用户名: 密码: 验证码:
胞内冰生长的理论分析及保护剂溶液氢键特性的MD模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞内冰的生成和生长对细胞冷冻损伤的研究有着至关重要的意义。要充分了解胞内冰对细胞的伤害作用,除了冰晶的生成和生长,还需要研究胞内冰与冷冻保护剂(cryoprotective agent,CPA)、胞内蛋白和细胞膜的相互作用,而作为这一系列研究的基础,必须首先分析冷冻保护剂水溶液的结构和动力。以甘油为CPA,小鼠卵母细胞为模型细胞,修正了Karlsson胞内冰生长模型,并利用分子动力学方法对CPA—水二元溶液和CPA—水—氯化钠三元溶液进行了模拟。
     提出了一种求解变组元体系成核温度的方法,并联合细胞脱水方程,研究了胞内溶液均相成核温度随时间的变化。发现甘油—水—氯化钠三元溶液均相成核温度的下降值ΔT_h与平衡凝固点的下降值ΔT_m呈现如下的关系:ΔT_h=1.17ΔT_m。利用该关系和软冲突修正方程,修正了Karlsson扩散控制胞内冰生长模型。并利用修正后的模型预测了模型细胞玻璃化过程中的临界冷冻速率和临界浓度。预测值与实验值吻合较好,且修正后模型的预测值明显要优于Karlsson模型的预测值。进一步研究表明,当最终的晶体体积分数大于0.1时,必须考虑软冲突对胞内冰生长的影响。
     分析了CPA—水二元体系和CPA—水—氯化钠三元体系中氢键的结构和动力。发现在二元和三元体系中仅存在O—H…O类型的氢键。水中O原子(OH2)的氢键能力明显强于甘油分子中O原子(O1、O2和O3)的氢键能力。平均每个OH2原子参与的氢键数目随甘油浓度的增加而减少,而平均每个O1、O2和O3原子参与的氢键数目随甘油浓度的变化没有明显的变化规律。水分子中H原子的氢键能力略小于甘油分子中H原子的氢键能力,但与O原子不同,H原子的这种差别相当小。平均每个H原子参与的氢键数目随甘油浓度的变化几乎不变。分子的统计结果显示:随甘油浓度的增加,平均每个甘油分子参与的氢键数目有降低的趋势,但是考虑到偏差,差别并不明显;随甘油浓度的增加,平均每个水分子参与的氢键数目缓慢减少。动力分析结果表明:随甘油浓度的增大,氢键截断自相关函数的松弛时间和生存周期均呈现增大的趋势;水分子之间氢键相互作用的周期小于甘油分子与水分子之间氢键作用的周期,表明甘油分子和水分子之间的氢键比水分子之间的氢键更牢固。甘油的存在对Na~+离子和Cl~-离子的水合结构并没有产生太大的影响。
     根据氢键结构和动力的分析结果,从微观角度分析了CPA降低水溶液的冰点。加入CPA后,平均每个水分子参与的氢键数目减少以及CPA分子与水分子之间氢键相互作用的周期大于水分子之间氢键作用的周期是CPA降低水溶液冰点的微观机理。为了进一步从量的角度探求CPA降低水溶液的冰点与溶液微观结构的关系,提出了一种新的参数——氢键受体数目与供体数目比。研究表明:在较低的CPA浓度下,溶液平衡融化温度T_m与水分子氢键受体数目与供体数目比φ_w呈线性关系;随CPA浓度的增大,T_m与φ_m的线性关系逐渐破裂,而T_m与甘油分子氢键受体数目与供体数目比φ_g呈线性关系。φ_w与T_m和φ_g与T_m的线性关系成立的浓度范围与采用的偏差容忍度有关。采用2K的偏差容忍度时,在所有氢键准则和温度下,二元和三元溶液中均存在某个浓度x_g~*:当x_g≤x_g~*时,T_m与φ_m呈线性关系;当x_g≥x_g~*时,T_m与φ_g呈线性关系。对于二元溶液,x_g~*=0.15,对于三元溶液,0.13<x_g~*<0.15。
Intracellular ice formation(IIF) and ice crystal growth are of great importance in research on cell freezing injury.To understand the exact mechanism of IIF injury,besides IIF and ice crystal growth,the interactions between intracellular ice and cryoprotective agent (CPA),intracellular proteins and cell membrane must be investigated.As a starting work,the structure and dynamics of CPA aqueous solutions must be studied.In the present paper, glycerol is selected as a CPA and mouse oocyte is chosen as a model cell.Karlsson's intracellular ice growth model has been modified and CPA-water binary and CPA-water-sodium chloride ternary solutions have been studied using molecular dynamics simulation methods.
     A method has been introduced to calculate nucleation temperature of systems with variable compositions.Coupling with the cell dehydration equation,the homogeneous nucleation temperature of intracellular solution has been calculated as a function of time.It has been found that for glycerol-water-sodium chloride ternary solution,the depression of homogeneous nucleation temperature is linearly related with the depression of equilibrium melting point with a factor of 1.17.Then,the relation,coupling with soft impingement effect modification,has been used to modify Karlsson's intracellular ice growth model.Using the modified model,the critical cooling rates and critical CPA concentrations for model cell vitrification have been predicted.The results show that the predicted values of the modified model are in good agreement with the values in literature and are better than the predicted values of Karlsson's model.Further investigation shows that soft impingement effects must be considered when the final intracellular ice volume fraction is larger than 0.1.
