用户名: 密码: 验证码:
PMLSM无传感器控制在垂直提升系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线电动机直接驱动运动设备,省略了机械传动机构,完全消除机械传动元件的速度和加速度的物理极限的限制,具有长行程、低惯量、高精度、快响应和高速度等特征。
     永磁直线同步电动机(PMLSM)驱动的垂直提升系统是一种新型的无绳提升系统,主要应用在高层建筑电梯和矿井提升系统两个方面。如果理论上和技术上的许多问题得到解决,是对传统提升模式的重大变革,其理论价值和社会效益是不可估量的。PMLSM是新型无绳提升系统的核心,不仅具有永磁电机的高效、节能的特点,且兼有直线电机作直线运动和结构简单、效率和功率因数高、力密度大、定位准确等显著优点。永磁直线同步电机伺服控制系统将是当前和今后直线电机发展应用的一个方向。
     传统的运动控制系统中,通常采用光电编码器等来检测动子的位置和速度。然而这些机械式传感器增加了系统的成本,降低了系统的可靠性,限制了永磁同步电动机的应用范围。取消这些检测装置已经成为当今的研究热点。
     本文对无传感器矢量控制系统进行了研究,主要做了如下研究工作:
     一、在深入分析永磁直线同步电机电磁关系的基础上,建立了d、q轴坐标系下的数学模型,分析了不同模型间相互转换的方法。介绍了永磁直线同步电机的矢量控制原理。
     二、对基于模型参考自适应法的动子位置自检测方法进行了详细的理论分析,利用电动机本身的模型和定子电流方程得到电动机转速的模型参考自适应辨识算法,设计了基于模型参考自适应(MRAS)的无传感器矢量控制系统。研究了直线电机由于铁心开断引起的边端效应对电机的影响,提出了考虑动态纵向边端效应直线电机矢量控制的方法。
     三、利用MatLab/Simulink软件对基于该速度辨识模型的无传感器电机矢量控制系统进行了详细的仿真研究。仿真结果验证了基于MRAS速度辨识模型具有令人满意的辨识精度和动态性能。
     四、详细介绍了空间电压矢量PWM的原理及其算法实现。
     最后本文还完成了在以数字信号处理器TMS3320LF2407A为核心的无传感器矢量控制系统硬件基础上,控制系统软件的设计。
Linear synchronous motor have much advantage, such as long distance, low inertia, high precision, rapid response and high speed etc., because it can directly drive equipment dispense with drive mechanism and clear up the limit of the speed and acceleration physics ultimate of mechanism.
     Vertical lift system drived by permanent magnet linear synchronous motor (PMLSM) is a new type cordless elevator. This cordless elevator is widely used in the field of elevator for tall buildings and lift system for pit. Traditional lift system will have a great change if these problems are solved, and the theoretical value and the social benefits are immeasurable. Permanent magnet linear synchronous motor as the hard core of new type cordless elevator has many benefits, such as super-efficient, saving energy, doing linear movement and simple structure, convenience control, no pollution and low yawp. So far, permanent magnet linear synchronous motor as a primary drive source is one of the best subjects in this field.
     In conventional motion controls, optical encoders are used to detect the position and velocity signals of PMLSM. However these additional sensors increase the cost of system and decrease the reliability, all this restrict the applied range of PMLSM. With this background, the elimination of position and velocity sensors has been an attractive prospect.
     Sensorless vector control system is researched in this paper, the main tasks are as follows.
     Firstly, mathematical models in different coordinate system of PMLSM are set up based on electromagnetism in this paper, and the paper studies the conversion between them. Based on these models, the vector control method theories are discussed.
     Secondly, the paper discusses the rotor position self-sensing method in detail, constructs Motor's velocity Model Reference Adaptive System (MRAS) distinguish method using the model of PMLSM and stator's electric current equation, and designs vector control system based on MRAS method. The effect on linear motor is studied owing to margin end effect created by iron core break off and the way of vector control is putted forward considering dynamic portrait margin end effect.
     Thirdly, the detailed simulation research of sensorless vector control system based on MARS is did using Matlab/Simulink. The results indicated the model's distinguish precision and dynamic performance are satisfied.
     Fourthly, the principle and the realization method of SVPWM are introduced in detail.
     Finally, the control system software is designed based on sensorless vector control system hardware with digital signal process TMS320LF2407A as core.
引文
[1]吴晓霞,垂直运动永磁直线同步电动机的仿真研究[硕士学位论文],太原,太原理工大学,2007
    [2]叶去岳,直线电机原理与应用[M],北京,机械工业出版社,2002
    [3]汪旭东,袁世鹰,焦留成,永磁直线同步电动机垂直运输系统的研究现状[J],微电机,2000,33(5),35-38
    [4]王伟进,直线电机的发展与应用概述[J],微电机,2004,37(1),45-47
    [5]Cruise R J,Landy C F.Linear synchronous motor hoists.Eighth International Conference on Electrical Machines and Drives,1997:284-288
    [6]Moreira Julio C.Indirect Sensing for Rotor Flux Position of Permanent Magnet AC Motors Operating in a Wide Speed Range.IEEE IAS Ann.Mtg.pp.401-407
    [7]Wang Chuanyang,Xu Longya.A Novel Approach of Rotor Position detection for PM machines Based on Conventional PWM Algorithms.IEEE National Aerospace and Electronics Conference,pp.547-553,2000.
