用户名: 密码: 验证码:
重庆大佛寺长江大桥连通管式光电挠度测量系统的实用化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型桥梁的安全监测具有重要的现实意义,而挠度监测是桥梁监测的一个重要的组成部分。目前现有的许多挠度测量方法还不能实现实时远程监测,已有的连通管式超声波法还存在着精度较低,测速慢等不足。针对大佛寺长江大桥挠度测量的需要,在此采用精度较高的光电测量方法结合连通管的优点加以改进。以设计能实用于大跨度桥梁挠度自动监测的光电挠度测量系统。
     论文的主要内容包括以下几个方面:
     ①.简要阐述了大佛寺长江大桥挠度监测的重要意义,简单介绍了国内外现有的挠度测量方法的原理,通过比较分析,在连通管测量方法的基础上提出本文研究的内容。
     ②.讨论了引起大跨度桥梁挠度变形的各种因素,并且着重讨论了斜拉索温度变化引起的桥梁挠度变形,继而提出了大佛寺长江大桥挠度测量要求。
     ③.比较了现有液位测量方法后提出了能够满足大佛寺长江大桥挠度测量要求的基于连通管的光电挠度计的非机械扫描光透射式和非机械扫描光反射式的两种方案,通过比较确定了非机械扫描光反射式方案。随后通过对该方案进行具体的零件设计,主要包括反射面的设计,PDS(光电接收组件)支架的设计,浮子的设计以及减震零件的设计等等,在设计的过程中包含了一些理论计算和仿真,最终设计和制作了光电挠度计。
     ④.在信号采集和处理方面,设计了以TI公司DSP芯片TMS320C32为核心的处理电路,并对数据的处理提出了可行的算法。
     ⑤.在数据的远程传输方面,采用了RS-485总线标准来进行多机通信。
     ⑥.通过实验和大佛寺长江大桥的挠度的实际监测来对该系统的有效性进行检验。
     通过对桥梁实际测量结果与理论计算的结果的对比分析可知,本文所设计的连通管式光电挠度测量系统测量数据准确,系统可靠,能够满足大佛寺长江大桥挠度测量的需要。该挠度测量系统首次在国内实现了桥梁主梁挠度的长期实时自动监测,并且已经通过了交通部的项目验收,具有一定的推广价值
The monitoring of long-span bridges has important meaning. The measurement of deflection of a bridge is crucial constituent part in the monitoring of bridges.The majority of existing methods about bridge deflection measurement can not accomplish the real-time and long-range measurement .The ultrasonic method based on connected pipes still has shortage in precision and speed of measurement.To satify the need of deflection measurement of the DaFoSi Bridge of ChangJiang River, an opto-electronic measurement method is to be used to improve on the method based on connected pipes.Furthermore,we will design an automatic opto-electronic deflection measurement system based on connected pipes which can be practised in the long-span bridge.
    The thesis refers to several facets below,
    (1).Discuss important meaning of the deflection monitoring of the DaFoSi Bridge of ChangJiang River and introduce the principle of existing deflection measurement methods of bridge so far. Through comparison and analysis ,bring forward the research content based on the connected pipes methods.
    (2).Discuss the factors which cause the bridge's deflection and pay more attention on the effect of the variry of cable's temperature on the bridge's deflection.Then to bring forward the need of deflection measurement of the DaFoSi Bridge of ChangJiang River.
    (3).Put forward two structure scheme of opto-electronic deflection measurement sensor, light transmitting with non-mechanical scanning and light reflecting with non-mechanical scanning after compared exisiting methods of liquid level measurement to satify this needAfter the comparison,an opto-electronic deflection measurement sensor based on light reflecting with non-mechanical scanning be confirmed.Then the concrete design is to carry out ,which includes the design of reflective surface,the design of PDS(photo detective subassembly)'s bracket, the design of floater and the design of shaking-absorbed accessory .During the process,there are a series of caculations and emulations.At last, the opto-electronic deflection measurement sensor has been designed and produced.
    (4).On the hand of signal acquiring and processing ,a PCB has been designed based on the processor,DSPTMS320C32,produced by TI Corp.At the same time,a doable arithmetic on signal processing has been put forward.
    (5).On the hand of the remote conveying and communicating of the signal,the
    