     The hydrogen bonding structure and dynamics in CPA-water binary and CPA-water-sodium chloride ternary solutions have been analyzed.Only O-H...O hydrogen bond exists in binary and ternary solutions.The hydrogen bonding ability of oxygen atom in water molecules(OH2) is larger than that of oxygen atoms in glycerol molecules(O1,O2 and O3).The mean number of hydrogen bonds per OH2 atom decreases as glycerol concentration increases.However,the mean numbers of hydrogen bonds per O1,O2 and O3 atom show no tendency as glycerol concentration increases.The hydrogen bonding abilities of hydrogen atoms in water molecules are slightly smaller than that of hydrogen atoms in glycerol molecules.Unlike oxygen atoms,the difference between hydrogen bonding abilities of hydrogen atoms in water and glycerol molecules are quite small.The mean number of hydrogen bonds per hydrogen atom doesn't change with glycerol concentration.The mean number of hydrogen bonds per glycerol molecule shows a tendency of decrease as glycerol concentration increases,but the tendency is not obvious,considering the errors.The mean number of hydrogen bonds per water molecule decreases as glycerol concentration increases. The results of hydrogen bonding dynamics analysis show that the relaxation time of hydrogen bonding intermittent autocorrelation function and hydrogen bonding lifetime show a tendency of increase as glycerol concentration increases and the lifetime of hydrogen bonds between water molecules is shorter than that of hydrogen bonds between glycerol and water molecules indicating that hydrogen bonds between glycerol and water molecules are stronger than that between water molecules.The hydration structures of sodium cation and chlorine anion are not affected by glycerol molecules relative to other aqueous solutions.
     The depression of freezing point caused by CPA has been analyzed.The reason is that as CPA is added in,the mean number of hydrogen bonds per water molecule decreases and the lifetime of hydrogen bonds between glycerol and water molecules is larger than that of hydrogen bonds between water molecules.To explore the relation between freezing point depression caused by CPA and the hydrogen bonding network in quantity,a new parameter the ratio between hydrogen bonding acceptor to donor numbers has been introduced.It has been shown that,at low CPA cocentrations,the equilibrium melting temperature T_m is linearly related with the ratio between hydrogen bonding acceptor to donor numbers for water moleculesφ_w.As CPA concentration increases,the linarity betweenφ_w and T_m breaks and T_m becomes linearly related with the ratio between hydrogen bonding acceptor to donor numbers for glycerol moleculesφ_g.The concentration range in whichφ_w(φ_g) is linearly related with T_m depends on the temperature tolerance.When a tolerance of 2K is used,under all hydrogen bonding criteria and at all temperatures,a concentration x_g~* exists:when x_g≤x_g~*, T_m is linearly related withφ_w and when x_g≥x_g~*,T_m is linearly related withφ_g.For binary solutions,x_g~*=0.15 and for ternary solutions,0.13<x_g~*<0.15.
引文
[1]HAN B,BISCHOF J C.Direct cell injury associated with eutectic crystallization during freezing[J].Cryobiology,2004,48:8-21.
    [2]LOVELOCK J E.The haemolysis of human red blood-cells by freezing and thawing[J].Biochim Biophys Acta,1953,10(3):414-426.
    [3]MAZUR P,LEIBO S P,CHU E H.A two-factor hypothesis of freezing injury.Evidence from Chinese hamster tissue-culture cells[J].Experimental Cell Research,1972,71(2):345-355.
    [4]DILLER K R.Intracellular freezing:effect of extracellular supercooling[J].Cryobiology,1975,12(5):480.
    [5]KARLSSON J O,CRAVALHO E G,RINKES I H B,et al.Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide[J].Biophys J,1993,65(6):2524-2536.
    [6]ISHIGURO H,RUBINSKY B.Mechanical Interactions between Ice Crystals and Red Blood Cells during Directional Solidification[J].Cryobiology,1994,31(5):483-500.
    [7]MERYMAN H T.Osmotic stress as a mechanism of freezing injury[J].Cryobiology,1971,8(5):489.
    [8]MULDREW K,MCGANN L E.The osmotic rupture" hypothesis of intracellular freezing injury[J].Biophysical Journal,1994,66:532-541.
    [9]LOVELOCK J E.The denaturation of lipid-protein complexes as a cause of damage by freezing[J].Proceedings of the Royal Society of London.Series B:Biological Sciences,1957,147(929):427.
    [10]LEVITT J.A sulfhydryl-disulf ide hypothesis of frost injury and resistance in plants [J].Journal of Theoretical Biology,1962,3:355.
    [11]LOVELOCK J E.Haemolysis by thermal shock[J].British Journal of Haematology,1955,1(1):117.
    [12]FARRANT J,MORRIS G J.Thermal shock and dilution shock as the causes of freezing injury[J].Cryobiology,1973,10(2):134.
    [13]FORSYTH M,MACFARLANE D R.Recrystallization revisited[J].Cryo-Letters,1986,7 (6):367.
    [14]KARLSSON J O M.A theoretical model of intracellular devitrification [J].Cryobiology,2001,42 (3):154-169.
    [15]LEIBO S P.Cryopreservation of oocytes and embryos:Optimization by theoretical versus empirical analysis[J].Theriogenology,2008,69(1):37-47.
    [16]KEDEM O,KATCHALSKY A.Thermodynamic analysis of the permeability of biological membranes to non-electrolytes[J].Biochimica et Biophysica Acta,1958,27:229-246.
    [17]MCCAA C,DILLER K,AGGARWAL S J,et al.Cryomicroscopic determination of the membrane osmotic properties of human monocytes at subfreezing temperatures[J].Cryobiology,1991,28(4):391-399.
    [18]GILMORE J A,MCGANN L E,LIU J,et al.Effect of Cryoprotectant Solutes on Water Permeability of Human Spermatozoa[J].Biology of Reproduction,1995,53:985-995.
    [19]MAZUR P.Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing[J].Journal of General Physiology,1963,47:347-369.
    [20]DAVSON H,DANIELLI J F.The Permeability of Natural Membranes[M].2 ed.Cambridge:Cambridge University Press,1952.
    [21]PUSHKAR N S,ITKIN Y A,BRONSTEIN V L,et al.On the problem of dehydration and intracellular crystallization during freezing of cell suspensions[J].Cryobiology,1976,13:147-152.
    [22]DICK D A.Osmotic properties of living cells[J].International Review of Cytology,1959,8:387-448
    [23]LEVIN R L,CRAVALHO E G,HUGGINS C E.Diffusion in a liquid solution with a moving semi-permeable boundary[J].Journal of Heat Transfer,1977,99:322-329.
    [24]MANSOORI G A.Kinetics of water loss from cells at subzero centigrade temperatures [J].Cryobiology,1975,12(1):34-45.
    [25]PAPANEK T H.An apparatus to measure red cell permeability at low temperature[D].MIT,1975.
