用户名: 密码: 验证码:
果蔬采摘机器人立体视觉技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将对果蔬采摘机器人立体视觉技术进行研究,通过建立立体视觉成像系统,对三目摄像机采集的三幅不同角度的果蔬图像进行处理和分析,实现果蔬的分辨并获得其位置信息,为机械手的自主抓取提供依据。
     文中首先对立体视觉系统的组成模块和基本原理进行了介绍,建立了考虑一阶径向畸变的摄像机模型,采用分步法对摄像机进行了标定。然后对所采集的图像完成了平滑、阈值分割等预处理过程,得到了突出感兴趣区域的二值分割图像。在此基础上,基于边缘检测技术获取了目标的边缘信息,并进一步对其进行角点提取。最后针对立体匹配环节提出了基于兴趣点的三目立体匹配方法,利用图像叠合产生的三目摄像机深度计算模型,对获取的匹配点进行计算,得到了目标物体的深度信息。
Fruit and vegetable harvesting operation is a strength, long time-consuming, highly request work, and have certain hazardous. With the aging of the population and the transfer of agricultural labor, harvesting operation urgently needs high efficiency, current, low-cost robot technology to improve productivity and quality of operations, improve the production environment. Along with the development and the application of the technology of precision agriculture, as one of the effective equipments in the field of precision agriculture, the research and application of the robot with intelligent and stereo vision had been paid more attention to and been developed gradually.
     The principle of stereo vision needs to acquire two or more scene images of different angles at first, and then calculate the disparity between the pixels of these images to obtain the target object’s 3D information, this process is similar to the feeling of human beings. Along with the development of stereo vision technology, the trinocular stereo vision system comes forth, through matching among the information of images acquired by three cameras simultaneously, it can solve some problems in binocular stereo vision system effectively. Eliminate the ambiguity and reduce the difficulty of matching.
     On the base of representative binocular stereo vision technology, this paper introduced some component modules and basic principles of stereo vision system, and narrated some problems and difficulties of vision technology’s application research on harvesting machine. According to the introduction of the trinocular stereo vision technology, this paper established a camera model with one rank radial aberration, and used radial alignment constraint method to calibrate the camera. The process of calibration can determine the location, attribute parameters of the camera, and make it be convenient to make sure the relationship between target object and its imaging.
     Aim at raw images acquired by camera, this paper strengthened the interested target by using image division technology. Then based on classic edge detect technology to acquire edge information of target object, and obtained corners of it by using Harris’s method. Corners retained rich characteristic information of target object, they could provide adequate restraint to analysis and processing of the target. Meanwhile, this process reduced the amount of information of image, and also the amount of operation of matching process, and improved the speed of entire system.
     The most difficult and complex step of stereo vision is namely stereo match. In order to solve this step, this paper advanced trinocular stereo matching method based on corners, and used the depth model of trinocular camera produced by superimpose images to match these corners, which aimed to obtain depth information of the fruit and vegetable. Trincular stereo match method can overcome some natural limitations of binocular stereo vision technology effectively, such as its accuracy depends on the depth of target object and the length of baseline of two cameras. Meanwhile, this paper used corners as matching characteristics in ternary matching, in this situation, matching errors will happen only in occasional circumstance. In this way, this method can ensure the reliability of match result.
     Finally, this paper made use of stereo vision technology to construct experimental platform including trinocular camera, image acquisition card, image processing computer, and used this system to do a range of processing to three images including the same target, for example, adjustment and edge detect, acquire the depth image of target fruit and vegetable. It can direct autonomy grab of the fruit and vegetable harvesting robot, and achieve the purpose of this paper.
引文
[1]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-41.
    [2]祁广利.农业机器人的视觉技术及其应用[J].陕西农业科学,2004(5):121.
    [3]吴雪梅,李天强.基于机器视觉的成熟番茄自动识别技术[J].计算机工程与设计,2006,27(22):4300-4301.
    [4]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人,2005,27(1):90-93.
    [5] Hatou K,Matsuura H,Morimoto T,et al.Separation and recognition of overlapped fruits using a 3-dimensional visual sensor[A].IFAC Mathematical and Control Applications in Agriculture and Horticulture[c].Hannover,Cermany: 1997,137-140.
    [6] Whittaker A D,Miles G E.,Mitchell O R,et al.Fruit location in a partially occluded image[J].American Society of Agricultural Engineers,1987,30(3):591-596.
    [7]方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.
    [8]应义斌,章文英,蒋亦元等.机器视觉技术在农产品收获和加工自动化中的应用[J].农业机械学报,2005,31(3):112-115.
    [9] Zhang Shuhuai.Takahashi-T. Studies on automation of work in orchards[J] Journal of the Japnese Society of Agricultural Machinery,1996,58(l):9-16.
    [10] Van Henten E J,Van Tuijl B A J,Hemming J.Field test of an autonomous cucumber picking robot[J].Biosystems Engineering,2003,86(3):305-313.
