用户名: 密码: 验证码:
锁相环SET效应敏感性分析与设计加固
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工艺特征尺寸的不断缩小,单粒子效应日趋主导集成电路的辐射效应。作为高性能芯片的关键部件,锁相环(PLL)容易受到单粒子瞬变(Single-Event Transient,SET)效应的影响,进而对芯片的时钟产生巨大的影响。因此对辐射加固锁相环的研究得到了广泛的关注,成为当今抗辐射集成电路研究的热点问题之一。
     PLL电路结构较复杂,其SET作用机理和诸多因素有关,对其SET效应的量化分析一直是PLL单粒子瞬态效应研究的重点与难点。本文从量化分析的角度对PLL的SET效应进行了研究和电路加固,主要工作和创新点有以下几个方面:
     1、首次提出并实现了SET效应敏感性分析自动化平台,用以对电路的SET效应进行全面的量化分析。该平台支持多元组条件下的SET大规模电路模拟的自动化过程;直接基于SPICE电路网表,提取了待轰击节点的位置信息;在此基础上实现了Hspice电路模拟脚本的自动生成;提供了配置接口,可以灵活地根据需要产生进行模拟的Hspice脚本;提供了高效清晰的目录和数据管理机制,并解决了大规模模拟中的数据存储问题。
     2、提出了有效的SET效应量化分析指标,对一款基于180nm CMOS工艺的1GHz PLL电路进行了全面的量化分析。结果表明,采用TSPC触发器结构的分频器是整体上最敏感的模块,而电荷泵受到SET影响后对VCO(压控振荡器)的控制电压影响最大,同时VCO中的偏置电路也是敏感点。相较而言,采用了RS触发器结构的鉴频鉴相器对SET的抵抗能力较强。
     3、采用Verilog-A模型对敏感性分析过程进行了优化。实验结果表明,基于Verilog-A的混合模拟技术极大地加速了模拟过程,同时保持了电路对SET效应敏感性的区分度;而基于Verilog-A的电压耦合模型则创造性地将Verilog-A建模与查找表(LUT)技术结合到一起,成功地将LUT技术应用到设计流程中来,不仅改善了SET模型的精度,而且能够和现有的设计流程良好地兼容。
     4、对PLL电路进行了加固设计并量化地评估了加固效果。基于分析结果,采用RHBD(Radiation Hardened By Design)设计方法学,加固了PLL电路,投片并开展了电路功能测试。结果表明,该芯片能够稳定地输出400MHz—1360MHz的时钟信号。量化分析表明,加固后的锁相环无论是锁相环的最坏情况还是整个PLL的SET敏感性均得到了有效的改善,各个电路模块也获得了良好的加固效果。
With the continual decreasing of the feature size, single event effects is dominating the radiation effects of IC. Single event transients can dramatically affect the Phase Locked Loops (PLLs), which act as the key components of high performance chips. This impact will further disturb the clock network of the whole chip. Thus, it has gained extensive attention on the hardening technique of PLL circuits.
     It has been an important, however difficult, issue to quantitatively analyze the SETs in PLLs, for the circuit complexity and varied factors affecting the phenomenon. This paper uses a quantitative view to research and harden the PLL circuits, including works and innovations as below:
     1. For the first time ever, an automatic SET analysis platform is designed and implemented to get a full understanding of the SET responses by means of large scale of Hspice simulations. The platform has the features of circuit topology extraction directly from SPICE netlist, simulation scripts automatic generation and flexible mechanism to configure the tool. Besides, the platform takes good advantage of directory and files management, and conquered the“memory wall”barrier in large scale simulation and data processing.
     2. The paper puts forward effective metrics to guideline the analyses, and a 1GHz PLL designed in 180nm standard CMOS process is fully evaluated by the sensitivity analysis platform. Results indicate that the TSPC based frequency divider is the most sensitive module of the PLL, and the charge pump may exert the greatest impact on the control voltage of the VCO. Meanwhile the bias circuit of the VCO is also the fragile parts of the PLL. However, the PFD, which is implemented in RS flip-flop, has good strength against SET.
     3. Verilog-A based technique is adopted to optimize the sensitivity analyses. Experiments indicate that the Verilog-A based mixed-level simulation gets a well speed up while maintaining the original distinction of SET sensitivity. As for the Verilog-A based LUT model, it goes well with the current design flow and improves the SET precision in SPICE.