    [26]STEPHENSON J L.Ice crystal growth during the rapid freezing of tissues[J].J.Biophysic.and Biochem.Cytol.,1956,2(4):45.
    [27]LEVIN R L,CRAVALHO E G,HUGGINS C E.A membrane model describing the effect of temperature on the water conductivity of erythrocyte membranes at subzero temperatures [J].Cryobiology,1976,13(4):415-429.
    [28]ZHAO G,LUOD,GAOD.Universal Model for Intracellular Ice.Formation and Its Growth [J].AIChE J,2006,52:2596-2606.
    [29]LEVIN R L.Kinetics of water transport in biomaterials during freezing[D].MIT,1976.
    [30]KASHARIN A V,KARLSSON J K.Analysis of mass transport during warming of cryopreserved cells[J].Annals of the New York Academy of Sciences,1998,858:163-174.
    [31]CARNEVALE K A.Finete-Difference Model of Cell Dehydration During Cryopreservation[D].Georgia Institute of Technology,2004.
    [32]YAN J F,LIU J.Characterization of the nanocryosurgical freezing process through modifying Mazur' s model[J].Journal of Applied Physics,2008,103(8).
    [33]DOWGERT M F,STEPONKUS P L.Effect of Cold Acclimation on Intracellular Ice Formation in Isolated Protoplasts [J].Plant Physiology,1983,72(4):978-988.
    [34]MAZUR P.The role of intracellular freezing in the death of cells cooled at supraoptimal rates[J].Cryobiology,1977,14(3):251-272.
    [35]PITT R E,STEPONKUS P L Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts [J].Cryobiology,1989,26(1):44-63.
    [36]TONER M,CRAVALHO E G.Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells[J].Journal of Applied Physics,1990,67(3):1582-1593.
    [37]BALASUBRAMANIAN S K,BISCHOF J C,HUBEL A.Water transport and ⅡF parameters for a connective tissue equivalent[J].Cryobiology,2006,52:62-73.
    [38]张绍志,王葳,陈光明,等.低温显微装置及其对细胞胞内冰晶形成现象的观察[J].细胞生物学杂志,2003,25(4):231.
    [39]TONER M,Nucleation of ice crystals inside biological cells[M]//Steponkus PL.Advances in Low-Temperature Biology.London:Elsevier Science,1993:1-51.
    [40]KARLSSON J O M,CRAVALHO E G,TONER M.A model of diffusion-limited ice growth inside biological cells during freezing[J].Journal of Applied Physics,1994,75(9):4442-4455.
    [41]MACFARLANE D R,FRAGOULIS M.Theory of devitrification in multicomponent glass forming systems under diffusion control [J].Physics and Chemistry of Glasses,1986,27:228.
    [42]IRIMIA D,KARLSSON J O M.Kinetics of Intracellular Ice Formation in One-Dimensional Arrays of Interacting Biological Cells[J].Biophys J,2005,88:647-660.
    [43]PIH R E,CHANDRASEKARAN M,PARKS J E.Performance of a kinetic model for intracellular ice formation based on the extent of supercooling[J].Cryobiology,1992,29(3):359.
    [44]WOLKERS W F,BALASUBRAMANIAN S K,ONGSTAD E L,et al.Effects of freezing on membranes and proteins in LNCaP prostate tumor cells[J].Biochimica Et Biophysica Acta-Biomembranes,2007,1768(3):728-736.
    [45]YANG G,ZHANG A L,XU L X.Experimental study of intracellular ice growth in human umbilical vein endothelial cells[J].Cryobiology,2009,58(1):96-102.
    [46]MORRIS G J.Rapidly cooled human sperm:no evidence of intracellular ice formation [J].Human Reproduction,2006,21(8):2075-2083.
    [47]ISHIGURO H,KOIKE K.Three-Dimensional Behavior of Ice Crystals and Biological Cells during Freezing of Cell Suspensions[J].Ann NY Acad Sci,1998,858(1):235-244.
    [48]DEVIREDDY R V,RAHA D,BISCHOF J C.Measurement of Water Transport during Freezing in Cell Suspensions Using a Differential Scanning Calorimeter[J].Cryobiology,1998,36:124-155.
    [49]高才,周国燕,胥义,等.乙二醇和丙三醇水溶液冻结特性的研究[J].物理化学学报,2004,20(2):123-128.
    [50]STOTT S L,KARLSSON J O M.Visualization of intracellular ice formation using high-speed video cryomicroscopy[J].Cryobiology,2009,58(1):84-95.
    [51]KLEINHANS F W,MAZUR P.Determination of the water permeability (Lp) of mouse oocytes at-25 degrees C and its activation energy at subzero temperatures [J].Cryobiology,2009,58(2):215-24.
    [52]SEKI S,KLEINHANS F W,MAZUR P.Intracellular ice formation in yeast cells vs.cooling rate:predictions from modeling vs.experimental observations by differential scanning calorimetry[J].Cryobiology,2009,58 (2):157-65.
    [53]ZHMAKIN A I.Physical aspects of cryobiology[J].Physics-Uspekhi,2008,51(3):231.
    [54]MAZUR P,PINN I L,KLEINHANS F W.Intracellular ice formation in mouse oocytes subjected to interrupted rapid cooling[J].Cryobiology,2007,55(2):158-166.
    [55]AMBROSINI G,ANDRISANI A,PORCU E,et al.Oocytes cryopreservation:State of art [J].Reproductive Toxicology,2006,22(2):250-262.
    [56]ACKER J,Biopreservation of Cells and Engineered Tissues[M]//Tissue Engineering Ⅱ.2007:157-187.
    [57]MAZUR P,Principles of cryobiology[M]//Fuller B J,Lane N,Benson E E.Life in the Frozen State.Boca Raton:CRC Press,2004:3-65.
    [58]MAZUR P,SCHNEIDER U,MAHOWALD A P.Characteristics and kinetics of subzero chilling injury in Drosophila embryos[J].Cryobiology,1992,29:39.
    [59]NAGASHIMA H,KASHIWAZAKI N,ASHMAN R J,et al.Cryopreservation of porcine embryos [J].Nature (London),1995,374:416.
