用户名: 密码: 验证码:
海带打结原理研究及海带打结机器人系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2005年推出了自动海带打结机器人以来,其打结效率和稳定性均处于国内先进水平,但一直难以实现产业化生产所要求的打结成功率。为了达到99%以上的打结成功率,进行了海带打结原理的研究以及新一代海带打结机器人的系统设计。
     取海带条的一条边线作为分析对象,对其进行受力分析并建立了海带线的数学模型,研究了端点等高、端点不等高和受到除端点外其他约束的海带线方程中待定系数的求解方法,利用平衡原理以及海带条长度已知的条件确定了海带线的方程。应用悬链线和拓扑学理论对海带成结机理和打结过程、海带条在成结过程中的形状、海带条与打结机构的位置关系等进行了深入的理论分析和计算。在整体布局上将海带打结机分为备料机构、送料机构、切断机构、夹紧机构、挡料机构和打结机构,通过对每一个机构的具体设计实现了海带打结的流水线作业。采用交流伺服电机作为打结夹爪转动的驱动源,实现了打结夹爪转动角度的闭环控制,增加了海带打结过程的灵活性。建立了海带打结机器人关键部位的虚拟样机模型并对打结过程进行运动仿真,验证了打结机构工作轨迹的合理性以及打结方法的可行性,为提高海带打结成功率提供了理论上的指导。
Since the first kelp-knotted machine was introduced in 2005, which was skillful, efficient and stable. But it has been difficult to achieve the success rate of knotting which is required by industrial production. In order to reach the success rate which is more than 99%, this article studies the theory of knotting kelp and designs the kelp-knotted robot.
     In the article, one edge of kelp is taken as an analysis object, we carry on force analysis of it and establish a mathematical model. And the solution of the catenary equations including a catenary with endpoints of the same height, a catenary with endpoints of different height and a catenary with restriction besides endpoints are put forward, which can help work out the undetermined coefficients in the equation by applying the equilibrium principle and known conditions. In the article we do deep theoretical analysis and calculation of the theory of knotting kelp, the process of knotting kelp, the shape of kelp in the process, the relative position of kelp and the kelp-knotted machine. The overall structure of kelp-knotted machine is made up of preparation institution, feeding institution, cutting institution, clamping institution, blocking material institution and knotting institution, which realizes the line work of knotting kelp through the specific design of each organization. Tie knotting claw is driven by a servo motor, which can realize the closed-loop control of rotation angle and makes the process of knotting more flexible. The virtual model of the key part of the equipment is established and the kinematics simulation of the model is made, which proves the motion of the parts of the machine is justified the method of knotting kelp is correct and feasible. It provides a theoretical guidance for improving success rate of knotting kelp.
引文
[1]李哲.自动海带打结机[P].中国专利:03111924,2004-09-01.
    [2]王瑞鑫.海带打结原理及机构动态特性研究[D].哈尔滨:哈尔滨工业大学,2008:9-12.
    [3] Phillips J, Ladd A, Kavraki L E et al. Simulated Knot Tying[C]. Proceedings of the 2002 IEEE International Conference on Robotics 8 Automation,2002:841-846.
    [4] Guibas L, Xie F, Zhang L et al. Kinetic collision detection: Algortithms and experiments[C]. IEEE Int. Conf. Robot. & Autom,2001:2903-2910.
    [5] Picinbono G, Delingette H, Ayache N et al. Non-linear and anisotropic elastic soft tissue models for medical simulation[C].IEEE Int. Conf. Robot. & Autom, 2001.
    [6] Hyosig K, John T W. Robotic Knot Tying in Minimally Invasive Surgeries[C]. Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems,2002:1421-1426.
    [7] Park A E. Needle assisted technique of laparascopic knot tying[J]. Contemporaray Surgery, 2001,57(10):516–518.
    [8] Kang H, Wen J T. Robotic assistants aid surgeons during minimally invasive procedures[C].IEEE Engineering in Medicine and Biology Magazine, 2001,20(1):94-104.
    [9] H. Kang and J.T. Wen, EndoBot: a robotic assistant in minimally invasive surgeries[C].IEEE International Conference on Robotics and Automation, 2001:2031-2036.
    [10] Morita T, Takarnatsu J, Ogawarat K et al. Knot Planning from Observation[C]. Proeesdings of the 2003 IEEE International Conference on Robotics &Automation,2003:3887-3892.
    [11] Ladd A M, Kavraki L E. Using Motion Planning for Knot Untangling[J].The International Journal of Robotics Research, 2004,23(7–8):797–808.
    [12] Ohnishi K, Miyagawa H, Kitamura R et al. Development of a Robotic Digit Joint Mechanism for Knot Tying Task[C]. IEEE International Workshop on Robots and Human Interactive Communication,2005:253-258.