    
    
    standard of RS-485 is utilized to achieve the communication between the sensors and host computer.
    (6) Verify the validity of the deflection measurement system through the experiments in the laboratory and the practice in the deflection measurement of ChongQing DaFoSi Bridge of ChangJiang River.
    To our satisfaction,all the measuring results from the measurement locale are accurate and convincing comppared with the results calculated by the theory which makes it clear that the system can meet the demands of measuring upon the DaFoSi Bridge of ChangJiang River.The system has achieved the long-time and real-time automatic deflection measurement of the bridge at first time in our country,and the system has passed the appraisal of the experts consigned by the ministry of communications so the system has the practical value on the long-span bridge's deflection measurement.
引文
[1] 曾宪武,王永珩·桥梁建设的回顾和展望中国公路网 2002-03-11
    [2] 兰海,史家均·大跨斜拉桥结构的综合监测·结构工程师.2000(2).P5—11
    [3] 1999 Lonworks现场总线技术在大型桥梁监测系统中的应用.同济大学智能机器人与控制研究室网站http://robot.tongji.edu.cn/newpage/bridgeWatch.htm
    [4] A.K.Basu, L.K.Mtthews.Assessment of the current condition of structures using nondestructive, modeling, and parameter estimation techniques.SPIE1995. Vol.2446. P106-115
    [5] 胡国华.材料力学.重庆.重庆大学出版社.1991
    [6] 章鹏.基于DSP的大跨度缆索承重桥梁挠度测量系统的研究与实现.重庆大学硕士学位论文.2002.5
    [7] 徐亚力.桥梁挠度测量方法的探讨.铁路建筑.1996(6)P32-33
    [8] 赵贤森.经纬仪原理使用与检定.第一版.北京.中国计量出版社.1993
    [9] 肖根旺,郭红星,徐忠阳.全站仪自动变形监测系统在招宝山大桥变形监测中的应用.测绘信息与工程 2002-Aug 5-27(4).P19-20
    [10] 杨志文,董静薇.ZNC-1型智能桥梁挠度测试仪.自动化仪表1996.17(1).P9-12
    [11] 许娅娅,秦建平.全站仪观测桥梁挠度的探讨.西安公路交通大学学报.1993(3).P32-35
    [12] 刘念东,朱永,符欲梅,陈伟民,黄尚廉.激光挠度测量系统的实现.电子工程师.2002.5.P35-39
    [13] Y Zhu, YM Fu, ND Liu, R Shi, WM Chen, SL Huang.High Dynamic Multi-Channel Laser Deflect meter for Bridge.WRMLSBP.26-29 April.2000.Hong Kong, PRC.P86-91
    [14] 过静珺,戴连君,卢云川.虎门大桥GPS(RTK)实时位移监测方法研究。测绘通报.2002.12.P4-6.
    [15] 刘建勋.三滩黄河大桥施工监测技术研究.长安大学.长安大学硕士学位论文.2000.12 P11-15.
    [16] 张春满,曹文,程振西.超声波在液位测量中的应用.大学物理实验.1995(3).P21-22
    [17] 解怀仁.静压式油罐液位测量系统.化工自动化及仪表 1995·22(3)P35-39.
    [18] 蒋宗文,储青,孔力.光电液位检测技术研究.化工自动化及仪表.1996.23(2).P41-44.
    [19] 袁祥辉.固体图像传感器.重庆大学出版社.1992
    [20] 杨丽君,何树容.使用CCD的实时液位测量系统研究.仪器技术与传感器.1997(6).P21-24
    [21] 张振荣,晋明武,王毅平.MCS-51单片机原理及实用技术.人民邮电出版社.2000
    [22] 覃胜.基于DSP的电脑彩票阅读器.重庆大学.重庆大学硕士学位论文.2001.
    [23] 王念旭等.DSP基础与应用系统设计。北京航空航天大学出版社.2001.
    
    
    [24] TMS320C3X数字信号处理器教程.北京.中泰康DSP设计中心.2000.6
    [25] TMS320C3X User's Guide.Texas Instruments Inc.. 1997
    [26] Shah M. Musa.Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System. 1997.6 Blacksburg, Virginia
    [27] 张玉磷.TMS320C32与串行A/D,D/A转换芯片的接口设计.计算机自动测量与控制.2001.4
    [28] 李为民,李小群.高速数字信号处理器TMS320C30与微机的接口.电子技术应用,1994.6
    [29] 阮秋琦.数字图像处理.第一版.中国铁道出版社.1988.
    [30] 胡汉才.单片机原理及其接口技术.清华大学出版社.1996.7
    [31] 曾全堃.仪器电路.重庆大学出版社.1996.3
    [32] 刘乐善,叶济忠,叶永坚.微型计算机接口技术原理及应用.华中理工大学出版社.1996.3
    [33] 费业泰主编.误差理论与数据处理.第三版.北京.机械工业出版社.1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700