    [60]ZENZES M T,BIELECK R,CASPE R,et al.Effects of chilling to O degrees C on the morphology of meiotic spindles in human metaphase Ⅱ oocytes[J].Fertility and Sterility,2001,75:769.
    [61]SONGSASENN,RATTERREE I Y M,VANDEVOORT C,et al.Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes[J].Fertility and Sterility,2002,77:818.
    [62]PONDER E.Red cell structure and its breakdown[J].Protoplasmatologia,1955,10:2.
    [63]WEIST C S,STEPONKUS P L.Freeze-thaw injury to isolated spinach protoplasts and its simulation at above freezing temperatures[J].Plant Physiology,1978,62:699-705.
    [64]LUCRE B,HARTLINE H K,MCCUTCHEON M.Further studies on the kinetics of osmosis in living cells[J].J.Gen.Physiol.,1931,14:405.
    [65]PAPANEK T H.The water permeability of the human erythrocyte in the temperature range +25℃ to-10℃[D].Massachusetts Institue of Technology,1978.
    [66]RULE G S,LAW P,KRUUV J,et al.Water permeability of mammalian cells as a function of temperature in the presence of dimethylsulfoxide:correlation with the state of the embrane lipids[J].Journal of Cellular Physiology,1980,103(3):407-416.
    [67]HEMPLING H G,WHITE S.Permeability of cultured megakaryocytopoietic cells of the rat to dimethyl sulfoxide[J].Cryobiology,1984,21(2):133-143.
    [68]MCGRATH J J,GAO D Y,TAO J,et al,Coupled transport across the murine oocyte plasma membrane:water and cryoprotective agents[M]//Toner M,Flik M I,Webb D W,et al.Topics in Heat Transfer.New York:ASME Press,1992:1-14.
    [69]MAZUR P.Equilibrium,quasi-equilibrium and nonequilibrium freezing of mammalian embryos[J].Cell Biophysics,1990,17(1):53-92.
    [70]MCGRATH J J.Quantitative measurement of cell membrane transport:technology and application[J].Cryobiology,1997,34:315.
    [71]CHEN H H,PURTTEMAN J J P,HEIMFELD S,et al.Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties[J].Cryobiology,2007,55(3):200-209.
    [72]YOSHIMORI T,TAKAMATSU H.3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells[J].Cryobiology,2009,58(1):52-61.
    [73]ZAWLODZKAA S,TAKAMATSU H.Osmotic injury of PC-3 cells by hypertonic NaCl solutions at temperatures above 0℃[J].Cryobiology,2005,50:58-70.
    [74]MAZUR P,RALL W F,RIGOPOULOS N.Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes[J].Biophysical Journal,1981,36(3):653-675.
    [75]MAZUR P,RIGOPOULOS N.Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes:Influence of warming rate[J].Cryobiology,1983,20(3):274-289.
    [76]PEGG D E,DIAPER M P.The "unfrozen fraction" hypothesis of freezing injury to human erythrocytes:a critical examination of the evidencetJ].Cryobiology,1989,26(1):30-43.
    [77]NAKAMURA T,TAKAGI H,SHIMA J.Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cellsQ].Cryobiology,2009,58(2):170-4.
    [78]TAKAMATSU H,ZAWLODZKA S.Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions[J].Cryobiology,2006,53(1):1-11.
    [79]STEPONKUS P L.Role of the Plasma Membrane in Freezing Injury and Cold Acclimation [J].Annual Review of Plant Physiology,1984,35:543-584
    [80]MULDREW K.The salting-in hypothesis of post-hypertonic lysis[J].Cryobiology,2008,57(3):251-256.
    [81]FUJIKAWA S.A freeze-fracture study designed to clarify the mechanisms of freezing injury due to the freezing-induced close apposition of membranes in cortical parenchyma cells of mulberry[J].Cryobiology,1995,32:444.
    [82]WEBB M S,STEPONKUS P L.Freeze-induced membrane ultrastructural alterations in rye(Secale cereale) leaves[J],Plant Physiology,1993,101:955.
    [83]PEGG D E,DIAPER M P.On the mechanism of slowly frozen erythrocytes [J].Biophysical Journal,1988,54:471.
    [84]WIEST S C,STEPONKUS P L.Freeze-thaw injury to isolated spinach protoplasts and its simulation at above freezing temperatures[J].Plant Physiology,1978,62:699.
    [85]STEPONKUS P L,GORDON-KAMM W J.Cryoinjury of isolated protoplasts:a consequence of dehydration or the fraction of the suspending medium that is frozen?[J].CryoLetters,1985,6:217.
    [86]ZADE-OPPEN A M M.Posthypertonic hemolysis in sodium chloride systems [J].Acta Physiol.Scand.,1968,73:341.
    [87]MERYMAN H T.Modified model for the mechanism of freezing injury in erythrocytes [J].Nature,1968,218:333.
    [88]FARRANT J,WOOLGAR A E.Human red cells under hypertonic conditions;a model system for investigating freezing damage[J].Cryobiology,1972,9:9.
    [89]CHAKRABARTY J,BANERJEE D,PAL D,et al.Shedding off specific lipid constituents from sperm cell membrane during cryopreservation[J].Cryobiology,2007,54(1):27-35.
    [90]CAFFREY M.The combined and separate effects of low temperature and freezing on membrane lipid mesomorphic phase behavior:Relevance to cryobiology [J].Biochim.Biophys.Acta,1987,896:123.
    [91]CROWE J H,CROWE L M,CHAPMAN D.Preservation of membranes in anhydrobiotic organisms:the role of trehalose[J].Science,1984,223:701.
    [92]BISCHOF J C,WOLKERS W F,TSVETKOVA NM,et al.Lipid and protein changes due to freezing in Dunning AT-1 cells[J].Cryobiology,2002,45:22.
    [93]MATHIAS S F,FRANKS F,TRAFFORD K.Nucleation and growth of ice in deeply undercooled erythrocytes [J].Cryobiology,1984,21(2):123-132.
    [94]FRANKS F,MATHIAS S F,GALFRE P,et al.Ice nucleation and freezing in undercooled cells[J].Cryobiology,1983,20:298-309.
