用户名: 密码: 验证码:
基于V型导轨压电叠堆惯性驱动器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电惯性驱动器作为压电驱动器的一个重要分支,是近年来国内外研究的热点之一。针对目前压电驱动器国内外研究现状,本文将研究基于导轨的压电惯性驱动器及其闭环控制系统。主要工作如下:
     1.研究了压电驱动器的特点、应用领域、国内外研究现状及压电驱动器控制系统应用研究现状。
     2.研究了压电惯性驱动器设计理论基础。选择压电叠堆振子为驱动元件,提出了采用对称电信号激励压电叠堆振子,通过控制变化的摩擦力与惯性驱动力有序配合,实现压电惯性驱动器运动的研究方案。设计了柔性铰链调整机构,用于压电叠堆角度调整,从而提高压电惯性驱动器运动性能。同时选择V型导轨用于压电惯性驱动器的设计,并对V型导轨进行受力分析。这些基础研究工作为基于V型导轨压电叠堆惯性驱动器的设计提供了理论依据。
     3.设计了基于V型导轨的压电叠堆惯性驱动器,研制了试验样机,对样机的基本性能进行了相关试验测试。在理论分析基础上,分别设计了基于90?V型导轨和基于120?V型导轨两种压电叠堆惯性驱动器,并研制了两种驱动器的试验样机,分别对两种基于V型导轨的压电叠堆惯性驱动器样机相关性能进行试验测试。
     4.开发设计了压电惯性驱动器闭环控制系统。设计了压电惯性驱动器的步长反馈闭环控制系统和PID闭环控制系统,搭建试验平台,分别在两个控制系统控制下对驱动器进行步长控制试验测试。试验结果表明:闭环控制系统能够有效提高驱动器运动精度。采用模糊控制算法对PID参数进行在线整定。本课题从结构设计和控制系统开发设计两个方面对压电惯性驱动器进行研究,将为压电惯性驱动器的研究开辟新的途径,为今后相关领域的研究工作提供新的思路。
The piezoelectric inertia actuator arouses people's interest unceasingly in the various trades and occupations by its own unique merits,such as non-electromagnetism interference,convenient control,high displacement differentiate rate,good response characteristic,etc.Especially in recent years, along with the piezoelectric element’s performances improved unceasingly, new structures, new forms of piezoelectric drive mechanisms emerged. The research area and application domain of piezoelectric actuator expanded quickly, piezoelectric inertia drive mechanism’s application scope also expanded unceasingly.
     Funded by the National Natural Science Foundation Project“Theoretical And Experimental On New Micro Inertia Piezoelectric impact drive mechanism”. Making use of the surface friction and piezoelectric materials of the inertial force changing orderly to form a new kind of micro-displacement principle .According to the inertia driving mechanism theory, used the method that symmetrical voltage signal actuate piezoelectric stack,designed inertia piezoelectric stack actuator based on V-shaped groove,researched the length of stride closed-loop-control system,and did relate tests. The main content of this dissertion is as follows:
     1.Researched the basic situation of the piezoelectric actuator, including its characteristics,application areas and piezoelectric inertia actuator’s research present situation in domestic and foreign countries.Analysed the present situation of the control algorithm that used on the piezoelectric ceramics driver.Laid solid theoretical foundation for the design of inertia piezoelectric drive mechanism.
     2.Researched the piezoelectric stack element, including it’s composition ,structure and so on.And analyzed the important characteristics of piezoelectric stack,such as hysteresis characteristic,nonlinear characteristic,peristalsis characteristic,stiffness characteristic,force characteristic and temperature characteristic,etc.
     Elaborated the movement theory of the piezoelectric inertia driving mechanism.Making use of the AE0505D16 piezoelectric stack which produced by Japanese TOKIN Corporation as the force source. Utilized symmetrical square wave signal actuate piezoelectric stack,through changing the vertical force that put on the mechanism,to change the friction.Cooperate the surface friction with the inertial force orderly to realize the driving mechanism’s movement.