     4. The PLL circuits are hardened against SETs and evaluated by the analysis platform. On the solid basis of the evaluation conclusions, a radiation hardened PLL is designed and taped out in RHBD methodology. Electrical tests manifest that it can work well with output frequency spans from 400MHz to 1360MHz. The evaluation results indicate that the PLL has been effectively improved in either the worst case or the overall SET sensitivity. Moreover, each module is checked to work better under SETs.
引文
[1]王长河.单粒子效应对卫星空间运行可靠性影响.半导体学报,1998,35(1):1~8.
    [2] E. Normand. Single event upsets at ground level. IEEE Transactions on Nuclear Science, 1996, 43(6): 2742~2750.
    [3] P. Hazucha, C. Svensson. Impact of CMOS technology scaling on the atmospheric neutron soft error rate. IEEE Transactions on Nuclear Science, 2000, 47(6).
    [4] P. Hazucha, T. Karnik, J. Maiz. Neutron soft error rate measurements in a 90-nm CMOS process and scaling trends in SRAM from 0.25um to 90nm generation, 2003.
    [5] R. C. Baumann. Soft errors in commercial semiconductor technology: Overview and scaling trends, 2002: 121-101.121~121-101.114.
    [6] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala,S. A. Wender. Predicting the number of fatal soft errors in Los Alamos National Labratory's ASC Q computer. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 329~335.
    [7] J. F. Ziegler, H. Puchner. SER - History, Trends, and Challenges: A Guide for Designing with Memory ICs. 2004.
    [8] R. Phelan, editor. Addressing soft errors in ARM core-based SoC: ARM Ltd, 2003.
    [9] H. Ando. A 1.3 GHz fifth generation SPARC64 microprocessor, 2003
    [10] Panel Discussion Records: Los Angeles, CA. SEE Symp, 2004.
    [11] R. Koga, S. D. Pinkerton, S. C. Moss, D. C. Mayer, S. LaLumondiere, S. J. Hansel, et al. Observation of single event upsets in analog microcircuits. IEEE Transactions on Nuclear Science, 1993, 40(6): 1838~1844.
    [12] Chen Wenjian, V. Pouget, H. J. Barnaby, J. D. Cressler, Niu Guofu, P. Fouillat, et al. Investigation of single-event transients in voltage-controlled oscillators. IEEE Transactions on Nuclear Science, 2003, 50(6): 2081~2087.
    [13] T. D. Loveless, L. W. Massengill, B. L. Bhuva, W. T. Holman, R. A. Reed, D. McMorrow, et al. A Single-Event-Hardened Phase-Locked Loop Fabricated in 130 nm CMOS. IEEE Transactions on Nuclear Science, 2007, 54(6): 2012~2020.
    [14] K. Jobe, M. Shoga, R. Koga. A systems-oriented single event effects test approach for high speed digital phase-locked loops. IEEE Transactions on Nuclear Science, 1996, 43(6): 2868~2873.
    [15] M. Hartwell, C. Hafer, P. Milliken,T. A. Farris T. Farris. Single event effects testing of a PLL and LVDS in a RadHard-by-design 0.25-micron ASIC, 2005: 98~101.
    [16] Y. Boulghassoul, L. W. Massengill, A. L. Sternberg,B. L. A. Bhuva B. L. Bhuva. Effects of technology scaling on the SET sensitivity of RF CMOS Voltage-controlled oscillators. IEEE Transactions on Nuclear Science, 2005, 52(6): 2426~2432.
    [17] Y. Boulghassoul, L. W. Massengill, A. L. Sternberg, B. L. Bhuva,W. T. Holman. Towards SET Mitigation in RF Digital PLLs: From Error Characterization to Radiation Hardening Considerations. IEEE Transactions on Nuclear Science, 2006, 53(4): 2047~2053.
    [18] T. D. Loveless, L. W. Massengill, B. L. Bhuva, W. T. Holman, A. F. Witulski,Y. Boulghassoul. A Hardened-by-Design Technique for RF Digital Phase-Locked Loops. IEEE Transactions on Nuclear Science, 2006, 53(6): 3432~3438.