    [95]MAZUR P.Freezing of living cells:mechanisms and implications[J].American Journalof Physiology,1984,247:C125-C142.
    [96]CALLOW R A,MCGRATH J J.Thermodynamic modeling and cryomicroscopy of cell-size,unilamellar,and paucilamellar liposomes[J].Cryobiology,1985,22(3):251-267.
    [97]RALL W F,MAZUR P,MCGRATH J J.Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide[J].Biophys J,1983,41(1):1-12.
    [98]MUGNANO J A,WANG T,LAYNE J R,JR.,et al.Antifreeze glycoproteins promote intracellular freezing of rat cardiomyocytes at high subzero temperatures [J].Am J Physiol Regul Integr Comp Physiol,1995,269(2):R474-479.
    [99]KARLSSON J O M,CRAVALHO E G,TONER M.Intracellular ice formation:causes and consequences[J].Cryo-Letters,1993,14:323-334.
    [100]MAZUR P,PINNIL,SEKIS,et al.Effects of hold time after extracellular ice formation on intracellular freezing of mouse oocytes[J].Cryobiology,2005,51(2):235-239.
    [101]STEPONKUS P L,DOWGERT M F,GORDON-KAMM W J.Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle:The influence of cold acclimation[J].Cryobiology,1983,20(4):448-465.
    [102]MAZUR P.The role of cell membranes in the freezing of yeast and other single cells[J].Annals of the New York Academy of Sciences,1965,125(2):658-676.
    [103]KLEINHANS F W,GUENTHER J F,ROBERTS D M,et al.Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry[J].Cryobiology,2006,52(1):128-138.
    [104]ARMITAGE W J,JUSS B K.Freezing monolayers of cells without gap junctions[J].Cryobiology,2003,46 (2):194-196.
    [105]ACKER J P,ELLIOTT J A W,MCGANN L E.Intercellular Ice Propagation:Experimental Evidence for Ice Growth through Membrane Pores[J].2001,81(3):1389-1397.
    [106]ACKER J P,MCGANN L E.The role of cell-cell contact on intracellular ice formation[J].Cryo-Letters,1998,19(6):367-374.
    [107]TSURUTA T,ISHIMOTO Y,MASUOKA T.Effects of Glycerol on Intracellular Ice Formation and Dehydration of Onion Epidermis[J].Annals of the New York Academy of Sciences,1998,858:217-226
    [108]BERGER W K,UHRIK B.Freeze-induced shrinkage of individual cells and cell-to-cell propagation of intracellular ice in cell chains from salivary glands [J].Cellular and Molecular Life Sciences,1996,52(9):843.
    [109]ACKER J P.Influence of cell adhesions on the freezing response of biological systems[D].Edmonton:University of Alberta,1997.
    [110]MAZUR P,KLEINHANS F W.Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium—A revisit[J].Cryobiology,2008,56(1):22-27.
    [111]SEKI S,KLEINHANS F W,MAZUR P.Intracellular ice formation in yeast cells vs.cooling rate:Predictions from modeling vs.experimental observations by differential scanning calorimetry[J].Cryobiology,In Press,Accepted Manuscript.
    [112]MAZUR P,PINN I L,KLEINHANS F W.The temperature of intracellular ice formation in mouse oocytes vs.the unfrozen fraction at that temperature[J].Cryobiology,2007,54(2):223-233.
    [113]MAZUR P,SEKI S,PINN I L,et al.Extra-and intracellular ice formation in mouse oocytes[J].Cryobiology,2005,51(1):29-53.
    [114]LIN T T,LUNG K.IIF characteristics of oyster embryos and eggs determined by a feedback-controlled directional cryomicroscope[J].Cryobiology,1995,32:566.
    [115]K(O|¨)RBER C S,ENGLICH S,RAU G.Intracellular ice formation:cryomicroscopical observation and calorimetric measurement[J].J.Microsc.,1990,161:313.
    [116]SALINAS-FLORES L,ADAMS S L,WHARTON D A,et al.Survival of Pacific oyster,Crassostrea gigas,oocytes in relation to intracellular ice formation[J].Cryobiology,2008,56(1):28-35.
    [117]ACKER J P,CROTEAU I T.Pre-and post-thaw assessment of intracellular ice formation[J].Journal of Microscopy,2004,215:131-138.
    [118]HAGEDORNA M,PETERSONA A,MAZUR P,et al.High ice nucleation temperature of zebrafish embryos:slow-freezing is not an option[J].Cryobiology,2004,49:181-189.
    [119]TONER M,CRAVALHO E G,STACHECKI J,et al.Nonequilibrium freezing of one-cell mouse embryos.Membrane integrity and developmental potential[J].Biophys J,1993,64(6):1908-1921.
    [120]LEIBO S P,MCGRATH J J,CRAVALHO E G.Microscopic observation of intracellular ice formation in mouse ova as a function of cooling rate[J].Cryobiology,1978,15(3):257-271.
    [121]ASAHINA E.Intracellular freezing and frost resistance in egg-cells of the sea urchin[J].Nature,1961,191:1263.
    [122]SHIMADA K,ASAHINA E.Visualization of intracellular ice crystals formed in very rapidly frozen cells at-27° C[J].Cryobiology,1975,12(3):209-218,
    [123]何立群,张永锋,罗大为,等.生命材料低温保护剂溶液二维降温结晶过程中的分形特征[J].自然科学进展,2002,(11).
    [124]JIN B,KUSANAGI K,UEDAM,et al.Formation of extracellular and intracellular ice during warming of vitrified mouse morulae and its effect on embryo survival[J].Cryobiology,2008,56(3):233-240.
    [125]SEKI S,MAZUR P.Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice[J].Biology of Reproduction,2008,79(4):727-737.
    [126]CHEN B,SIGMUNDE E,HALPERIN W P.Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol[J].Physical Review Letters,2006,96:145502.
    [127]JABRANE S,LETOFFE J M,COUNIOUX J J,et al.Composition dependence of the glass transition temperature:Application of Van Laar type equations to the glycerol-1,2-propanediol,glycerol-water and Se-GeSe2 systems[J].Thermochimica Acta,1996,290(1):31-41.