    [13] Hamajima K, Kakikura M. Planning Strategy for Unfolding Task of Clothes– isolation of Clothes from Washed Mass[C].Proceedings of the 35th SICEAnnual Conference, 1996:1237– 1242.
    [14] Fukuda T, Matsuno T, Arai F et al. Flexible Object Manipulation by Dual Manipulator System[C].Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 2000:1955-1960.
    [15]魏民,杨洋,李成祥等.显微外科打结机器人的机构设计与运动仿真[J].机械设计与研究,2008,24(1):102-105.
    [16]岳龙旺.外科手术机器人缝合打结研究[D].天津:天津大学机械工程学院,2006:73-80.
    [17]王筱华,王学俊,陶学恒等.银行钞票自动线绳捆扎机设计[J].大连轻工业学院学报. 2000,19(4):286-288.
    [18]汪妙强.悬链线方程的一种解法及其应用[J].大连海运学院学报. 1982,8(2):123-127.
    [19]李廷孝.关于悬链线参量的计算[J].力学与实践,1987,1:161-163.
    [20]刘邦中,悬链线几何参量和力学参量的计算,中南林学院学报,1989,9(2):26-28.
    [21]范会榘.弹性悬链线方程参数变换法及其工程应用[J].力学与实践,2010,32(2):32-33.
    [22]王丹,刘家新.一般状态下悬链线方程的应用[J].船海工程,2007,36(3):26-28.
    [23] Shan Q, Zhai W M. A Macroelement Method for Catenary Mode Analysis [J]. Computers and Structures, 1998(69):767-772.
    [24] Rawlins C B.Effect of Non-linearity in Free Large Oscillations of a Shallow Catenary[J]. Journal of Sound and Vibration,2004:857-874.
    [25] Kobayashik T, Fujihashi Y, Kato K et al. Development of Long-Span-Type Overhead Rigid-Conductor Line of a Catenary System[J].Electrical Engineering in Japan, 2000,131(1):94-102.
    [26] Xinyu T, Thomas S, Coleman P et al. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems[C].The International Journal of Robotics Research,2010(29):916-934.
    [27] Takamatsu J, Morita T, Ogawara K et al. Representation for Knot-Tying Tasks[C]. IEEE Transactions on Robotics,2006,22(1):65-78.
    [28] Metrikine A V, Bosch A L. Dynamic Response of a Two-level Catenary to Moving Load[J].Journal of Sound and Vibration,2006:676-693.
    [29] ChoY H, Lee K, Park Y et al. Influence of Contact Wire Pre-sag on the Dynamics of Pantograph–railway Catenary[J]. International Journal ofMechanical Sciences, 2010(52):1471-1490.
    [30] Cella P. Methodology for Exact Solution of Catenary[J]. Journal of Structural Engineering, 1999:1451-1453.
    [31] Valipour H R, Foster S J. Finite Element Modelling of Reinforced Concrete Framed Structures Including Catenary Action[J]. Computers and Structures, 2010(88):529–538.
    [32]于凤军,崔金玲,李立新,等.利用平衡原理导出悬链线方程[J].工科物理,1998,8(4):14-16.
    [33]齐新社,包敬民,杨东升.多元函数条件极值的几种求解方法[J].高等数学研究,2009,12(2):54-56.
    [34]张秀芳.多元函数条件极值的解法探讨[J].安徽电子信息职业技术学院学报,2009,3(8):109-110.
    [35]朱江红,孙兰香.几种多元函数条件极值的解法之比较[J].沧州师范专科学校学校学报,2010,26(2):95-97.
    [36]岳育英,刘兴祥,李彩梅等.三元函数条件极值的推广[J].延安大学学报,2010,29(4):25-27.
    [37]胡仁喜,王庆五,闫石等. ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社,2005:96-127.
    [38]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006:85-93.
    [39]刘俊,林砺宗,刘小平,王刚. ADAMS柔性体运动仿真分析研究及应用[J].现代制造工程,2004,(5):54-55.
    [40]周炜,易建军,郑建荣. ADAMS软件中绳索类物体的一种建模方法[J].现代制造工程,2004,(5):38-39.
    [41]张谊军. ADAMS中控制线的一种建模方法[J].机械与电子,2009,(2):39-40.
    [42]贾志宏,周克栋.滑轮-绳索机构建模方法研究[J].制造业信息化,2007(,3):74-75.
    [43]王得胜,孔德文,赵克利.机械式矿用挖掘机钢丝绳在MSC Adams中的建模方法[J].计算机辅助工程,2006,(15):364-366.
    [44]袁志刚,臧铁钢.基于ADAMS平台的钢索系列物体建模环境的研究[J].制造业信息化,2007,(10):82-84.
    [45]杨钦,李承铭. ANSYS索结构找形及悬链线的模拟[J].土木建筑工程信息技术,2010,2(4):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700