用户名: 密码: 验证码:
基于植筋法的砌体—复合砂浆粘结面抗剪试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机植筋胶是一种以高性能水泥为主要原料添加一定比例的矿物外加剂拌合而成的具有高强度,微膨胀等特性的无机混合物,能在基础加固等有地下水或潮湿环境下使用,具有很好的耐久性、耐火性和经济性等特点。在砌体加固中,高性能复合砂浆薄层钢筋网条带加固是一种经济、有效、应用范围广的加固方法,采用无机植筋代替传统的穿墙拉结筋能很好的解决单面加固,施工复杂等一系列问题,但是以往的研究主要集中在混凝土中的植筋,并没有在砌体中植筋方面的研究。因此本文对无机植筋在砌体中的抗拔和抗剪性能进行了试验研究,主要工作如下:
     (1)在传统的无机植筋胶的基础上提出一种新型的无机植筋胶,在以水泥和超细掺和料等为主要原料的无机植筋胶中掺入超细石英砂,形成良好级配的三元混合料,并通过材性试验和在混凝土中的拉拔试验验证了此种无机植筋胶的可靠性。
     (2)对不同砂浆强度等级的砌体进行了不同植筋深度的植筋拉拔试验,砌体植筋拉拔试验的主要破坏形式为锥体破坏,随着植筋深度的增加抗拔承载力也逐渐提高。施工工艺是保证砌体植筋质量的关键,植筋之前需对砌体进行充分浇水湿润,直到砌体表面没有明显的水析出。
     (3)对16个剪切试件进行砌体-复合砂浆粘结面抗剪试验,试验结果表明,植筋能显著提高粘结面的抗剪强度,并且随植筋面积增加抗剪强度也随之提高,最大提高幅度为38.5%;植筋深度是影响抗剪强度和破坏形式的另一个主要因素,砌体抗剪植筋最小植筋深度应取10d;由于砌体的材料特性和施工可操作性问题,界面剂对抗剪强度有负面影响,因此用水泥复合砂浆加固砌体结构时可不使用界面剂。
     (4)应用大型有限元软件ANSYS对试件进行非线性模拟分析,考虑粘结面滑移理论和销钉作用,得到了植筋试件和对比试件在粘结面的应力分布和复合砂浆层的裂缝分布,与试验结果十分吻合;剪切销钉的存在使得粘结面应力重分布,约束了粘结面的滑移,从而到达提高粘结面极限抗剪承载力的效果。
     (5)在Mattock的钢筋抗剪强度理论的基础上,对试验结果进行拟合得到砌体-复合砂浆粘结面抗剪强度公式,与试验结果吻合良好。并在试验和理论计算的基础上提出了砌体中剪切销钉的构造要求。
Inorganic embedded adhesive is a kind of compounds with high strength、micro-expansion and other characteristics, including major material-high performance cement and certain percentage of mixing mineral additives. Inorganic embedded adhesive can be used in the foundation strengthening where the water exists and other humid environment, and is provided with better durability, fire resistance and economy and so on. In the masonry strengthening, strengthening with High Performance Ferrocement Laminate is an economic, effective method with wide application. In this method inorganic embedded, instead of the traditional link bar which penetrates the masonry wall, can solve the anchoring problem of single plane strengthening of masonry wall and complex construction. Previous study has focused on embedded in the concrete, but there is no study about embedded in the masonry. In this article the experimental study about pull-out and shear properties in the masonry is taken, mainly the following:
     (1) A new inorganic embedded adhesive mix is proposed based on the traditional inorganic embedded adhesive which is mainly composed by high performance cement and superfine mineral additives. A kind of superfine quartz sand is taken into the new adhesive, and forms a ternary mixture of good grading in the size. The inorganic embedded adhesive is proved to be reliable by material test and pull-out experiment in the concrete.
     (2) The strength levels of masonry mortar and the depth of the anchorage are considered in the pull-out test. The major form of damage in the pull-out test is cone damage of the masonry, and the tensile strength of specimen increases gradually with the addition of depth of the anchorage. Construction process is critical to ensure the quality of anchorage in the masonry, so it is needed to wet the masonry before anchoring of the masonry, but in the surface of the masonry water isn't allowed apparently.
     (3) 16 shear specimens including embedded bar parameter through the masonry-mortar bonding surface、different embedded depth and the method of interface finishing are tested in the paper. Test results indicate that there is an independent increase between the area of embedded bar and the shear strength, and the maximum increase rate of the shear strength is 38.5%. Depth of the anchorage is also the main factor to affect the shear strength and failure mode, and when the bar bears the shear stress, the minimum anchorage depth of masonry shall be taken by 10d. Because of the material properties of masonry and feasibility issues of construction, interface agents have a negative impact on the shear strength, so it is suggested that interface agents should not be used in masonry strengthening.