    [128]BLAZHNOV I V,MALOMUZH N P,LISHCHUKS V.Temperature dependence of density,thermal expansion coefficient and shear viscosity of supercooled glycerol as a reflection of its structure[J].The Journal of Chemical Physics,2004,121(13):6435-6441.
    [129]LUNKENHEIMER P,PIMENOV A,DRESSEL M,et al.Fast Dynamics of Glass-Forming Glycerol Studied by Dielectric Spectroscopy[J].Phys.Rev.Lett.,1996,77:318-321.
    [130]MORRIS G J,GOODRICH M,ACTONE,et al.The high viscosity encountered during freezing in glycerol solutions:Effects on cryopreservation[J].Cryobiology,2006,52:323-334.
    [131]HE X,FOWLER A,TONER M.Water activity and mobility in solutions of glycerol and small molecular weight sugars:Implication for cryo-and lyopreservation[J].Journal of Applied Physics,2006,100(7):074702-11.
    [132]BEHRENDS R,FUCHS K,KAATZE U.Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50°C[J].Journal of Chemical Physics,2006,124(14):144512.
    [133]HAYASHI Y,PUZENKO A,FELDMAN Y.Slow and fast dynamics in glycerol-water mixtures[J].Journal of Non-Crystalline Solids,2006,352(42-49):4696-4703.
    [134]SUDOS,SHIMOMURA M,SHINYASHIKI N,et al.Broadband dielectric study of[alpha]-[beta]separation for supercooled glycerol-water mixtures[J].Journal of Non-Crystalline Solids,2002,307-310:356-363.
    [135]MURTHY S S N.Some Insight into the Physical Basis of the Cryoprotective Action of Dimethyl Sulfoxide and Ethylene Glycol[J].Cryobiology,1998,36(2):84-96.
    [136]TYAGI M,MURTHY S S N.Dynamics of water in supercooled aqueous solutions of glucose and poly (ethylene glycol) s as studied by dielectric spectroscopy [J].Carbohydrate Research,2006,341(5):650-662.
    [137]ZELENT B,NUCCI N V,VANDERKOOI J M.Liquid and Ice Water and Glycerol/Water Glasses Compared by Infrared Spectroscopy from 295 to 12 K[J].J.Phys.Chem.A,2004,108(50):11141-11150.
    [138]DASHNAU J L,NUCCI N V,SHARP K A,et al.Hydrogen Bonding and the Cryoprotective Properties of Glycerol/Water Mixtures[J].J.Phys.Chem.B,2006,110(27):13670-13677.
    [139]MIYATA K,KANNO H.Supercooling behavior of aqueous solutions of alcohols and saccharides[J].Journal of Molecular Liquids,2005,119(1-3):189-193.
    [140]KLEINHANS F W,MAZUR P.Comparison of actual vs.synthesized ternary phase diagrams for solutes of cryobiological interest[J].Cryobiology,2007,54(2):212-222.
    [141]KRESIN M,K(O|¨)RBER C.Influence of additives on crystallization kinetics:Comparison between theory and measurements in aqueous solutions[J].J.Chem.Phys.,1991,95(7):5249-5255.
    [142]HAYASHI Y,PUZENKO A,FELDMAN Y.Ice nanocrystals in glycerol-water mixtures [J].The Journal of Physical Chemistry B,2005,109(35):16979.
    [143]BOUTRON P.Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solutions[J].Cryobiology,1986,23(1):88-102.
    [144]BRONSHTEYN V L,STEPONKUS P L.Nucleation and Growth of Ice Crystals in Concentrated Solutions of Ethylene Glycol[J].Cryobiology,1995,32(1):1-22.
    [145]ZINCHENKO A V,ZINCHENKO V D.On phase transitions in the water-ethylene glycol system at subzero temperatures under non-isothermal conditions[J].Cryo-Letters,2001,22(3):191.
    [146]INABA A,ANDERSSON O.Multiple glass transitions and two step crystallization for the binary system of water and glycerol[J].Thermochimica Acta,2007,461(1-2):44-49.
    [147]FAHY G M,MACFARLANE D R,ANGELL C A,et al.Vitrification as an approach to cryopreservation[J].Cryobiology,1984,21(4):407-426.
    [148]BEREJNOV V,HUSSEINI N S,ALSAIED O A,et al.Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions[J].J.Appl.Cryst.,2006,39:244-251.
    [149]SUTTON R L.Critical cooling rates to avoid Ice crystallization in solution of cryoprotective agents[J].J.Chem.Soc.Faraday Trans.,1991,87:101-105.
    [150]SCHROTER K,DONTH E.Viscosity and shear response at the dynamic glass transition of glycerol[J].The Journal of Chemical Physics 2000,113(20):9101-9108
    [151]BAUDOT A,ALGER L,BOUTRON P.Glass-Forming Tendency in the System Water-Dimethyl Sulfoxide[J].Cryobiology,2000,40(2):151-158.
    [152]MARKARIAN S A,BONORA S,BAGRAMYAN K A,et al.Glass-forming property of the system diethyl sulphoxide/water and its cryoprotective action on Escherichia coli survival[J].Cryobiology,2004,49(1):1-9.
    [153]PEGG D E.Simple equations for obtaining melting points and eutectic temperatures for the ternary system glycerol/sodium chloride/water [J].Cryo-Letters,1983,4:259-268.
    [154]PEGG D E.Equations for obtaining melting points and eutectic temperatures for the ternary system dimethyl sulfoxide/sodium chloride/water [J].Cryoletters,1986,7:387-394.
    [155]CHENLO F,MOREIRA R,PEREIRA G,et al.Kinematic viscosity and water activity of aqueous solutions of glycerol and sodium chloride [J].European Food Research and Technology,2004,219:403-408.
    [156]BATYCKY R P,HAMMERSTEDT R,EDWARDS D A.Osmotically driven intracellular transport phenomena[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences 1997,355:2459-2487.
    [157]JAEGER M,CARIN M,MEDALE M,et al.The Osmotic Migration of Cells in a Solute Gradient [J].Biophysical Journal,1999,71(3):1257-1267.
