用户名: 密码: 验证码:
固体颗粒在复合钛基脂中的润滑行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润滑脂广泛应用于各种机械设备,对维护机械正常运转和延长机械设备使用寿命有十分重要的作用。随着我国工业化水平不断提高,对润滑脂高低温性能的要求也不断提高。由于纳米级固体微粒作为添加剂在润滑剂中表现出优良的摩擦学性能,因此研究纳米级固体微粒添加剂来改善润滑脂的减摩抗磨性能具有重要的理论意义和实用价值。
     本文研究了固体颗粒粒径变化对钛基脂为基础脂润滑的钢球摩擦副的高低温摩擦学性能的影响,试验在四球摩擦磨损试验机上进行。试验采用了3种纳米级固体颗粒添加剂,即选PTFE、碳酸钙和石墨微粒,测试37种配方的摩擦磨损性能。结果表明,颗粒粒径变化导致润滑机理的变化,并且颗粒添加量对摩擦学性能有明显影响:纳米级颗粒均有良好的减摩抗磨性能,亚微米和微米颗粒因为润滑机理不同而导致性能各异。亚微米PTFE和微米碳酸钙具有良好的高温摩擦学性能,微米石墨具有优良的中低温摩擦学性能。
     利用SEM、EDAX和XPS观察与分析磨斑表面形貌、化学成分及化合态,初步揭示了不同材料的纳米、亚微米、微米颗粒在钛基脂中的作用机理。纳米PTFE微粒通过生成金属氟化物、微粒修复作用和形成物理边界膜,亚微米PTFE通过滚动体作用。微米PTFE在摩擦副间发生变形而阻碍摩擦表面相对运动。碳酸钙的减摩抗磨机理是在表面形成化学反应转移修复膜,不同粒径同时发挥不同的协同作用,因而保护了固体表面,提高了润滑脂的耐磨性。微米石墨通过形成沉积层并发生理解作用,降低摩擦磨损;纳米和亚微米级石墨纳微粒失去了层片滑移的减摩机理,但是纳米石墨依然起到修复作用和形成物理边界膜作用,而亚微米石墨则无法起到减摩抗磨作用。
Grease is widely used in all kinds of machinery, it plays a very important role in extending the service life of machinery. High and low temperature performance of the grease is required with the development of industrialization. Nano-sized solid particles as additives shows excellent tribological performance in lubrication, therefore researching nano-sized solid particles as additive to improve the wear performance of friction has important theoretical and practical meaning.
     In this paper, particle sizes are considered as the factor which influence tribological performance, the experiments were carried out on Four ball friction abrasion testing machine .Three kinds of solid particle as additive were studied, they are PTFE, the calcium carbonate and the graphite powder of different sides, 37 formulas were tested. The result indicated that different sizes has different lubricate mechanism, and the content of additive influence the tribological performance obviously: The nano-sized particles all has excellent anti-friction property and abrasion resistance, the submicron-sized and micron-sized particles performance differently because their lubricate mechanisms are different; the following formulas has well anti-rubs the anti-friction performance. Submicron-sized PTFE and micron-sized calcium carbonate have good tribological performance at high temperature, micron-sized graphite has excellent tribological performance at low temperature.
     SEM, EDAX and XPS were also used to observe and the analysis the surface appearance, the chemical composition and the chemical combination condition, in order to reveal the mechanisms of different sized material in titanium grease. The nano-sized PTFE particle generat metal fluoride, forms physical boundary film and repair the injured surface. Submicron-sized PTFE works as rolling element, micron-sized PTFE hinders relative motion of the friction surfaces due to the distortion from pressing. Calcium carbonate is transferred into the friction surface and has chemical reaction, finally forms self-repair layer with Ti oxide , in addition the different sized particle plays different synergism as well, so the surface is being protected. Micron-sized graphite forms sediments and relative sliding occurs during different layers of this sediments, so friction and wear are reduced. Nano-sized and submicron-sized particles of graphite have lost lamellar slip friction mechanism, but the nano-sized graphite can still forms physical boundary film and repair, however submicron-sized graphite can’t reduce friction and wear.
引文
[1]王李波.冯大鹏.刘维民.几种纳米微粒作为锂基脂添加剂对钢-钢摩擦副摩擦磨损性能的影响研究[J].摩擦学学报, 2005(2):107-111.
    [2]Anoop Kumar. E. Sayanna. KP Naithani. NLGI Spokesman, 1994,58(1):25.
    [3]康健赵.玉贞.高温润滑脂的发展[J].合成润滑材料, 2005,32(2):25-30.
    [4]温诗铸.纳米摩擦学[M].清华大学出版社, 1998.
    [5]Nilsson Jerker. Tokarz Marek. Improving the Performance of Fillers with Nano-particle: New Applied Technology Conference, 2004[C].
    [6]雍岐龙.程莲萍.孙坤.纳米材料与纳米技术的研究方向及应用前景[J].云南冶金, 2001,30(5):34-38.
    [7]方云.杨澄宇.陈明清.纳米技术与纳米材料[J].日用化学工业, 2003,33(1):55-59.
    [8]李素.润复合钛基脂的诞生、性能及应用[J].润滑油, 2005,20(6):16-18.
    [9]黄麒编.选择润滑脂及防卡死添加剂的实践经验[J].设备管理与维修, 2000(9):40-42.
    [10]波纳尔CJ.现代润滑脂[M].刘明森,译.北京:石油工业出版社, 1982.