    [8]Bu Jianrong,Xu Longya,Sebastian T,Liu Buyun.Near-Zero Speed Performance Enhancement of PM Synchronous Machines Assisted by Low-Cost Hall Effect Sensors.Applied Power Electronics Conference and Exposition,Vol.1,pp.64-68,1 999
    [9]Trum H F,Per D L,Queen M A.Precision Magnetic Suspension Linear Bearing[A].NASA International Symposium on Magnetic Suspension Technology[C].Hampton:NASA Langley Research Center,1991,19-23.
    [10]Holmes M,Trumper D.Magnetic/Fluid Bearing Stage for Atomic Motion Control (the angstrom stage)[J].Prec.Eng,1996,18(1):38-49.
    [11]Matsui N.Brushless Do Motor Control Without Position and Speed Sensor[J].IEEE trans,on Industry Application.1992,28(1):120-127
    [12]宋聚明,永磁同步电动机控制系统及其优化控制研究[博士学位论文],西安,西安交通大学,
    [13]Ribeiro LAS,Degner M W,Briz F,Lorenz R D.Comparision of Carrier Signal Voltage and Current Injection for the Estimation of Flux Angle or Rotor Position.IEEE IAS Conference Record,St.Louis,1998,452-459.
    [14]Lorenz R D.Practical Issues and Research Opportunities When Implementing zero Speed Sensorless Control Proceedings of the Fifth International Conference on Electrical Machines and Systems Shenyang,China,2001,1-10.
    [15]林春,永磁同步直线电机伺服控制系统研究[硕士学位论文],浙江,浙江大学,2005
    [16]赵建中,基于DSP的无位置传感器永磁同步电机磁场定向控制系统,中小型电机,2003,30(2)。
    [17]詹大为,永磁同步电机无位置传感器控制的研究[硕士学位论文],天津,天津大学,2004
    [18]Landau I D.Adaptive Control -Model Reference Approach.MARCEL DEKKER,INC,1979
    [19]陈心海,李言俊,周军.自适应控制及应用,西安,西北工业大学出版社,1998
    [20]郑宝周,永磁同步电动机无传感器矢量控制[硕士学位论文],郑州,郑州大学,2006
    [21]王丹,基于MARS无速度传感器矢量控制系统的研究[硕士学位论文],哈尔滨,哈尔滨工程大学,2006
    [22]刘菊香,直线电机建模与半实物仿真研究[硕士学位论文],长沙,中南大学,2006
    [23]S.A.纳斯尔,I.波尔达著.直线电机.龙遐令,朱维衡等译,北京,科学出版社,1982
    [24]张红梅,直线感应电机牵引系统的仿真及磁浮交通中电磁力的计算[硕士学位论文],湖南,国防科技大学,2005
    [25]翟小飞,张俊洪,赵镜红,永磁同步直线电机的MATLAB仿真及其定位实验[J],船电技术,2006(4),6-9
    [26]朱晓东,程志平,焦留成.永磁直线同步电机仿真模型的研究[J],矿山机械,2006,7(34),84-86
    [27]朱晓东,曾庆山,王茜,焦留成.永磁直线同步电机矢量控制模型及仿真的研究[J],煤矿机械,2006,27(3),417-419
    [28]贺容波,基于MARS高速异步电机的无速度传感器矢量控制系统的研究[硕士学位论文],哈尔滨,哈尔滨理工大学,2005
    [29]Bose BK.A High Performance Inverter-fed Drives System of Interior Permanent Magnet Synchronous Machine.IEEE Transaction on Industry Application.1987,24(6), 987-997
    [30]K.F.Da.Silvaetal.Vector Control in Synchronous Machines Drives.IECON'91,171-176
    [31]Moersehell,Tursino M.A New Vector Control Scheme for Inverter-fed Permanent Magnet Synchronous Motor Using DSP.Con.Rec.IV European Conference in Power Electronics and Application,Firenze,1991,100-104
    [32]扈宏杰.DSP控制系统的设计与实现.北京,机械工业出版社,2004
    [33]TMS320C2x User's Guide.Texas Instruments.1990
    [34]章云,谢莉萍,熊红艳.DSP控制器及其应用,北京,机械工业出版社,1997
    [35]周元志,基于DSP变频调速系统的研究,武汉理工大学,硕士学位论文
    [36]杨会东,矢量控制感应电动机转速辨识方法研究[硕士学位论文],太原,太原理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700