用户名: 密码: 验证码:
洋葱状富勒烯作为高温润滑油添加剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦磨损普遍存在于自然界中,摩擦消耗很大的能源和资源。据报道,世界的能源大约有1/3最终消耗在各种形式的摩擦上。全世界每年因为摩擦磨损造成的损失超过一千亿美元。特别纳米碳材料由于因为其尺度小,质量轻,在油中应具有较好的分散性和稳定性,作为润滑油添加剂已表现出优异的性能。其中,洋葱状富勒烯(Onion-like Fullerenes Nanoparticles—OFLs)由于其超强超韧性,独特的类石墨结构的六边形结构,因具有优异的自润滑性能。由于“纳米-洋葱”层间较弱的范德华力,使得这种“纳米-洋葱”易于分解,在摩擦副间形成一层石墨涂层类似微轴承代替破裂的油膜起润滑作用。这些为洋葱状富勒烯自润滑性能的应用展示了美好的前景。
     本实验拟通过使用催化热解法制备的洋葱状富勒烯(OFLs)作为润滑油添加剂,利用硬脂酸将其表面改性后经过超声处理分散到润滑油HVI400中,采用红外光谱(IR),电子透射电镜(TEM)等分析手段,详细考察其纳米粒子的结构和表面修饰情况:通过阶梯试验确定了最佳试验条件(最佳试验载荷和温度);通过润滑油的SRV摩擦磨损实验,研究了洋葱状富勒烯在高温状态下的摩擦性能并提出其相应的摩擦机理:利用扫描电子显微镜(SEM),观察研究了添加不同含量洋葱状富勒烯的表面磨斑形貌;利用表面轮廓仪对其磨损面积和磨损深度进行了表征分析。结果表明:
     (1)经过硬脂酸进行表面修饰后,可以显著改善洋葱状富勒烯在基础润滑油的分散性和稳定性。采用硫酸和硝酸混合酸对催化裂解法(CVD法)制备的洋葱状富勒烯(OFLs)进行纯化,然后运用硬脂酸对OFLs进行修饰,并利用透射电子显微镜、红外光谱表征了OFLs的表面结构。实验结果表明,通过混合酸处理能够使OFLs表面拥有较多的羟基和羧基官能团;OFLs能够被硬脂酸所包覆,而且修饰后的OFLs在润滑油中的分散性能得到提高。
     (2)表面改性洋葱状富勒烯能够显著降低HVI-400的抗磨性能。在低载荷情况下,添加表面改性处理洋葱状富勒烯的润滑油,摩擦性能优于未添加表面改性处理洋葱状富勒烯的润滑油,并且能够缩短跑合所需时间。在高载荷情况下,向润滑油中添加表面改性处理的洋葱状富勒烯不仅能够降低体系摩擦系数,而且能够延长润滑油的失效时间。经过表面氧化处理的洋葱状富勒烯和未经表面改性处理的洋葱状富勒烯不仅没有起到降低摩擦的作用,反而增大了摩擦系数。因此可以说明,要使洋葱状富勒烯在润滑油中起到减磨抗磨的作用,必须对其进行表面改性处理。
     (3)本实验确定了最佳的实验条件,考察了实验温度和载荷对摩擦性能的影响。温度的高低对润滑油的摩擦系数有很大的影响:在试验阶段,温度低,摩擦系数较大,随着温度的逐渐升高,摩擦系数逐渐变小。在润滑油的闪点附近能达到最小值。随后温度升高摩擦系数呈线性增大。载荷的高低对润滑油的摩擦系数也有很大的影响:在试验
     阶段温度一定时,载荷较低时,摩擦系数较大,随着载荷的逐渐增大摩擦系数逐渐减小,在350N左右能达到最小。经阶梯试验确定最佳试验温度为150℃,最佳试验载荷为350N,此温度载荷为最佳试验条件。
     (4)在最佳试验条件下,OLFS作为添加剂含量的变化对润滑油摩擦因素的影响也比较大;添加洋葱状富勒烯后的润滑油其润滑性能得到明显提高,摩擦系数随着洋葱状富勒烯添加量的增加而降低,当添加质量分数为0.01wt%洋葱状富勒烯时,基础油的摩擦系数为0.22,比未添加的基础油摩擦系数降低24%左右。随着洋葱状富勒烯添加量的增加,基础油摩擦系数随之降低,在基础油里面添加0.15wt%洋葱状富勒烯时摩擦系数最低,为0.19左右,未添加的基础油的摩擦系数降低了大约40%,其减摩擦性能比较高。由此可知,当洋葱状富勒烯的添加量为0.15%时,相应的润滑体系的摩擦系数最低,摩擦性能最佳。但添加洋葱状富勒烯超过为0.20%时,基础油摩擦系数呈上升趋势,表明加入过多的添加洋葱状富勒烯,会阻碍石墨润滑膜的形成,导致摩擦系数上升。因此,当洋葱状富勒烯的添加量为0.15%时,相应的润滑体系的摩擦系数最低,摩擦性能最佳。
     (5)在最佳实验条件下,洋葱富勒烯的添加含量对磨损程度的也产生一定的影响。添加洋葱状富勒烯后的润滑油其润滑性能得到明显提高,磨损程度随着洋葱状富勒烯添加量的增加而降低,其中当添加剂质量分数为0.15%时,磨损程度最低,同基础油润滑下相比分别降低40%和降低磨损面积42%左右,磨损深度75%左右,磨损宽度15%左右。
     (6)未添加洋葱状富勒烯的基础润滑油的钢片磨斑表面呈现明显的擦伤和粘着迹象:而经添加洋葱状富勒烯的基础润滑油的钢片磨斑表面较为平整光滑,粘着和擦伤显著减轻。其中,含量为0.15%时磨斑表面最为平整光滑,表明当洋葱状富勒烯的添加量为0.15%(质量分数)时,相应的润滑体系的减摩抗磨性能最佳。