    [19] H. H. Chung, W. Chen, B. Bakkaloglu, H. J. Barnaby, B. Vermeire,S. Kiaei. Analysis of Single Events Effects on Monolithic PLL Frequency Synthesizers. IEEE Transactions on Nuclear Science, 2006, 53(6): 3539~3543.
    [20] C. Hafer, V. Schnathorst, J. Pfeil, T. Meade, T. Farris, A. Jordan. SEE and TID results for a commercially fabricated radiation-hardened clock generator circuit, 2005: 93~97.
    [21] I. Martínez, P. Delatte, G G.Berger,D. Flandre. Characterization and high-level modeling of SOI ring oscillators under irradiation. Louvainla-Neuve, Belgium, 2000: 205~208.
    [22] Martin Vandepas, Kerem Ok, Anantha Nag Nemmani, Merrick Brownlee, Kartikeya Mayaram,Un-Ku Moon. Characterization of 1.2GHz Phase Locked Loops and Voltage Controlled Oscillators in a Total Dose Radiation Environment. 2005.
    [23] W. Chen, V. Pouget, G. K. Gentry, H. J. Barnaby, B. Vermeire, B. Bakkaloglu, et al. Radiation Hardened by Design RF Circuits Implemented in 0.13 um CMOS Technology. IEEE Transactions on Nuclear Science, 2006, 53(6): 3449~3454.
    [24] Chen Wenjian, N. Varanasi, V. Pouget, H. J. Barnaby, B. Vermeire, P. C. Adell, et al. Impact of VCO Topology on SET Induced Frequency Response. IEEE Transactions on Nuclear Science, 2007, 54(6): 2500~2505.
    [25] T. D. Loveless, L. W. Massengill, W. T. Holman, B. L. Bhuva. Modeling and Mitigating Single-Event Transients in Voltage-Controlled Oscillators. IEEE Transactions on Nuclear Science, 2007, 54(6): 2561~2567.
    [26] M. W. Savage, T. Turflinger, J. L. Titus, H. F. Barsun, A. Sternberg, Y. Boulghassoul, et al. Variations in SET pulse shapes in the LM124A and LM111, 2002: 75~81.
    [27] M. W. Savage, T. Turflinger, J. L. Titus, R. L. Pease,C. Poivey. Characterization of SET response of the LM124A the LM111, and the LM6144, 2003: 121~126.
    [28] R. L. Pease, A. L. Sternberg, Y. Boulghassoul, L. W. Massengill, S. Buchner, D. McMorrow, et al. Comparison of SETs in bipolar linear circuits generated with an ion microbeam, laser light, and circuit simulation. IEEE Transactions on Nuclear Science, 2002, 49(6): 3163~3170.
    [29] D. McMorrow, W. T. Lotshaw, J. S. Melinger, S. Buchner, Y. Boulghassoul, L. W. Massengill, et al. Three-dimensional mapping of single-event effects using two photon absorption. IEEE Transactions on Nuclear Science, 2003, 50(6): 2199~2207.
    [30] V. Pouget, D. Lewis, H. Lapuyade, R. Briand, P. Fouillat, L. Sarger, et al. Validation of radiation hardened designs by pulsed laser testing and SPICE analysis. Microelectronics Reliability, 1999, 39(6-7): 931~935.
    [31] S. P. Buchner, D. Wilson, K. Kang, D. Gill, J. A. Mazer, W. D. Raburn, et al. Laser Simulation of Single Event Upsets. IEEE Transactions on Nuclear Science, 1987, 34(6): 1227~1233.
    [32] A. H. Johnston, G. M. Swift, T. F. Miyahira,L. D. Edmonds. A model for single-event transients in comparators. IEEE Transactions on Nuclear Science, 2000, 47(6): 2624~2633.
    [33] P. Adell, R. D. Schrimpf, H. J. Barnaby, R. Marec, C. Chatry, P. Calvel, et al. Analysis of single-event transients in analog circuits. IEEE Transactions on Nuclear Science, 2000, 47(6): 2616~2623.
    [34] A. L. Sternberg, L. W. Massengill, S. Buchner, R. L. Pease, Y. Boulghassoul, M. W. Savage, et al. The role of parasitic elements in the single-event transient response of linear circuits. IEEE Transactions on Nuclear Science, 2002, 49(6): 3115~3120.
