拟[J],建筑科学,2010,26(8):88-91
    [7] Z.Y. GUO et al. A novel concept for convective heat transfer enhancement[J]. InternationalJournal of Heat and Mass Transfer,1998,41(14):2221-2225
    [8]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122
    [9] Wen-Quan Tao, Zeng-Yuan Guo, Bu-Xuan Wang. Field synergy principle for enhancingconvective heat transfer-its extension and numerical verifications[J]. International Journalof Heat and Mass Transfer,2002,45:3849-3856
    [10] W.Q. Tao et al. A unified analysis on enhancing single phase convective heat transfer withfield synergy principle[J]. International Journal of Heat and Mass Transfer,2002,45:4871-4879
    [11] Z.Y. Guo, W.Q. Tao, R.K. Shah. The field synergy (coordination) principle and itsapplications in enhancing single phase convective heat transfer[J]. International Journal ofHeat and Mass Transfer,2005,48:1797-1807
    [12] Li-Ting Tian, Ya-Ling He, Yong-Gang Lei, Wen-Quan Tao. Numerical study of fluid flowand heat transfer in a flat-plate channel with longitudinal vortex generators by applyingfield synergy principle analysis[J]. International Communications in Heat and MassTransfer,2009,36:111-120
    [13]孟继安等.管内对流换热的场协同分析及换热强化[J].工程热物理学报,2003,24(4):652-654
    [14] Qun Chen, JianxunRen, Ji-anMeng. Field synergy equation for turbulent heat transfer andits application[J]. International Journal of Heat and Mass Transfer,2007,50:5334-5339
    [15]孟继安,陈泽敬,李志信等.交叉缩放椭圆管换热与流阻实验研究及分析[J].工程热物理学报.2004,25(5):813-815)
    [16] Chao-Kuang Chen, Tzu-Shuang Yen, Yue-Tzu Yang. Lattice Boltzmann method simulationof backward-facing step on convective heat transfer with field synergy principle[J].International Journal of Heat and Mass Transfer,2006,49:1195-1204
    [17]孔松涛,董其伍,刘敏珊.热量运输机理及在管内螺带强化传热的应用[J].机械工程学报,2007,43(4):83-87
    [18] JiangfengGuo, MingtianXu, Lin Cheng. The application of field synergy number inshell-and-tube heat exchanger optimization design Original Research [J]. Applied Energy.2009,86:2079–2087
    [19] A.R.A. Khaled, K. Vafai. Heat transfer enhancement through control of thermal dispersioneffects[J]. International Journal of Heat and Mass Transfer,2005,48:2172-2185
    [20] Ji-An Meng, Xin-Gang Liang, Zhi-Xin Li. Field synergy optimization and enhanced heattransfer by multi-longitudinal vortexes flow in tube[J]. International Journal of Heat andMass Transfer,2005,48:3331-3337
    [21] J.M. Wu, W.Q. Tao. Investigation on laminar convection heat transfer in fin-and-tube heatexchanger in aligned arrangement with longitudinal vortex generator from the viewpoint offield synergy principle[J]. Applied Thermal Engineering,2007,27:2609-2617
    [22] Arthur E. Bergles. ExHFT for fourth generation heat transfer technology[J]. ExperimentalThermal and Fluid Science,2002,26:335-344
    [23] CENGIZ YILDIZ, YASAR BICER, DURSUN PEHLIVAN. Heat transfer and pressuredrop in a heat exchanger with a helical pipe containing inside springs[J]. EnergyConversion and Management,1997,38(6):619-624
    [24]肖宏亮,朱冬生,谭盈科.管内在线防垢及强化传热的实验研究[J].热能动力工程,1997,12(4):275-278
    [25]张锁龙,张琳.内置螺旋弹簧换热管的换热研究[J].石油机械,2002,30(7):5-8
    [26] Paisarn Naphon. Effect of coil-wire insert on heat transfer enhancement and pressure dropof the horizontal concentric tubes[J]. International Communications in Heat and MassTransfer,2006,33:753-763