     (4) The finite element software-ANSYS is applied to simulate the properties of the shear specimens, and the slip between the masonry and the composite mortar and the pin are considered in the analysis. The results of the stress distribution and the crack distribution of composite mortar layer for embedded specimen and no-embedded specimen agree well with the experimental results. The stress of bonding surface is redistubited because of the pin, which also restricts the slip of the bonding surface, and increases the ultimate shear capacity.
     (5) Based on the shear strength of reinforced of Mattock, the formula of the shear strength of brick-mortar bonding surface is fitted by the experimental results and analysis, and is well agreed with the experimental dates. The construction requirements are proposed in the masonry in view of experimental and theoretical calculation.
引文
[1]于海生,肖建庄.建筑结构粘结剂的研究进展.玻璃钢/复合材料,2004,4:46-49
    [2]昊晓春,张文萍.新型建筑结构锚固胶技术新进展.化学工业与工程技术,2002,23(1):27-28
    [3]贺曼罗.近年来建筑结构胶粘剂的研究及应用.中国胶粘剂,1999,8(5):33-37
    [4]刘立新,许化彬,甘元初等.水泥基无机黏结材料植筋承载力的试验研究[J].郑州大学学报,2006,27(1):5-8
    [5]许化彬.水泥基无机粘结材料植筋粘结锚固性能研究.[郑州大学硕士学位论文],郑州:郑州大学土木工程学院,2006:7-8
    [6]黄忠邦.水泥砂浆及钢筋网砂浆面层加固砖砌体试验.天津大学学报,1994,27(6):764-770
    [7]Irons. Laminated for Better repair. Concrete International. Design and Construction,1987,9(9):34-38
    [8]Andrews G. Repair Reinforced Concrete Beams. Concrete International 1988,10(4):47-51
    [9]Chien-Hung Lin, Shyh-Ming Peng. Behaviour of Concrete Beams with Welded Fabric as Shear Reinforced. ACI Structural Journal,1998,95(5):540-546
    [10]P. Paramasivam, K. C. G. Ong & C. T. E. Lim. Ferrocement laminates for strengthening RC T-beams. Cement & Concrete Composites,1994 (16):143-152
    [11]Logan D, Shah S P. Moment Capacity and Cracking Behaviour of Ferrocement in Flexure. Journal of the American Concrete Institute,1973,70(12):799-804
    [12]Aurellado P G. Performance of Repaired Reinforced Concrete T-Beams. National University of Singapore,1994:103-104
    [13]Deasayi P, Kumar N N. Strength and Behaviour Ferrocement in Shear. Cement & Concrete Composites,1992,14:33-45
    [14]Mansur M A, Ong K C G. Shear Strength of Ferrocement I-Beams. ACI Structural Journal,1991,88(4):458-464
    [15]曾令宏.钢丝网复合砂浆加固混凝土受弯构件的试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2003,7-8
    [16]罗利波.水泥复合砂浆钢筋网加固混凝土梁抗剪性能试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2006,9-10
    [17]张瑞文.界面材料和粗糙度对HPFL加固RC梁抗剪性能影响的试验研究:[湖 南大学硕士学位论文].长沙:湖南大学土木工程学院,2008,8-12
    [18]高发起.高性能水泥复合砂浆钢筋网薄层加固RC梁疲劳性能试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2008,56-63
    [19]刘沩.高性能水泥复合砂浆钢筋网薄层(HPFL)加固农村民居空斗砌体抗震性能试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2009,10-15
    [20]田稳苓,赵志方,赵国藩等.新老砼的粘结机理和测试方法研究综述.河北理工学院学报,1998,20(1):103-107
    [21]袁群,刘健.新老混凝土粘结的剪切强度研究.建筑结构学报,2001,22(2):46-50
    [22]赵志方,赵国藩,黄承逵.新老混凝土粘结的拉剪性能研究.建筑结构学报,1999,20(6):26-31
    [23]郭进军,张雷顺.高温影响下新老混凝土粘结的剪切性能试验研究.建筑结构学报,2004,25(3):107-113