     (7)经分析其润滑机理为在较高的温度载荷下,洋葱状富勒烯粒子能够填充到摩擦副表面中由于摩擦所致的凹陷中,起到微轴承的作用,从而表现出良好的承载和减摩抗磨的性能;随着温度和载荷进一步的提高,洋葱状富勒烯在摩擦金属材料的催化作用下在摩擦副表面反应生成石墨膜,通过石墨膜的自润滑作用从而降低摩擦副之间的磨损摩擦程度,并且所形成的石墨膜可以修复摩擦副表面由于摩擦磨损所产生的凹陷,延长失效时间从而达到减摩和抗磨的作用。
Friction and wear widely exist in nature. It consumes a lot of energysources and resource. It was said that 1/3 of world energy sources finallyconsume in various friction. All of the world friction wear loss exceed100 billion dollars per year. Specially nano carbon materials as lubricantadditive represent excellent properties because of its small scale, lightweight and good spread around and stability in oil. In this materials OFLstake on excellent self-lubricant properties because its high intensity andtoughness and unique hexagon structure which is similar to graphite.nano and onion materials can easily decompound because they have weakinterbedded force. It can form graphite coat which is resemble to microaxletree instead of cracking oil film in friction surface.So it acts aslubricant. Because of that application of nano OFLs self-lubricantproperties have good foreground.
     The fullerenes used as nano-additive in lubricating oil have beensynthesized with catalylitic decomposion method under heat energy. Thesurface of the nanoparticles were modified by using the stearic acid andthen were put into the base lubricant HVI 400 to spread around equablyby ultrasonic. The composition and microstructure of the nanoparticles,the lubricants friction testing and wear to investigate the Onion-like Fullerenes were characterized by the analysis methods of infrared RaySpectrum (IR) and Transmission Electron Microscope (TEM). Wearresistance of Onion-like Fullerenes under high temperature was studiedby the lubricant SRV Friction and Wear Testing and the relevant frictionmechanism was discussed. Utilize Scanning Electron Microscope (SEM)to observe and analyse the morphologies of the worn steel surfaces.Thesmallest friction coefficient was attributed to the thermal chemicalreaction among the OFLs, which led to the formation of a reaction filmwith good lubricity on the rubbing surface. The present method to preparethe organic liquid containing nano-carbon particles could be applied tothe mass production of lubricating oils doped with carbon nanoparticles.