    [11] E.J.Van Henten,J.Hemming,et al.An autonomous robot for harvesting cucumbers[J]. Autonomous Robots,2002.(13):241-258.
    [12]赵匀,武传宇,胡旭东等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.
    [13] Kondo N,Monta M,Fujiura T.Fruit harvesting robot in Japan[J].Adv.Space Res., 1996,18(1/2):181-184.
    [14] Kondo N,Ting K.C.Robotics for bio-production systems[M].ASAE Publisher,1998.
    [15] Reed J N,Miles S J,Butler J,et al.Automatic mushroom harvester development[J].J Agric Engng Res,2001,78(l): 15-23.
    [16] Edan Y.Haghighi K,Stroshine R,et al.Robot gripper analysis:finite element modeling and optimization[J].Applied Engineering in Agricultural,1992,8(4):563-570.
    [17] Edan Y,Miles G E.Design of an agricultural robot for harvesting melons[J]. Transactions of the ASAE,1993,36(2):593-603.
    [18] Iida M,Furube K,Namikawa K,et al.Development of watermelon harvesting gripper [J].J Japan Soc Agric Mach,1996,58(3):19-26.
    [19] Shigehiko Hayashi,Katsunobu Ganno.Yukitsugu Ishii,et al.Robotic harvesting system for eggplants[J].JARQ,2002,36(3):163-168.
    [20] Murakami N.Inoue K,Otsuka K.Selective harvesting robot of cabbage[J]. JSAM, 1995,2:24-31. [21]汤建华,陈树人,尹建军.计算机视觉在农业自动化收获中的应用与展望[J].农机化研究,2004,5,16-18.
    [22]张瑞合,姬长英,沈明霞等.计算机视觉技术在番茄收获中的应用[J].农业机械学报,200l,32(5):50-52.
    [23]徐惠荣,叶尊忠,应义斌.基于彩色信息的树上柑橘识别研究[J].农业工程学报,2005,21(5):98-101.
    [24]张铁中,林宝龙,高锐.水果采摘机器人视觉系统的目标提取[J].中国农业大学学报,2004:,9(2):68-72.
    [25]赵金英,张铁中,杨丽.西红柿采摘机器人视觉系统的目标提取[J].农业机械学报,2006,37(10):200-203.
    [26]宋健,张铁中,徐丽明等.果蔬采摘机器人研究进展与展望[J].农业机械学报,2006,37(5):158-162.
    [27]章毓晋.图像工程下册:图像理解与计算机视觉[M].北京:清华大学出版社,1999.
    [28]贾云得.机器视觉[M].北京:科学出版社,2000.
    [29]田梦倩.机器人视觉系统标定问题研究综述[J].工业仪表与自动化装置,2006,2: 14-17
    [30] Abdel-Aziz,Karara H M,Direct linear transformation into object space coordinates in close-range photogrammetry,In:Proc.Symp.Close-Range Photogrammetry,1971.
    [31] Ganapathy S,Decompostion of transformation matrices for robot vision, IEEE International Conference on Robotics and Automation,1984:130-139.
    [32] Martins H A,Birk J R,Kelley R B.Camera models based to data from two calibration [J].Proc Image Understading Workshop, 1979,4:101-108.
    [33] Faig W.Calibration of close range photogrammetric systenrmathematical formula-tion[J].Photommetric Eng Remote Sensing,1975,41(12): 1479-1486.
    [34] L.Paquette,R Stampfler,W A Davis,et al.A New Camera Carlibration Method for Robotic Vision[C].Proc.SPIE,Int.Soc.Opt.Eng., 1990:658-663.
    [35] Sobel I.On calibration computer controlled cameras for perceiving 3D scenes[J]. Artificial Intelligence, 1974,5(2): 185-198.
    [36] Gennery D B.Solving for the parameters of object models from image description [J].Proc Image Understading Workshop, 1979,4:101-108.
    [37] Tsai R Y,Lenz R K.A new technique for fully autonomous and efficient 3D robotics hand-eye calibration[J].IEEE Transactions on Robotics and Automation,1989,5(3):345-358.
    [38] M A Sid-Ahmed,T B Mohamed.Dual Camera Calibration for 3D Machine Vision Metrology[J].IEEE Trons.Instrm.Meas,1990,(39):512-516.
    [39] Weng J,P Cohen,M Hernious.Calibration of Stereo Cameras Using a Nonlinear Disrortion Nodel(CCD Sensory)[C].Proc.l0th Int.conf.Pattern Recognition, 1990,246-253.
    [40] Hakan Bacakoglu,Mohamed S Kamel.A three-step camera calibration method[J]. IEEE Transactions on Instrumentation and Measurement,1997,46(5):1165-1172. [41]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(1):43-54.