    [24]M. A. Mansur, T. Vinayagam, Kiang-Hwee Tan. Shear Transfer across a Crack in Reinforced High-Strength Concrete. Journal Of Materials In Civil Engineering, April 2008:294-302
    [25]尚守平,龙凌霄等.销钉在钢筋网复合砂浆加固混凝土构件中的性能研究.建筑结构,2006,36(3):11-12
    [26]聂建国,赵洁.钢板-混凝土组合加固钢筋混凝土简支梁试验研究.建筑结构学报,2008,29(5):50-56
    [27]周浩,张勇.浅谈钢-混凝土组合梁的剪力连接件.四川建筑,2004,24(5):50-53
    [28]聂建国,谭英,王洪全.钢高强混凝土组合梁栓钉剪力连接件的设计计算.清华大学学报,1999,39(12):94-97
    [29]弗朗索瓦·德拉拉尔.混凝土混合料的配合.北京:化学工业出版社,2004,293-343
    [30]刘广明.化学植筋技术及其应用试验研究.郑州工程学院学报.2003,24(1):56-59
    [31]张代涛,宋菊芳.钢筋网水泥砂浆加固砖砌体房屋振动台试验研究.工程抗震,1996,3:32-36
    [32]朱伯龙,吴明舜,蒋志贤.砖墙用钢筋网水泥砂浆面层加固的抗震能力研究.地震工程与工程振动,1984,1:101-103
    [33]苏三定等.用钢筋网水泥砂浆抹面加固砖墙的抗震性能试验研究.西安建筑科技大学学报,1998,3:229-232
    [34]张蔚等.高强钢绞线网-聚合物砂浆抗震既有建筑砖墙体试验研究.建筑结构 学报,2009,30(4):55-60
    [35]E Walter and P. Meier, The use of mechanical dowels as bond elements between new and old concrete, Adherence of young on old concrete, edited by Folker H. Wittmann, AEDIFICATIO Verlag, Unterengstringen,1994:55-61
    [36]F. Seible and C. T. Latham, Horizontal load transfer in structural concrete bridge deck overlays, Journal of Structural Engineering,1990,116(10):117-123
    [37]Robert A. Bass, James O. Jirsa, Shear transfer across new and existing concrete interfaces, ACI Structural Journal,1989,86(4):383-393
    [38]刘桂秋,颜友清,施楚贤.砌体受压本构关系统一模型的研究.湖南大学学报(自然科学版),2009,36(11):6-9
    [39]能光晶,谢慧才,刘金伟.新老混凝土修补界面层粘结质量的改善途径.工业建筑,2001,31(11):70-72
    [40]张智强,杨斧钟,阵明凤.化学建材.重庆:重庆大学出版社,2000,36-42
    [41]袁群,赵国藩,赵志方.新老混凝土粘结强度影响因素分析.人民黄河,2000,22(4):31-33
    [42]王进廷,金峰,张楚汉.结构抗震试验方法的发展.地震工程与工程振动,2005,25(4):37-43
    [43]谢剑.碳纤维布加固修复砌体结构新技术研究:[天津大学博士学位论文].天津:天津大学,2005,89-90
    [44]尚守平,罗业雄,岳香莹等.无机植筋在砌体中应用的试验.广西大学学报(自然科学版),2009,24(3):265-269
    [45]洪峰,王绍博.砌体结构抗震抗剪强度分析.地震工程与工程振动,2000,20(3):28-33
    [46]罗杰.HPFL加固RC梁在高温-外力共同作用下界面粘结性能试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2009,12-25
    [47]A.W.Pagc. Finite Element Model for Masonry. Journal of Structural Engineering. ASCE.1978,104(8):46-53
    [48]Birkeland P. W. and Birkeland H. W. Connections in precast concrete construction. J. Am. Concr. Inst.,1966.63(3):345-368.
    [49]Mast R. F. Auxiliary reinforcement in concrete connections. J. Struct. Div.,1968, 94(6):1485-1504.
    [50]Mattock A. H. Shear transfer in concrete having reinforcementat an angle to the shear plane. Shear in reinforced concrete, ACI,1974.1(42):17-42.
    [51]Lin, I. J., and Chen, Y. Shear transfer across a crack in reinforced high strength concrete. Proc.,2nd East Asia-Pacific Conf. on Structural Engineering and Construction, Chiang Mai, Thailand,1989,85-91.
    [52]Walraven, J. C., Frenay, J. and Pruijssers, A. Influence of concretestrength and load history on the shear friction capacity of concretemembers. PCI J.,1987, 32(1):66-84.
    [53]Mattock, A. H. Shear friction and high-strength concrete. ACI Struct. J.2001, 98(1):50-59.
    [54]陈峰,郑建岚.自密实混凝土与老混凝土的粘结抗剪性能研究.第九届全国建筑物鉴定与加固改造学术会议论文集.北京:中国建材工业出版社,2008,60-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700