     (1) After being purified with the mixture of sulfuric acid and nit ricacid , the Onion-like Fullerenes Nanoparticles-OFLs were modifiedwith stearic acid . The OFLs were characterized with the transmissionelect ron microscope ( TEM) and inf rared spect roscopy. The inf raredspect roscopy experiment s proved that the surfaces of OFLs could becoated by stearic acid. The dispersion of modified CNTs in base oil wasimproved significantly.
     (2) The modified OFLs can reduce the friction properties pf base oil.Under low load,the base oil with modified OFLs can much more reducethe friction coefficient than unmodified OFLs.and also can elong the dieout period .But the unmodified OFLs increase the the friction coefficient.So we must modify the OFLs to add in base oil ,and improvethe friction and wear behavior,
     (3) This experiment finds best experiment condition and study effect ofexperiment temperature and load on friction properties. We findtemperature have great effect on friction coefficient of oil. In experimentstage friction coefficient is big when temperature is low. And then frictioncoefficient decrease gradually with increase of temperature. It has leastvalue in round flash point of oil. Friction coefficient will take on linearityincreasing with increase of temperature. And load also has great effect onfriction coefficient of oil. In experiment stage friction coefficient is bigwhen load is low and temperature is fixed. And then friction coefficientdecrease gradually with increase of load. It has least value in 350N. Wefind 150℃and 350N are best experiment temperature and load.
     (4) In best experiment condition content of additive OFLs have greateffect on friction coefficient of oil. Lubricate properties of oil addingOFLs have great improve. Friction coefficient decreased with increase ofOFLs. The friction coefficient of oil is 0.22 when adding 0.01% OFLs. Itdecrease 24% than oil not adding OFLs. And then friction coefficientdecrease gradually with increase of content of OFLs. It has least value0.19 in adding 0.15% OFLs. It decrease 40% than oil not adding OFLsand its properties is best. So friction coefficient have minimum in adding0.15% OFLs and its friction properties is best. But friction coefficient gradually increase when OFLs exceed 0.20%. This indicate graphitelubricant film will be hold back. It leads to increase of friction coefficient.So friction coefficient have minimum in adding 0.15% OFLs and itsfriction properties is best.
     (5) In best experiment condition content of additive OFLs have greateffect on wear degree of oil. Lubricate properties of oil adding OFLs havegreat improve. Wear degree decreased with increase of OFLs. It has leastvalue in adding 0.15% OFLs. It decrease 40% wear degree and 42% weararea and 75% wear deepness and 15% wear width than oil not addingOFLs.
     (6) The base oil without OFLs,its morphologies of the worn steelsurfaces is scrape and adhesion,and the base oil with OFLs,itsmorphologies of the worn steel surfaces is much more smooth .Amongthe oil with modified OFLs nanoparticles with different contents,whenOFLs content is 0.15%,the morphologies of the worn steel surfaces ismost smooth.
     (7) The mechanism of Onion-like Fullerenes Nanoparticles (OFLs) isunder high temperature ,the nano particles can fill in the sunken whichlead by friction and wear.The Onion-like Fullerenes Nanoparticles canform a graphite flim ,the flim can protect and lubricate the wron steelsurface,and improve the friction and wear properties to enlong the wearperiod.
引文
[1]Jost H P.Journal of Japanese Society of Tribologists,1992,(37):2.