    [11]温诗铸.纳米摩擦学研究进展[J].机械工程学报, 2007,43(10):1-8.
    [12]方建锋.柳学全.李红云.黄乃红.纳米材料在润滑领域中的应用[J].纳米科技与产业, 2003(113):63-66.
    [13]刘大军.龙军.孙洪伟等.纳米材料在轴承润滑脂中的应用[J].轴承, 2005(6):35-38.
    [14]王德国.冯大鹏.几种金属氧化物纳米粒子作润滑脂添加剂的试验研究[J].润滑与密封, 2005,2(168):65-66.
    [15]王德国.冯大鹏.几种金属纳米粒子作润滑脂添加剂的试验研究[J].机械工程材料, 2005,29(4):58-59.
    [16]王李波.表面未修饰及修饰纳米SiO2对锂基脂摩擦学性能的影响[J].润滑与密封, 2006(2):46-48.
    [17]孙玉秋.郭小川. LaF3微粒在润滑脂中的摩擦学及自修复性能研究[J].内蒙古大学学报, 2005,36(4):437-440.
    [18]孙玉秋.郭小川.几种纳米材料在润滑脂中的摩擦学行为研究[J].重庆石油学校学报, 2004,6(4):38-40.
    [19]Dumdum J M. Aldr Of H. E. Lubricant Frade Cerium Fluoride-a New Solid Lubricant Additive for Grease,Paste,and Suspensions[J]. NLGIS Podesman, 1984,48:111-116.
    [20]Risdon T J. Sargent D. J. ComParison of Commercially Available Grease With And without Molybdenum Disulfide[J]. NLGI Spokesman, 1971,24(10):8-12.
    [21]Kahlman. Lars. Hutchings. Ian. M. Tribology[J]. Transactions, 1999,42(4):842-850.
    [22]King J. P. Asmerom Y. Solid Lubricants for Improved Wear Resistance[M]. Corp Pennwalt,译. King of Prussia: PA. Central Research and Development Dept, 1982.
    [23]Ives L. K. Peterson. M. Harris J. S. Investigation of the Lubrication Mechanisms of the Complex Metal Sulfide, SbSbS4 (Foreign Technology Div Wright-Patterson AFB Ohio)[R].1969.
    [24]Stefanov Milen. Enyashin Andrey N. Heine. Gotthard.Nanolubrication: How do MoS2-based nanostructures lubricate?[J]. Journal of Physical Chemistry, 2008,46(112):17764-17767.
    [25]侯越峰.干路平.黄海栋等.含片状纳米石墨粒子润滑油的制备及其摩擦学行为[J].华东理工大学学报(自然科学版), 2005,31(6):743-747.
    [26]孙玉红.聚四氟乙烯的性能与应用[J].科技资讯, 2008,12:6.
    [27]石淼淼.固体润滑材料[G].北京:化学工业出版社, 2000.
    [28]Tanaka K. Kawakami S. Effect of various fillers on the friction and wear of polytetraflouroethylene-based composites[J]. wear, 1982,79:221-234.
    [29]顾卓明.顾彩香.王仁兵.含纳米碳酸钙粒子润滑油的摩擦学性能研究[J].材料科学与工程学报, 2005,23(2):269-272.
    [30]谭胜.陈学军.付洪瑞. PTFE润滑剂的研制[J].机械工程学院学报, 2005,17(2):10-12.
    [31]王训遒.蒋登高.赵文莲等.纳米CaCO_3改性丙烯酸涂料的研制[J].湖南科技大学学报, 2005,20(3):62-63.
    [32]Johnson R E Morrion W. H. Ceramic Powder Dispersion in Nonaqueous Systems[J]. Advances in Ceramics, 1987,21(2):323-326.
    [33]张建荣等.高碱石油磺酸钙的极压性能研究(一)[D]. 1997.
    [34]周强.徐瑞清.石墨材料的润滑性能及其开发应用[J].新型碳材料, 1997,12(3):11.
    [35]Ma G. G. Deveopment of a type of energy-saving antifriction additive and its usefulness[J]. Lubriction oil, 1994,4:42-44.
    [36]刘伟,刘小君,王伟,等.颗粒对液-固二相润滑摩擦和温度特性影响的试验研究[J].合肥工业大学学报(自然科学版), 2009,v.32;No.193(05):624-627.
    [37]W. J. Bartz. Solid lubricant additive-effect of concentration and other additives on antiwear performance[J]. wear, 1971,17:421-432.
    [38]邵鑫.毛绍兰.高金堂.聚合物基高温润滑涂层的研究现状[J].润滑与密封, 1998(5):2-7.
    [39]曲建俊陈继国.苯甲酸/硬脂酸钛基润滑脂摩擦磨损性能研究[J].摩擦学学报, 2008,28(4):372-376.
    [40]向军,胡松,孙路石,等.煤燃烧过程中碳、氧官能团演化行为[J].化工学报, 2006,57(9):2180-2184.
    [41]刘福.宋英.王福平.孙德智. Ti基体上形成微弧氧化膜组成和结构的研究[J].燕山大学学报, 2009,33(1):4-7.
    [42]陈芸琪.林彰达.吴迷尧.齐上雪.吴晓林.铁表面氧化的研究[J].物理学报, 1987,36(10):1372-1374.
    [43]周国民,党鸿辛.我国固体润滑材料的发展概况[J].固体润滑,1981(02):114-122.
    [44]陈锐.李平.陆玉峻.固体润滑材料-石墨的应用[J].碳素, 2000(4):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700