    [27] Alberto García. Enhancement of laminar and transitional flow heat transfer in tubes bymeans of wire coil inserts[J]. International Journal of Heat and Mass Transfer,2007,50:3176-3189
    [28] A. García et al. Flow pattern assessment in tubes with wire coil inserts in laminar andtransition regimes[J]. International Journal of Heat and Fluid Flow,2007,28:516-525
    [29] Alberto García, Pedro G. Vicente, Antonio Viedma. Experimental study of heat transferenhancement with wire coil inserts in laminar-transition-turbulent regimes at differentPrandtl numbers[J]. International Journal of Heat and Mass Transfer,2005,48:4640-4651
    [30] H. Pahlavanzadeh, M.R. Jafari Nasr, S.H. Mozaffari. Experimental study of thermo-hydraulic and fouling performance of enhanced heat exchangers[J]. InternationalCommunications in Heat and Mass Transfer,2007,34:907-916
    [31] M.A. Akhavan-Behabadi, S.G. Mohseni, H. Najafi, H. Ramazanzadeh. Heat transfer andpressure drop characteristics of forced convective evaporation in horizontal tubes withcoiled wire inserts[J]. International Communications in Heat and Mass Transfer2009,361089-1095
    [32] D. Mu oz-Esparza, E. Sanmiguel-Rojas. Numerical simulations of the laminar flow inpipes with wire coil inserts[J]. Computers&Fluids,2011,44:169-177
    [33] Pongjet Promvonge. Thermal performance in circular tube fitted with coiled squarewires[J]. Energy Conversion and Management,2008,49:980-987
    [34] Pongjet Promvonge. Thermal enhancement in a round tube with snail entry andcoiled-wire inserts[J]. International Communications in Heat and Mass Transfer,2008,35:623-629
    [35] Paisarn Naphon, Parkpoom Sriromruln. Single-phase heat transfer and pressure drop in themicro-fin tubes with coiled wire insert[J]. International Communications in Heat and MassTransfer,2006,33:176-183
    [36] Pongjet Promvonge. Thermal augmentation in circular tube with twisted tape and wire coilturbulators[J]. Energy Conversion and Management,2008,49:2949-2955
    [37] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and friction factorcharacteristics of laminar flow through a circular tube fitted with helical screw-tapeinserts[J]. Applied Thermal Engineering,2006,26:1990-1997
    [38] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and friction factorcharacteristics of turbulent flow through a circular tube fitted with helical screw-tapeinserts[J]. Chemical Engineering and Processing,2007,46:1292-1298
    [39] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and friction factorcharacteristics of laminar flow through a circular tube fitted with regularly spaced helicalscrew-tape inserts[J]. Experimental Thermal and Fluid Science,2007,31:301-308
    [40] P. Sivashanmugam, S. Suresh. Experimental studies on heat transfer and friction factorcharacteristics of turbulent flow through a circular tube fitted with regularly spaced helicalscrew-tape inserts[J]. Applied Thermal Engineering,2007,27:1311-1319
    [41]林榕端等.换热管内微型液轮机研究[J].机械工程学报,2001,37(7):41-43
    [42] Smith Eiamsa-ard, PongjetPromvonge. Heat transfer characteristics in a tube fitted withhelical screw-tape with-without core-rod inserts[J]. International Communications in Heatand Mass Transfer,2007,34:176-185