     Designed the hinge adjustment mechanism to adjust the piezoelectric stack’s angle. and have analyzed the flexible hinge's distortion characteristic and the amount of deformity size with the finite element analysis Anasys software. Researched the measure then manufactured the hinge adjustment mechanism. Researched the types and charistaristics of the groove,choosed the V-shaped groove to design the inertia piezoelectric drive mechanism.Analysed the stress.which was carried on V shape groove.The analysis results indicated that V-shaped groove can increase the equivalent friction coefficient.
     The research of the basic knowledge laid solid theoretical basis for the design of the V-shaped groove piezoelectric stack inertial actuator.
     3.According to the driving theory of piezoelectric inertia driving mechanism, designed two kinds of piezoelectric inertia actuators .One is based on the 120 degree V shaped groove and the other is 90 degreeV shaped groove. Has studied the influence of V shape groove's angle to the actuator, as well as the force of inertia production, the friction force reconfiguration, and has carried on the movement analysis contrast to the driving mechanism.
     According to the design result, manufactured the samples of the V-shaped groove piezoelectric inertia driving mechanism, and has made the test of the key properties respectively. Has tested driving mechanism performance such as the velocity of movement, length of stride.has carried on the analysis to the test result. The experiment proved: the movement base-on-V shape-groove piezoelectric inertia driving mechanism to be steady, high resolution, and so on characteristics
     4.Designed the length of stride feedback closed-loop control system, and the PID closed-loop control system. Has carried on the closed-loop control system experiment test as well as the PID closed-loop control system to test the actuator, make the test results contrast with the open-loop control system condition. The results indicate that the length of stride feedback closed-loop control system increased the length of stride’s stability, has good control effect. Developed the fuzzy PID control system, made the online real-time adjustment to the PID parameters.
     5.Has given the full text’s main conclusion, and will propose the forecast to present's research work
     This article has designed the driving mechanism structural and the control system to conduct the research of the piezoelectric inertia actuator, will open the new way for the research of piezoelectric inertia driving mechanism,and will provide new model for the related domain's research work.
引文
[1] 曾 平,温建明,程光明,吴博达,杨志刚.新型惯性式压电驱动机构的研究[J].光学精密工程.2006,14(4),623~627
    [2] 魏守水.压电材料与压电驱动新趋向[R].国际学术动态.2006(1)
    [3] Ferdinand SCHMOECKEL Remotely controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs)
    [4] 陈维山,赵学涛,刘军考,郝铭.压电超声波马达发展现状及研究方向[J].电机与控制学报.2006,10(5):498~502
    [5] (日)田中哲郎,陈俊彦.王余君 译.压电陶瓷材料[M].1973
    [6] 卢秋红,高志军,颜国正,颜德田.压电型惯性微驱动器研究[J].压电与声光.2004,26(2):112~115
    [7] 马尚行,章海军,施 洋.新型冲击驱动器及其在扫描隧道显微镜中的应用[J].中国机械工程. 2005;3(16):205~208
    [8] 李 勇.蠕动式压电/电致伸缩微进给定位机构的研究进展[J].中国机械工程,1999;10(12):1410~1412
    [9] 朱振华,李蓓智,杨建国.压电驱动超精密加工微定位工作台的设计与研究[J].机械科学与工程.2005,24(9):1026~1028
    [10] 杨宜民,李传芳等.仿生型步进式直线驱动器的研究[J].机器人,1994;16(1):37~39
    [11] Higuchi Torii,Yamamoto. Automatic Micro Manipulation System and Piezo Impact Drive Mechanism. Laboratory the University of Tokyo.