    [2]夏延秋,金寿日.纳米级金属粉对摩擦性能的影响[J].润滑与密封,1999,11(3):33-34
    [3]周静芳,张治军.纳米微粒的合成及摩擦学行为研究[J].摩擦学学报,2000,2(4):123-126
    [4]沈明武,雒建斌金刚石纳米颗粒对薄膜润滑性能的影响[J].机械工程学报,2001,4(1):14-18
    [5]史佩京,刘谦,于鹤龙.摩擦磨损自修复润滑油添加剂研究进展[J].石油炼制与化工,2005,23(36):35-38
    [6]陈爽,刘维民.油酸表面修饰PbO纳米微粒作为润滑油添加剂的摩擦学性能研究[J].摩擦学学报,2001,8(9):344-347
    [7]Qun J X,Liu W.Lubricants with ultradisperse diamond-graphite powder[J].Wear,1997,21:29-32
    [8]高永建,张治军.油酸修饰TiO_2纳米微粒水溶液润滑下GCr_(15)钢摩擦磨损性能研究[J].摩擦学学报,2000,6(2):22-25
    [9]乌学东,王大璞.表面修饰纳米粒子的摩擦学性能[J].上海交通大学学报,1999,3(2):224.227
    [10]Liu W,Chen S,The surface and tribological chemistry of chlorine-and sulfur containing[J].Wear,2000,238:120-124
    [11]王九,陈波水等.纳米粒子添加剂在润滑剂中的应用与开发[J].润滑与密封,2001,4(2):42-43
    [12]Hu Z S,Dong J X.Novel synthesis of phase-pure nano-particulate anatase and rutile TiO_2 using TiCI_4 aqueous solutions[J].Wear,1998,216:87-91
    [13]Hu Z S,Dong J X.Effects of yttrium and cerium additives in lubricants on corrosive wear of stainless steel 304 and Al alloy 6061 [J].Tribology international,1999,31(7)21-25
    [14]赵彦保,周静芳,张治军.PSITi02复合纳米微球的制备和结构表征[J].应用化学学报,2000,6(8):13-16
    [15]高善民,赵彦保,周静芳.纳米润滑剂的制备及特性研究摩擦学学报[J].摩擦学学报,2002,4(1):73-75
    [16]Gupta B K,Bharat B.Fullerene particles as an additive to liquid lubricants and grease for low friction and wear[J].Lubrication Engineering,1994,50 (7):524-528
    [17]Yuval G,Carlos D,Moshe H o Microtribology and direct force measurement of WS_2 nested fullerenes like nanostructures [J].Advance Material,1999,:11(2):934-937
    [18]Streeta K W,Marchettia M,Vander Wal R L.Evaluation of the tribological behavior of nano-onions in Krytox 143AB [J].Tribology Letters,2004,16(1):143-149
    [19]Tenne R,Margulis L,Genut M.Polyhedral and cylindrical structures of tungsten disulphide [J].Natru,1992,360 (1):444-445
    [20]Rapoport L,Yu Bi,Feldman Y.Hollow nanoparticles of WS2 as potential solid state lubricants [J],Nature,1997,387 (1):791-793
    [21]Rapoport L,Leshchinsky V,Lap S l.Tribological properties of WS2 nanoparticles undermixed lubrication[J].Wear,2003,255 (2):785-793
    [22]Ho W.Kroto,J.R.Heath,S.C,B rien,etal,N ature,1985,318,162
    [23]Kratschmer,L.D.L arab,K.Fo srirpoul,et al.Nature,1990,347,354
    [24]lijima S.,Helical microtubules of graphitic carbon[J].Nature,1991,354:56258.
    [25]朱妙琴,富勒烯,C60的结构、性质及应用,浙江教育学院学报,2005(6),52-56
    [26]Treacy, M.M.J.;Ebbesen,T.W.;Gibsom,J.M.Nature.1996,381,678.
    [27]ComwelI,C.F.;Wille,L.T.J.Chem.Phys.1998,109,763.
    [28]杨晓华,兑卫真.纳米碳管及其复合材料的机械性能[J].有色金属,2004,56(2):43-47.
    [29]吴音等.碳纳米管及相关材料的电学性能[J].电子元件与材料,1997,16(1):9-12
    [30]OcConnell,M.J.;Boul,P.;Ericson,L.M.;Huffman,C.;Wang,Y.H.;Haoz,E.;Kuper,C.;Tour,J.; Ausman,K.D.;Smalley, R.E.Chem.Phys.Lett.2001,342,265.