    [42] Longuet-Higgins H C,A computer algorithm for reconstructing a scene from two projections.Nature,1981,293(10):133-135.
    [43] Maybank S J,Faugeras O D.A theory of self-calibration of a moving camera.Intl. J. Computer Vision,1992,8(2): 123-151.
    [44]高立志,方勇,林志航.立体视觉测量中摄像机标定的新技术[J].电子学报,1999,27(2):12-14.
    [45]曾祥忠,图像采集技术-机器视觉的基础[J].应用光学,2006,(6):5-9.
    [46]张磊,罗翔,史金飞.机器视觉实时问题的对策与研究方法综述[J].制造业自动化,2006,28(6):28-32.
    [47]方如明,蔡健荣,许俐.计算机图像处理技术及其在农业工程中的应用[M].北京:清华大学出版社,1999.
    [48]潘华,郭戈.立体视觉研究的进展[J].计算机测量与控制,2004,12(12):1121-1124
    [49]章毓晋.图像工程上册:图像处理和分析[M].北京:清华大学出版社,1999.
    [50]孙即祥等.模式识别中的特征提取与计算视觉不变量[M].国防工业出版社,2001.
    [51] Bretschi,Jurgen,Automated Inspection Systems for Industry[M].UK: IFS Publications Ltd, 1981.
    [52] Freeman H.,Davis L.S.,A corner-finding algorithm for chain-coded curves[J].IEEE Trans.Comput, 1977,(26):297-303.
    [53] Cooper J,Svetha,Kitechen L.Early jump-out corner detectors[J].IEEE Transactions onPAMI,1993,(15):823-828.
    [54] Kitchen L,Rosenfeld A.K.Gray-level corner detection[J].Pattern Recognition Letters, 1982,3(1 ):95-102.
    [55] Zuniga O.A.,Haralick R.,Corner detection using the facet model[A].In:Proc.IEEE VCPR[C],1983:30-37.
    [56] S M.SmithJ M.Brady,SUSAN-a new approach to low level image processing[J]. Journal of Computer Vision, 1997,23(l):45-78.
    [57] Trajkovic M,Hedley.M,Fast corner detection[J].Image and Vision Computing, 1998, 16(l):75-87.
    [58] Harris C,Stephens M.A combined corner and edge detector[A].Matthews M M. Proceedings of the Fourth Alvey Vision Conference[C].Manchester:the University of Sheffield Printing Unit,1988:147-151.
    [59]陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4.
    [60]孟凡.工程机器人立体视觉系统研究[D].吉林大学.2006
    [61] Levine M D.Computer determination of depth maps.Computer Graphics and Image Process,1972,2:131-150.
    [62] Moravec H d.Towards automatic visiual obstacle avoidance.proc.5thIJCAI,1977.
    [63] Genney D B.Object detection and measurement using stereo vision.Proc.ARPA Imang Understanding Workshop, 1980:161-167.
    [64] Hannah M J.SRI's baseline stereo system.Proc.DARPA Image Understanding Workshop, 1985:149-158.
    [65]王湘君,周春艳,邹峥嵘.立体视觉概述[J].电脑知识与技术,2005:145-147.
    [66] C D Kuglin,D C Hines.The phase correlation image alignment method[C].In:Proc of IEEE Int Conf on Cybernetics and Society,1975:163-165.
    [67]贾波.视差图误差检测与校正的通用算法[J].清华大学学报,2000,40(1):28-31.
     [68]徐彦君,杜利民,侯自强.基于相位的尺度自适应立体匹配方法[J].电子学报,1999,27(7):38-41.
     [69]游素亚,柳健,万发贯.一种基于相位基元的立体匹配方法[J].华中理工大学学报,1996,24(8).
     [70]游素亚,柳健,徐光佑.利用视觉相位鉴别能力求解立体视觉匹配[J].电子学报,1996,24(10).
     [71]周鹏,谭勇,徐守时.基于角点检测图像配准的一种新算法[J].中国科学技术大学学报,2002,32(4):455-461.
     [72]张汗灵,郝重阳.基于特征的自动图像配准算法[J].视频技术应用与工程,2003, (9): 80-83.
     [73]尚明姝,解凯.一种基于特征的全自动图像拼接算法[J].微计算机应用,2006,27(6):747-750.
     [74]唐新星.具有立体视觉的工程机器人自主作业控制技术研究[D].吉林大学,2007.
     [75]潘峰.工程机器人立体视觉技术研究[D].吉林大学,2007.
     [76]胥芳,张立彬,计时鸣等.农业机器人视觉传感系统的实现与应用研究进展[J].农业工程学报,2002,18(4):180-184.
     [77]邓继中,张泰岭,石江.机器视觉技术在农业机械中的应用[J].农机化研究,2001,(2):91-93.
     [78]李志刚,傅泽田,李丽勤.基于机器视觉的农业植保技术研究进展[J].农业机械学报,2005,36(8):143-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700