    [12] 张宏壮,曾平.压电双晶片型惯性冲击式旋转精密驱动器研究[J].光学精密工程. 2005.(3):298~303
    [13] Büchi, R., Zesch, W., Codourey, A.et al. Inertial Drives for Micro- and Nanorobots: Analytical Study. C. SPIE's Int. Symp. on Intelligent Systems and Advanced Manufacturing[J], Philadelphia, USA, 1995
    [14] 毕树生,宗光华,赵玮.生物工程中的微操作机器人系统[J].光学精密工程.1998:63~69
    [15] “863”计划生物领域办公室.生物领域八五重大项目总结报告[R].1997.2
    [16] Pozzi M.,King T. Piezoelectric actuators in micropositioning[J].Engineering Science and Education journal,2001, 10(3):31~36
    [17] 宗光华,毕树生等. 面向生物工程及显微手术的微操作机器人系统的全国性调研总结报告[R].1997.6
    [18] 章海军,黄文浩,林松. 与光学显微镜结合的原子力显微镜及其冲击式微位移机构[J]. 仪器仪表学报. 1996; 17(1):364~367
    [19] 路小波, 陆祖宏, 周 庆. 扫描隧道显微镜中的扫描驱动器[J]. 压电与声光, 1999, 21 (6) : 431~506.
    [20] Frank, Jeremy; Koopmann, Gary H.; Chen, Weiching; Lesieutre, George A. Design and performance of a high force piezoelectric inchworm motor. Proceedings of SPIE - The international society for optical engineering v 3668 n II Mar 1-Mar 4 1999 sponsored by: SPIE society of photo-optical instrumentation engineers p 717-723 0277-786X.
    [21] 陈维山,赵学涛,刘军考,郝铭. 压电超声波马达发展现状及研究方向[J]. 电机与控制学报.2006.9,10(5)
    [22] Yung-Tien Liu, Cheng-Wei Wang . A self-moving precision positioning stage utilizing impact force of spring-mounted piezoelectric actuator[J]. Sensors and Actuators A. 2002(102) :83~92
    [23] 李尚平,徐永利等.驱动器用陶瓷材料与展望[J].压电与声光,1999,21(6):483~487
    [24] Oshida,Ryuichi,Okamoto,Yasuhiro,Higuchi, Toshiro. Development of smooth impact drive mechanism (SIDM) proposal of driving mechanism and basic performance[J]. Journal of the Japan Society for Precision Engineering.1999. 65 (1):111~115
    [25] K.Furutani,T.Higuchi,Y.Yamagata,and N. Mohri. Effect of lubrication on Impact Drive Mechanism[J]. Precision Engineering. 1998.22:199~202
    [26] WUT, PAUL I R. Dynamic peak amplitude analysis and bonding layer effects of piezoelectric bimorph cantilevers[J]. Smart Materials and Structure. 2004.13(1):203~210
    [27] 刘华,颜国正,丁国清.惯性式压电陶瓷驱动器的研究.压电与声光[J].2001,23(4),275~278
    [28] Yung-Tien Liu, Toshiro Higuchi,Rong-Fong Fung. A novel precision positioning table utilizing impact force of spring mounted piezoelectric actuator-part I:experimental design and results[J]. Precision Engineering 2003(27):14~21
    [29] Yung-Tien Liu, Rong-Fong Fung ,Tai-Kun Huang. Dynamic responses of a precision positioning table impacted by a soft-mounted piezoelectric actuato[J]r. Precision Engineering 200428:252~260
    [30] Yung-Tien Liu, Cheng-Wei Wang . A self-moving precision positioning stage utilizing impact force of spring-mounted piezoelectric actuator[J]. Sensors and Actuators A . 2002(102) :83~92
    [31] 张大卫,田延岭,阎兵.三自由度纳米级微定位工作台.中国:CN1597249A,2005.3.24
    [32] 李 勃,吴月华等. 基于压电陶瓷驱动的腹腔手术微型机器人[J].光学精密工程, 2001, 9 (6): 535~538
    [33] 扬志欣,孙宝元,董维杰,崔玉国. 一种新型惯性式压电执行器研究[J].大连理工大学学报,2005,45(1):45~49
    [34] J.范兰德国拉特,R.塞德林顿, 彭浩波 译. 压电陶瓷[M]. 北京科技出版社. 1980.