    [43] Jiangfeng Guo, Mingtian Xu, Lin Cheng. Numerical investigations of circular tube fittedwith helical screw-tape inserts from the viewpoint of field synergy principle[J]. ChemicalEngineering and Processing,2010,49:410-417
    [44] E.Z. Ibrahim. Augmentation of laminar flow and heat transfer in flat tubes by meansof helical screw-tape inserts[J]. Energy Conversion and Management,2011,52:250-257
    [45]洪蒙纳等.缩放管内间隔插入旋流片的复合强化传热[J].华南理工大学学报(自然科学版),2008,36(3):16-20
    [46]姜建勋等.螺旋肋片管在75t/hCFB低温过热器管的应用[J].电力职业技术学刊,2010(4):8-10
    [47]洪蒙纳等.缩放管内带衰减性自旋流的局部性能[J].化工学报,2009,60(8):1944-1949
    [48]高翔等.螺旋肋片形成非衰减性旋流的强化传热性能[J].化工学报,2003,54(9):1205-1208
    [49] Betül AyhanSarac, Tulin Bali. An experimental study on heat transfer and pressure dropcharacteristics of decaying swirl flow through a circular pipe with a vortex generator[J].Experimental Thermal and Fluid Science,2007,32:158-165
    [50] H. Gül, D. Evin. Heat transfer enhancement in circular tubes using helical swirl generatorinsert at the entrance[J]. International Journal of Thermal Science,2007,46:1297-1303
    [51] Pongjet Promvonge, Teerapat Chompookham, Sutapat Kwankaomeng, ChinarukThianpong. Enhanced heat transfer in a triangular ribbed channel with longitudinalvortex generators[J]. Energy Conversion and Management,2010,51:1242-1249
    [52]江楠,吴秋华,杨传健.壳程螺旋扭片强化传热试验研究[J].压力容器.2010,4:1-4
    [53] P. K. Sarm,T. Suramanyam, P. S. Kishore, etal. A new method to predict convective heattransfer in a tube with twisted tape inserts for turbulent flow[J]. International Journal ofThermal Sciences,2002,41:955-960
    [54] Chinaruk Thiapong, Petpices Eiamsa-ard, Khwanchit Wongcharee, etal. Compounnd heattransfer enhancement of a dimpled tube with a twisted tape swirl generator[j].InternationalCommunications in Heat and Mass Transfer,2009,36:698-704
    [55] Zimparov Ventisislav. Enhancement of heat transfer by a combination of a single-startspirally corrugated tubes with a twisted tape[J]. Experimental Thermal and Fluid Science,2002,25:535-546
    [56] H. Usui, Y. Sano, K. Iwashita, et al. Enhancement ofheat transfer by a combination aninternally grooved rough tube ang a twisted tape [J]. International Chemical Engineering,1986,26(1):97-104
    [57] S.W. Chang. Heat transfer of orthogonal-mode reciprocating tubefitted with twisted-tape[J]. Journal of Experimental Heat Transfer,2000,13:61-86
    [58] S.W. Chang. Heat transfer of parallel-mode reciprocating tube flow with twisted-tapeinsert for piston cooling application [J]. ASME Journal of Gas Turbine and Power,2001,123:146-156
    [59] A. Kumar, B.N. Prasad, S.N. lal. Investigation of twisted tape inserted solar waterheaters-heat transfer, friction factor ang thermal performance results [J]. RenewableEnergy,2000,19:379-389
    [60] S.K. Agarwal, R.M. Raja. Heat Transfer augmentation for the flow of a viscous liquid incircular tubes using twisted tape inserts [J]. Int. J. Heat Mass Transfer,1996,39(17):3547-3557
    [61] R. Sch neberg, H. Ernst. Dynamic behaviour of a water-cooled boiling channel withtwisted tapes[J]. Nuclear Engineering and Design,1970,12(2):249-258
    [62]钱红卫等,换热器自转纽带自动阻垢技术的实验研究[J].石油机械,2005,07
    [63]刘雯,骆政园,白博峰,管内含螺旋纽带诱导的螺旋涡特性[J].化工学报,2011,62(11):3115-3122