    [158]CARIN M,JAEGER M.Numerical simulation of the interaction of biological cells with an ice front during freezingQ].The European Physical Journal Applied Physics,2001,16:231-238.
    [159]MAO L,UDAYKUMAR H S,KARLSSON J O M.Simulation of micro-scale interaction between ice and biological cells[J].International Journal of Heat and Mass Transfer,2003,46:5123-5136.
    [160]彭润玲,徐成海,李全顺,等.螺旋藻细胞冷冻过程微尺度传热传质特性[J].低温工程,2006,(4):63.
    [161]LIU Z,WAN R,MULDREW K,et al.A level set variational formulation for coupled phase change/mass transfer problems:application to freezing of biological systems [J].Finite Elements in Analysis and Design,2004,40(12):1641-1663
    [162]CHANG A,DANTZIG J A,DARR B T,et al.Modeling the interaction of biological cells with a solidifying interface [J].Journal of Computational Physics,2007,226(2):1808-1829.
    [163]TAKAMATSU H,RUBINSKY B.Viability of Deformed Cells[J].Cryobiology,1999,39(3):243-251.
    [164]TAKAMATSU H,KUMAGAE N,RUBINSKY B.The Effect of Temperature on the Viability of Deformed Cells[J].Advances in Heat and Mass Transfer in Biotechnology,2000,47:55-58.
    [165]KANDRA D,DEVIREDDY R V.Numerical simulation of local temperature distortions during ice nucleation of cells in suspension[J].International Journal of Heat and Mass Transfer,2008,51 (23-24):5655-5661.
    [166]JENSEN M,DROR R O,XU H,et al.Dynamic control of slow water transport by aquaporin 0:Implications for hydration and junction stability in the eye lens[J].Proceedings of the National Academy of Sciences,2008,105(38):14430-14435.
    [167]LAW R J,SANSOM MSP.Homology modelling and molecular dynamics simulations:comparative studies of human aquaporin-l[J].European Biophysics Journal with Biophysics Letters,2004,33(6):477-489.
    [168]ZHU F Q,TAJKHORSHID E,SCHULTEN K.Theory and simulation of water permeation in aquaporin-1[J].Biophysical Journal,2004,86(1):50-57.
    [169]MILOSHEVSKY G V,JORDAN P C.Water and Ion Permeation in bAQP1 and GlpF Channels:A Kinetic Monte Carlo Study[J].Biophysical Journal,2004,87(6):3690-3702.
    [170]JENSEN M O,MOURITSEN O G.Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF[J].Biophysical Journal,2006,90(7):2270-2284.
    [171]KIM K S,DAVIS I S,MACPHERSON P A,et al.Osmosis in small pores:a molecular dynamics study of the mechanism of solvent transport [J].Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2005,461(2053):273-296.
    [172]DAVIS I S,SHACHAR-HILL B,CURRY M R,et al.Osmosis in semi-permeable pores:an examination of the basic flow equations based on an experimental and molecular dynamics study[J].Proceedings of the Royal Society A,2007,463:881-896.
    [173]VAISMAN I I,BERKOWITZ M L.Local structural order and molecular associations in water-DMSO mixtures.Molecular dynamics study[J].Journal of the American Chemical Society,1992,114(20):7889-7896.
    [174]VISHNYAKOV A,LYUBARTSEV A P,LAAKSONENA.Molecular Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixture[J].The Journal of Physical Chemistry A,2001,105(10):1702-1710.
    [175]HARPHAM M R,LEVINGER N E,LADANYI B M.An Investigation of Water Dynamics in Binary Mixtures of Water and Dimethyl Sulfoxide[J].The Journal of Physical Chemistry B,2008,112(2):283-293.
    [176]LUZAR A,CHANDLER D.Structure and Hydrogen Bond Dynamics of Water-Dimethyl Sulfoxide Mixtures by Computer Simulations[J].The Journal of Chemical Physics,1993,98:8160.[177]BORDAT P,LERBRET A,DEMARET J P,et al.Comparative study of trehalose,sucrose and maltose in water solutions by molecular modelling[J].Europhysics Letters,2004,65:41.
    [178]KYRYCHENKO A,DYUBKO T S.Molecular dynamics simulations of microstructure and mixing dynamics of cryoprotective solvents in water and in the presence of a lipid membrane [J].Biophysical Chemistry,2008,136:23-31.
    [179]RADHAKRISHNAN R,TROUT B L.Nucleation of Crystalline Phases of Water in Homogeneous and Inhomogeneous Environments[J].Physical Review Letters,2003,90(15):158301.
    [180]BLIECK J,AFFOUARD F,BORDAT P,et al.Molecular dynamics simulations of glycerol glass-forming liquid[J].Chemical Physics,2005,317:253-257.
    [181]ROOT L J,STILLINGER F H.Short-range order in glycerol.A molecular dynamics study [J].Journal of Chemical Physics,1989,90(2):1200-1208.
    [182]ROOT L J,BERNE B J.Effect of pressure on hydrogen bonding in glycerol:A molecular dynamics investigation[J].Journal of Chemical Physics,1997,107(11):4350.
    [183]SARKARS,JOARDERRN.Intermolecular ordering of hydrogen-bonded liquid glycerol [J].Physics Letters A,1996,222(3):195-198.
    [184]PADRO J A,SAIZ L,GUARDIA E.Hydrogen bonding in liquid alcohols:a computer simulation study[J].Journal of Molecular Structure,1997,416(1-3):243-248.
    [185]GUARDIA E,MARTI J,PADRO J A,et al.Dynamics in hydrogen bonded liquids:water and alcohols[J].Journal of Molecular Liquids,2002,96-97:3-17.
    [186]CHELLI R,PROCACCI P,CARDINI G,et al.Glycerol condensed phases Part Ⅱ.A molecular dynamics study of the conformational structure and hydrogen bonding[J].Phys.Chem.Chem.Phys.,1999,1:879-885.
    [187]CHELLI R,PROCACCI P,CARDINI G,et al.Glycerol condensed phases Part Ⅰ.A molecular dynamics studytj].Phys.Chem.Chem.Phys.,1999,1:871-877.