    [31]Bandyopadhyaya,R.;Nativ2Roth,E.;Regev,O.;Yerushalmi2Rozen,R.NanoLett.2002,2,25
    [32]Liu,J.;Rinzler,A.G.;Dai,H.J.;Hafner,J.H.;Bradley,R.K.;Boul,P.J.;Lu,A.;Lverson,T.;Shelimov,K.;Huffman,C.B.;Rodriguez2Macias,F.;Shon,Y.S.;Lee,T.R.;Colbert,D.T.;Smalley,R. E.Science1998,280,1253.
    [33]Chen,J.;Hamon,M.A.;Hu,H.;Chen,Y.S.;Rao,A.M.;Eklund,P.C.;Haddon,R.C.Science1998,282,95.
    [34]Hamon,M.A.;Chen,J.;Hu,H.;chen,Y.s.;ltkis,M.E.;Rao,A.M.;Eklund,P.C.;Haddon,R.c.Adv.Mater.1999,11,834.
    [35]Fu,K.F.;H uang,W.J.;Lin,Y.;Riddle,L.A.;CarrolI,D.L;Sun,Y.P.NanoLett.2001,1,439.
    [36]Hamwi,A.;Alevergnat,H.;Bonnamy,S.;Beguin,F.Carbon1997,35,723.
    [37]Mickeson,E.T.;Huffman,C.B.;Rinzler,A.G.;Smalley,R.E.;Hauge,R.H.;Margrave,J.L.chem.Phys.Lett.1998,296,188.
    [38]Mickeson,E.T.;chiang,l.W.;Zimmerman,J.L;B;ul,P.J.;Lozan,J.;Liu,J.;smalley,R.E.;Hau ge,R.H.;Margrave,J.L.J.Phys.Chem.B1999,103,4318.
    [39]Aihara,J.J.Phys.Chem.1994,98,9773.
    [40]Boul,P.J.;Liu,J.;Mickeson,E.T.;Huffman,C.B.;Ericson,L.M.;chiang,l.w.;Smith,K.A.;Colbe rt,D.T.;Hauge,R.H.;Margrave,J.L.;Smalley,R.E.Chem.Phys.Lett.1999,310,367.
    [41]Gupta B K,Bhushan R.Fullerene particles as an additive to liquid lubricants and greases for low friction and wear.[J].Lubr Enid,1994,50,524-528.
    [42]Gupta B K,Bhushan R. Fullerene particles as an additive to liquid lubricants and greases for low friction and wear.[J].Lubr Enid,1994,50,524-528.
    [43]豆立新,翼华栎,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩摞字仃为的实验研究[J].润滑与密封,2002,5:23-25.
    [44]赵木,宋怀河,连文涛.金属对炭黑转化为洋葱状中空结构纳米碳的影响[J].无机材料学报,2007,22(4):599—603
    [45]陈小华,碳纳米管的表面修饰及其在水中的分散性能研究.湖南大学学报(自然科学版),2004,31(5):18-21
    [46]周静芳.表面修饰Ag2S纳米微粒的合成及摩擦学行为研究[J].化学研究,1999,10(4):1-5
    [47]胡泽善.纳米硼酸铜的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000 20(4):292-295
    [48]胡泽善.十二烷基硼酸锌的合成及其抗磨减摩性能研究[J].摩擦学学报,2000, 20(2):150-152
    [49]夏延秋.纳米级铜粉改善润滑油抗磨性能的研究[cJ].润滑与密封,1998,6(5):43-47
    [50]Qiu S Q,Dong J X,Cheng G.X..Tribological properties of CeF3 nanoparticles as additives in lubricating oils[J].Wear,1999,230(1):35-38
    [51]何峰.新一代润滑剂一超细金属粉固体润滑剂[J].润滑与密封,1997,(5):65-66
    [52]张泽抚.含氮有机物修饰的纳米氟化铜的摩擦学性能研究[J].摩擦学学报,2000,20(3):27-29
    [53]Wang R B.Aplication of nanometer particles as lubricanting oil additive[J],journal of inner mongolia university for nationalities,2003,18(1):25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700