    [64]张琳等.自转清洗扭带管对流传热强化机理的实验研究[J].热能动力工程,2003,18(6):608-611
    [65]张琳等.自转螺旋扭带管内湍流特性研究[J].高校化学工程学报,2005,19(1):17-21
    [66] Paisarn Naphon. Heat transfer and pressure drop in the horizontal double pipes with andwithout twisted tape insert[J]. International Communications in Heat and Mass Transfer,2006,33:166-175
    [67]俞秀民,俞天兰,彭德其,蒋少青,罗健康,高效传热强化斜齿扭带及其低流速自动清洗技术[J].化工学报,2005,56(4):744-747
    [68]郭剑,杨昆,刘伟,圆管插入十字形扭带强化传热数值模拟[J].工程热物理学报,2009,30(7):1216-1218
    [69] Masoud Rahimia, Sayed Reza Shabaniana, Ammar Abdulaziz Alsairafi. Experimental andCFD studies on heat transfer and friction factor characteristics of a tube equipped withmodified twisted tape inserts[J]. Chemical Engineering and Processing,2009,48:762-770
    [70]崔永章,田茂诚.内置折边扭带管内高湿气体对流凝结换热与流动特性[J].化工学报2010,61(12):3092-3099
    [71] K. Wongcharee, S. Eiamsa-ard Friction and heat transfer characteristics of laminar swirlflow through the round tubes inserted with alternate clockwise and counter-clockwisetwisted-tapes[J].International communicational in heat and mass transfer,38(2011)348--352
    [72] S. Eiamsa-ard, K. Wongcharee, P. Eiamsa-ard, C. Heat transfer enhancement by twistedtapes with alternate-axes and triangular,rectangular and trapezoidal wings[J]. ChemicalEngineering and Processing50(2011)211–219
    [73] Smith Eiamsa-ard, ChinarukThianpong, PongjetPromvonge. Experimental investigation ofheat transfer and flow friction in a circular tube fitted with regularly spaced twisted tapeelements[J]. International Communications in Heat and Mass Transfer,2006,33:1225-1233
    [74] S.K. Saha, A. Dutta, S.K. Dhal. Friction and heat transfer characteristics of laminar swirlflow through a circular tube fitted with regularly spaced twisted-tape elements[J].International Journal of Heat and Mass Transfer,2001,44:4211-4223
    [75] Smith Eiamsa-ard et al. Convective heat transfer in a circular tube with short-lengthtwisted tape insert[J]. International Communications in Heat and Mass Transfer,2009,36:365-371
    [76] VentsislavZimparov. Enhancement of heat transfer by a combination of a single-startspirally corrugated tubes with a twisted tape[J]. Experimental Thermal and Fluid Science,2002,25:535-546
    [77] VentsislavZimparov. Enhancement of heat transfer by a combination of three-start spirallycorrugated tubes with a twisted tape[J]. International Journal of Heat and Mass Transfer,2001,44:551-574
    [78] Q. Liao, M.D. Xin. Augmentation of convective heat transfer inside tubes withthree-dimensional internal extended surfaces and twisted-tape inserts[J]. ChemicalEngineering Journal,2000,78:95-105
    [79] P. Promvonge, S. Eiamsa-ard. Heat transfer behaviors in a tube with combined conical-ringand twisted-tape insert[J]. International Communications in Heat and Mass Transfer,2007,34:849-859
    [80Hong Mengna et al. Compound Heat Transfer Enhancement of a Converging-DivergingTube with Evenly Spaced Twisted-tapes[J]. Chinese Journal of Chemical Engineering,2007,15(6):814-820
    [81] P. Bharadwaj, A.D. Khondge, A.W. Date. Heat transfer and pressure drop in a spirallygrooved tube with twisted tape insert[J]. International Journal of Heat and Mass Transfer,2009,52:1938-1944
    [82]杨卫民,丁玉梅,耿立波,黄伟.转子式自清洁强化传热装置[P].中国专利,ZL200520127121.9
    [83]王崧.纤毛状肋和插入物的传热强化研究[D].北京:清华大学工程力学系,1999.