    [35] Y. Boulghassoul, P. C. Adell, J. D. Rowe, L. W. Massengill, R. D. Schrimpf,A. L. Sternberg. System-level design hardening based on worst-case ASET Simulations. IEEE Transactions on Nuclear Science, 2004, 51(5): 2787~2793.
    [36] Y. Boulghassoul, S. Buchner, D. McMorrow, V. Pouget, L. W. Massengill, P. Fouillat, et al. Investigation of millisecond-long analog single-event transients in the LM6144 op amp. IEEE Transactions on Nuclear Science, 2004, 51(6): 3529~3536.
    [37] L. Pease Ronald, Sternberg Andrew, Massengill Lloyd, Schrimpf Ron, Buchner Stephen, Savage Mark, et al. Critical Charge for Single-Event Transients (SETs) in Bipolar Linear Circuits. IEEE Transactions on Nuclear Science, 2001(6): 1966~1972.
    [38] I. Martinez, P. Delatte, D. Flandre. Characterization, simulation and modeling of PLL under irradiation using HDL-A, 2000: 57~61.
    [39]贺朝会,李永宏,杨海亮.单粒子效应辐射模拟实验研究进展.核技术,2007,30(4):343~351.
    [40]贺朝会,李国政,罗晋生.CMOS SRAM单粒子翻转效应的解析分析.半导体学报,2000,21(2):174~178.
    [41]贺朝会,陈晓华,李国政.高能质子单粒子翻转效应的模拟计算.计算物理,2002,19(4):367~371.
    [42]郭红霞.集成电路电离辐射效应数值模拟及X射线剂量增强效应研究.西安:西安电子科技大学,2000
    [43]黄胜明,宋钦岐,王明刚.抗高能单粒子辐射加固的LC6508电路的研制.微电子学与计算机,1996,1996(4):1~3.
    [44]赵凯,刘忠立,于芳.抗辐射123kb PDSOI静态随机存储器.半导体学报, 2007,28(7):1139~1143.
    [45]辛明瑞.面向空间应用的容错RISC处理器体系结构研究:西北工业大学,2006
    [46]彭和平,时晨,赵元富.面向空间应用的双核容错微处理器的研究与实现.宇航学报,2007,28(1).
    [47]封国强,马英起,韩建伟.运放和光耦的单粒子瞬态脉冲效应.半导体学报,2008,29(9):1729~1733.
    [48] M. J. Gadlage, R. D. Schrimpf, J. M. Benedetto. Single Event Transient Pulse Widths in Digital Microcircuits. IEEE Transactions on Nuclear Science, 2004, 51(6): 3285~3290.
    [49] D. G. Mavis, P. H. Eaton. Soft Error Rate Mitigation Techniques for Modern Microcircuits, 2002: 216~225.
    [50] B. Narasimham, V. Ramachandran, B. L. Bhuva. On-Chip Characterization of Single-Event Transient Pulsewidths. IEEE Transactions on Device and Materials Reliability, 2006, 6(4): 542~549.
    [51] N. Seifert, X. Zhu, D. Moyer. Frequency Dependence of Soft Error Rates for Sub-Micro CMOS Technologies, 2001: 14.14.11~14.14.14.
    [52] Zhao Bing, A. Leuciuc. Single event transients characterization in SOI CMOS comparators. IEEE Transactions on Nuclear Science, 2004, 51(6): 3360~3364.
    [53] Wickham Chen, Tiankuan Liu, Ping Gui, Annie C. Xiang, Cheng-AnYang, Junheng Zhang, et al. Single Event Effects in a 0.25μm Silicon-On-Sapphire CMOS Technology
    [54]赵振宇,蒋仁杰,张民选,胡军,李少青.差分压控振荡器中单粒子瞬变的研究.国防科技大学学报,2009,31(2):81~85.
    [55] T. Daniel Loveless, Lloyd W. Massengill, Bharat L. Bhuva, W. Timothy Holman, Megan C. Casey, Robert A. Reed, et al. A Probabilistic Analysis Technique Applied to a Radiation-Hardened-by-Design Voltage-Controlled Oscillator for Mixed-Signal Phase-Locked Loops. IEEE Transactions on Nuclear Science, 2008, 55(6): 3447~3455.