    [35] Uchino K. Materials issues in design and performance of piezoelectric actuators—an overview[J]. Acta Mater 1998. 46(11): 3745~3753
    [36] Yang zhi gang ,He wen di. Study on the ultrasonic motor with plate type piezoelectric vibrator[J]. Piezoelectrics and Acoustooptics. 1995. 17(4): 29~34
    [37] Pozzi M.,King T. Piezoelectric actuators in micropositioning[J].Engineering Science and Education journal,2001, 10(3):31~36
    [38] Katsushi Furutani,Naotake Mohri,Toshiro Higuchi.A built-in displacement sensor for an impact drive mechanism[J].Meas Sci Technol.1999,10:63~66
    [39] 张福学,王丽坤.现代压电学(上册)[M].北京:科学出版社,2001;149~181
    [40] 吴博达,鄂世举,杨志刚,程光明.压电驱动与控制技术的发展与应用[J].机械工程学报,2003,39(10):79~85.
    [41] Kudoh,Gotoh,Satoh,Yamagata,Furutani,Higuchi.Development of Micro Manipulator Using Piezoelectric Element[J].Journal of Mammalian Ova Research.1990,7(1):7~12 (in Japanese)
    [42] 杨宜民,李传芳,周学才等. 仿生型步进式旋转驱动器及其控制器[J].高技术通讯,1995;5(4):24~26
    [43] Jin-Chein Lin,M.H.Nien.Adaptive modeling and shape control of laminated plates using piezoelectric actuators[J].Materials Processing Technology.2007,189:231~236
    [44] 杨大智. 智能材料与智能系统[M]. 天津: 天津大学出版社. 2000 年, 第 1 版
    [45] 蔡鹤皋,孙立宁,安辉.压电/电致伸缩微位移器件与应用(下)[J].高技术通讯,1994,(6):37~40
    [46] 蔡鹤皋,孙立宁,安辉.压电/电致伸缩微位移器件与应用(上)[J].高技术通讯,1994,(5):38~40
    [47] NEC-TOKIN. Multilayer piezoelectric actuators.Japan,2002
    [48] T. Higuchi, M. Watanabe, and K. Kudoh, “Precise Positioner Utilizing Rapid Deformations of Piezo Electric Element,” J. Japan Soc. Precision Eng., 54,11, pp. 2107~2112, 1988 in Japanese
    [49] 张福学,王丽坤.现代压电学(中) [M].北京:科学出版社,2001
    [50] 卢秋红,高志军,颜国正,颜德田.压电型惯性微驱动器研究[J].压电与声光.2004,26(2):112~115
    [51] 程光明,杨志刚,曾平等.压电式移动机构研究[J]. 压电与声光. 2003,25(2):275~278
    [52] 王纪武.典型柔性铰链精度性能的研究[J].清华大学学报,2001, 41(11)
    [53] 张定会.采用柔性铰链实现微位移的方法研究[J].工业仪表与自动化装置,1999(5),11~13
    [54] 吴鹰飞.压电驱动柔性铰链机构传动实现超精密定位[J].机械强度 2002,157~160
    [55] 薛实福,李庆祥.精密仪器设计[M].清华大学出版社,1991 年 8 月
    [56] Gary W.Johnson, Richard Jennings. LabVIEW 图形编程[M],北京:北京大学出版社,2002,4
    [57] 杨乐平,李海涛,肖相生.LabVIEW 程序设计与应用[M],北京:电子工业出版社,2001,7
    [58] 赵旎,蒋健虎.虚拟模糊自整定 PID 调节器的设计及应用[J].仪表技术,2007 年第 1期 24~26
    [59] 陶永华,尹怡欣,葛芦生.新型 PID 控制及其应用[M].机械工业出版社,2000.4
    [60] 杨 智,朱海锋,黄以华.PID 控制器设计与参数整定方法综述[J]化工自动化及仪表.2005,32(5):1~7
    [61] 史维,陈文吾,何勤奋.自适应控制导论[M].东南大学出版社.1990
    [62] 孙德保,汪秉文.自适应控制原理[M].华中理工大学出版社.1991
    [63] 金晓明,荣冈等.模糊控制理论及其应用评述[J].化工自动化及仪表.1995,22(2):3~6
    [64] M.Sugeno.An introductory survey of fuzzy control[J].Inform.Sci,1985,36
    [65] L.A.Zadeh.Fuzzy Sets Informat[J].Control.1965.8
    [66] 廉小亲.模糊控制技术[M].中国电力出版社.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700