    [84]张琳.内置旋转扭带强化传热机理及清洗动力学研究[D].南京:南京理工大学动力工程学院,2006
    [85] A.P. Watkinson. Fouling of water in tubes[J]. Heat Transfer Engineering,1990,11(3):57-65
    [86] Li W,Webb R L.Fouling in enhanced tubes using cooling tower water part I:long-termfouling data[J]. International Journal of Heat and Mass Transfer,2000,43:3567-3578
    [87] W. Li, R.L. Webb. Fouling in enhanced tubes using cooling tower water part II:long-termfouling data[J]. International Journal of Heat and Mass Transfer,2000,43:3579-3588
    [88] K. Bakirci, K. Bilen. Visualization of heat transfer for impinging swirl flow [J].Experimental Thermal and Fluid Science,2007,32:182-191
    [89]夏翔鸣,赵力伟,徐宏,杨胜,基于场协同理论的强化传热综合性能评价因子[J].热能动力工程,2011,26(2):197-201
    [90] R.L. Web. Performance evaluation criteria for use of enhanced heat transfer surfaces inheat exchanger design[J]. International Journal of Heat and Mass Transfer,1981,24:715-726
    [91]彭雄兵,彦启森,冷水表面式冷却器的熵增分析与换热器强化传热评价准则研究[J].暖通空调,1997,27(4):18-21
    [92]高晓东,冯霄管.管壳式换热器壳程强化传热评价方法分析[J].华北电力大学学报(自然科学版),2007,34(2):95-97
    [93]卿德藩,邹家柱.螺旋扁管冷凝器强化传热评价与应用[J].流体机械,2007,35(1):79-81
    [94] J.F. Fan et al. A performance evaluation plot of enhanced heat transfer techniques orientedfor energy-saving[J]. International Journal of Heat and Mass Transfer,2009,52:33-44
    [95]梁龙,张云峰等.磁场对热管传热性能的影响机理[J].动力工程学报,2010,30(11):866-869
    [96] F. Yuan, Q. Chen, Two energy conservation principles in convective heat transferoptimization[J]. Energy,2011,36:5476-5485
    [97]陈群,吴晶,王沫然,潘宁,过增元.换热器组传热性能的优化原理比较[J].科学通报,2011,56(1):79-84
    [98] N. Sahiti, F. Durst, A. Dewan. Strategy for selection of elements for heat transferenhancement[J]. International Journal of Heat and Mass Transfer,2006,49:3392-3400
    [99] W. Liu, Z.C. Liu, H. Jia, A.W. Fan, A. Nakayama, Entransy expression of the second lawof thermodynamics and its application to optimization in heat transfer process[J].International Journal of Heat and Mass Transfer,2011,54:3049-3059
    [100]董源,过增元.热波传递过程中的熵产分析[J].工程热物理学报,2011,32(11):1889-1892
    [101] M. Suzuki, Irreversibility and entropy production in transport phenomena I, Physica A390(2011)1904-1916
    [102] F. Balkan. Application of EoEP principle with variable heat transfer coefficient inminimizing entropy production in heat exchangers[J]. Energy Conversion andManagement,2005,46:2134-2144
    [103] N. EPstein. Thinking about heat transfer fouling:15×5matrix [J]. Heat TransferEngineering,1983,4(1):43-56
    [104] E.F.C. Somerseales,J.G. Knudsen. Fouling of Heat transfer Proeeedings of A conference
    [C]. NewYork: HemisPhere Publishing Corporation,1981
    [105]王新祥.换热设备结垢机理的研究进展[J].现代化工,2002,22(4):22-25
    [106]徐志明等.圆管内CaSO4析晶污垢模型与数值模拟[J].化学工程,2009,37(7):13-16.