    [56] G.C. Messenger. Collection of Charge on Junction Nodes from Ion Tracks. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024~2031.
    [57] J. M. Benedetto, P. H. Eaton, D. G. Mavis, M. Gadlage, T. Turflinger. Variation of Digital SET Pulse Widths and the Implications for Single Event Hardening of Advanced CMOS Processes. IEEE Transactions on Nuclear Science, 2005, 52(6): 2114~2119.
    [58] M. Turowski, A. Raman, G. Jablonski. Mixed-Mode Simulation and Analysis of Digital Single Event Transients in Fast CMOSICs, 2007.
    [59] P. H. Eaton D. G. Mavis SEU and SET modeling and mitigation in deep submicron technologies: Phoenix, 2007.
    [60] Daisuke Kobayashi, Hirobumi Saito, Kazuyuki Hirose. Estimation of Single Event Transient Voltage Pulses in VLSI Circuits From Heavy-Ion-Induced Transient Currents Measured in a Single MOSFET. IEEE Transactions on Nuclear Science, 2007, 54(4): 1037~1041.
    [61] Daisuke Kobayashi, Kazuyuki Hirose, Takahiro Makino, Hirokazu Ikeda,Hirobumi Saito. Feasibility Study of a Table-Based SET-Pulse Estimation in Logic Cells From Heavy-Ion-Induced Transient Currents Measured in a Single MOSFET. IEEE Transactions on Nuclear Science, 2007, 54(6): 2347~2354.
    [62] Liu Zheng, Sun Yongjie, Li Shaoqing. Circuit Simulation of SEU for SRAM Cell. Chinese Journal of Semiconductor, 2007, 28(1): 138.
    [63] A. Francis, M. Turowski, J. Holmes, 2007. H. Mantooth, , pp. . Efficient modeling of single event transients directly in compact device models, 2007.
    [64] Liu Biwei, Chen Shuming, Liang Bin,Liu Zheng. Coupled SET Pulse Injection in a Circuit Simulator in Ultra-Deep Submicron Technology. Chinese Journal of Semiconductor, 2008, 29(9): 1819~1822.
    [65]刘必慰.单粒子效应建模与加固方法研究.长沙:国防科技大学,2008: 138.
    [66] Zhao Zhenyu, Li Junfeng, Zhang Minxuan,Li Shaoqing. Modeling and analysis of single-event transients in charge pumps. Journal of Semiconductor, 2009, 30(5).
    [67] Ramana Aisola, Kevin Cameron, Dan FitzPatrick, Vassilios Gerousis, Ian Getreu, Kim Hailey, et al. Verilog-A Language Reference Manual. Open Verilog International, 1996.
    [68] Srikanth Chandrasekaran, Jim Barby, Xavier Bestel, Shalom Bresticker, Kevin Cameron, Geoffrey Coram, et al. Verilog-AMS Language Reference Manual. Accellera Organization, 2008.
    [69] Synopsys Inc. HSPICE User Guide: Simulation and Analysis, 2008.
    [70] NIHAL J. GODAMBE, C.-J. RICHARD SHI. Behavioral Level Noise Modeling and Jitter Simulation of Phase-Locked Loops with Faults Using VHDL-AMS. JOURNAL OF ELECTRONIC TESTING: Theory and Applications, 1997, 13: 7~17.
    [71] A. Ammari, L. Anghel, R. Leveugle, C. Lazzari,R. Reis. SET Fault Injection Methods in Analog Circuits: Case Study. 2007.
    [72] I. Martinez, P. Delatte, D. Flandre. Characterization, simulation and modeling of PLL under irradiation using HDL-A, 2000: 57~61.
    [73]赵振宇,赵学谦,张民选,陈吉华,李少青.电荷泵中单粒子瞬变的研究.国防科技大学学报,2009.
    [74] Anantha Nag Nemmani, Martin Vandepas, Kerem Ok, Kartikeya Mayaram, Un-Ku Moon. Design Techniques for Radiation-Hard Phase-Locked Loops
    [75]李俊丰.辐射加固锁相环设计与实现.长沙:国防科技大学,2009:61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700