    [107]杨善让等.冷却水主要污垢特性参数的动态模拟检测与推算[J].工程热物理学报,2010,31(9):1585-1589
    [108]徐志明等.板式换热器冷却水污垢热阻预测的偏最小二乘回归法[J].化工学报,2011,62(6):1531-1536
    [109]李冠球等.基于冯-卡门类比建立螺纹管内颗粒污垢模型[J].浙江大学学报,2010,44(3):494-600
    [110]张仲彬.换热表面污垢特性的研究[D].华北电力大学博士论文,2009
    [111]徐志明等.交叉缩放椭圆管内污垢的数值模拟[J].东北电力大学学报,2011,31(2):7-13
    [112]于丹等.螺旋槽管污垢特性及其影响因素的实验研究[J].中国科学:技术科学,2011,41(6):821-825
    [113]于大禹等.基于模拟循环冷却装置的微生物污垢形成的影响因素[J].化工学报,2011,62(12):3503-3510
    [114]刘义达等.表面粗糙度对析晶污垢附着的影响[J].工程热物理学报,2010,31(8):1355-1358
    [115]张吉李等.铜管换热器内颗粒状污垢生长特性试验分析[J].土木建筑与环境工程,2010,32(5):60-64
    [116]刘震等.外螺纹槽管污垢特性的实验研究[J].工程热物理学报,2011,32(1):93-96
    [117]赵亮等.温度对换热器析晶污垢形成的影响[J].化工学报,2009,60(8):1938-1942
    [118] Q. Zhao et al. Effect of surface free energy on the adhesion of biofouling and crystallinefouling[J]. Chemical Engineering Science,2005,60:4858-4865
    [119] F. Albert, W. Augustin, S. Scholl. Roughness and constriction effects on heat transfer incrystallization fouling[J]. Chemical Engineering Science,2011,66:499-509
    [120] D.Q. Kern, R.E. Seaton. Surface fouling how to limit[J]. Br.Chem Eng,1959,55(6):71-73
    [121] S.G. Yiantisos, A.J. Karabelas. Detachment of spherical micro particles adhering on flatsuraces by hydrodynamic forces[J]. Journal of Colloid Interface Science,1995,176:74-85
    [122]王丹,董其伍,刘敏珊.管壳式换热器壳程特性数值模拟[J].南京工业大学学报:自然科学版.2009,31(5):52-57
    [123]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学工程力学系,2003
    [124]李锋祥.换热器管程组合转子强化传热研究与结构改进[D].北京:北京化工大学,2009
    [125]史里希廷H.边界层理论(下册).徐燕侯等译.北京:科学出版社,1991.
    [126]王红.经过表面处理的蒸发器传热及防除垢研究[D].天津:天津大学,2006
    [127]何国欣.插入扰流元件强化传热的实验研究[D].陕西:西安科技大学,2009
    [128]张震等.换热器强化传热技术——转子内插件的实验[J].化工进展,2011,30(S1):651-654
    [129]张震等.内置螺旋叶片转子换热管传热和阻力特性的实验研究[J].中国化工装备,2012(1):20-23
    [130]张震等.内置转子套管式换热器强化传热实验[J].化工学报,2012,63(3):728-732
    [131]郁岚主编,卫运钢,尚玉琴副主编.热工基础及流体力学[M].北京:中国电力出版社,2006,226-230
    [132]陶文铨,数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [133]朱红钧,林元华,谢龙汉,FLUENT12流体分析及工程仿真[M].北京:清华大学出版社,2011.
    [134]温正,石良辰,任毅如,FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.
    [135] V. Yakhot, S.A. Orszag. Renormalization group analysis of turbulence—I. Basic theory[J].J. Sci. Comput.1986,1:3-51
    [136]张震,杨卫民,韩崇刚,阎华,杨斯博,赵本华.内置转子换热管强化传热数值模拟[J].计算机辅助工程,2011,20(2):57-62
    [137]赵本华等.旋向自交叉式转子自清洁性能实验研究[J].中国化工装备,2011(5):18-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700