    [188]CALLAM C S,SINGER S J,LOWARY T L,et al.Computational Analysis of the Potential Energy Surfaces of Glycerol in the Gas and Aqueous Phases:Effects of Level of Theory,Basis Set,and Solvation on Strongly Intramolecularly Hydrogen-Bonded Systems[J].J.Am.Chem.Soc.,2001,123:11743-11754.
    [189]AVRAMI M.Granulation,Phase Change,and Microstructure Kinetics of Phase Change.Ⅲ[J].The Journal of Chemical Physics,1941,9(2):177-184.
    [190]AVRAMI M.Kinetics of Phase Change.Ⅱ Transformation-Time Relations for Random Distribution of Nuclei[J].The Journal of Chemical Physics,1940,8(2):212-224
    [191]AVRAMI M.Kinetics of Phase Change.I General Theory [J].The Journal of Chemical Physics,1939,7(12):1103-1112
    [192]BRUNA P,CRESPO D,GONZALEZ-CINCA R.On the validity of Avrami formalism in primary crystallization[J].Journal of Applied Physics,2006,100:054907.
    [193]KOOP T.Homogeneous Ice Nucleation in Water and Aqueous Solutions[J].Zeitschrift für Physikalische Chemie,2004,218(11):1231-1258.
    [194]RASMUSSEN D H,MCKENZIE A P,Effect of solute on ice-solution interfacial free energy:calculation from measured homogeneous nucleation temperatures[M]//Water Structure at the Water-Polymer Interface.New York:Plenum Press,1972:126-145.
    [195]RASMUSSEN D H.Energetics of homogeneous nucleation—Approach to a physical spinodal [J].Journal of Crystal Growth,1982,56(1):45-55.
    [196]MCKENZIE A P,DERBYSHIRE W,REID D S.Non-Equilibrium Freezing Behaviour of Aqueous Systems [J].Philosophical Transactions of the Royal Society of London.Series B,Biological Sciences,1977,278(959):167-189.
    [197]MIYATA K,KANNO H,NIINO T,et al.Cationic and anionic effects on the homogeneous nucleation of ice in aqueous alkali halide solutions [J].Chemical Physics Letters,2002,354(1):51-55.
    [198]ZOBRIST B,WEERSU,KOOPT.Ice nucleation in aqueous solutions of polyethylene glycol]with different molar mass[J].Journal of Chemical Physics,2003,118(22):10254-10261
    [199]WILSON P W,HENEGHAN A F,HAYMET A D J.Ice nucleation in nature:supercooling point (SCP) measurements and the role of heterogeneous nucleation[J].Cryobiology,2003,46(1):88-98.
    [200]BOUTRON P,MEHL P.Theoretical prediction of devitrification tendency:determination of critical warming rates without using finite expansions[J].Cryobiology,1990,27(4):359-77.
    [201]LIEHMAN P,TEPLA O,FULKA J.Vitrification of mouse 8-cell embryos with glycerol as a cryoporotectant[J].Folia Biologica,1990,36(5):240-251.
    [202]SUTTON R L.Critical cooling rates to avoid ice crystallization in aqueous cryoprotectant solutions containing polymers[J].J.Chem.Soc.Faraday Trans.,1991,87:3747.
    [203]RAHMAN A.Correlations in the Motion of Atoms in Liquid Argon[J].Physical Review,1964,136:A405.
    [204]RAHMAN A,STILLINGER F H.Molecular Dynamics Study of Liquid Water [J].The Journal of Chemical Physics,1971,55(7):3336.
    [205]MCCAMMON J A,GELIN B R,KARPLUS M.Dynamics of folded proteins[J].Nature,1977,267:585.
    [206]CAR R,PARRINELLO M.Unified Approach for Molecular Dynamics and Density-Functional Theory[J].Physical Review Letters,1985,55(22):2471.
    [207]BERENDSEN H J C,POSTMA J P M,GUNSTEREN W F V,et al.Intermolecular Forces [M],ed.Pullman B.Reidel:Dordrecht,1981.
    [208]BERENDSEN H J C,GRIGERA J R,STRAATSMA T P.The missing term in effective pair potentials [J].J Phys Chem,1987,91:6269.
    [209]JORGENSEN W L,CHANDRASEKHAR J,MADURA J D,et al.Comparison of simple potential functions for simulating liquid water[J].The Journal of Chemical Physics,1983,79:926.
    [210]MAHONEY M W,JORGENSEN W L.A five-site model for liquid water and the reproduction of the density anomaly by rigid,nonpolarizable potential functions[J].The Journal of Chemical Physics,2000,112(20):8910-8922
    [211]NADA H,EERDEN J P J M V D.An intermolecular potential model for the simulation of ice and water near the melting point:A six-site model of H2O[J].The Journal of Chemical Physics,2003,118(16):7401-7413
    [212]MACKERELL J A D,BASHFORD D,BELLOTT M,et al.All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins[J].J.Phys.Chem,1998,102:3586-3616.
    [213]DAURA X,OLIVA B,QUEROL E,et al.On the sensitivity of MD trajectories to changes in water-protein interaction parameters:the potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field[J].Proteins,1996,25(1):89.
    [214]CORNELL W D,CIEPLAK P,BAYLY C I,et al.A Second Generation Force Field for the Simulation of Proteins,Nucleic Acids,and Organic Molecules[J].J.Am.Chem.Soc.,1995,117(19):5179-5197.
    [215]DAMM W,FRONTERA A,TIRADO-RIVES J,et al.OPLS All-Atom Force Field for Carbohydrates[J].Journal of Computational Chemistry 1997,18(16):1955-1970.
    [216]VERLETL.Computer "Experiments" on Classical Fluids.I.Thermodynamical Properties of Lennard-Jones Molecules[J].Physical Review,1967,159(1):98.
    [217]PROCACCI P,MARCHI M.Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm[J].Journal of Chemical Physics,1996,104:3003.
    [218]PHILLIPS J C,BRAUN R,WANG W,et al.Scalable Molecular Dynamics with NAMD[J].J Comput Chem,2005,26:1781-1802.
    [219]SPOEL D V D,LINDAHL E,HESS B,et al.GROMACS:Fast,Flexible and Free[J].J Comp Phys,2005,26:1701.
    [220]PLIMPTON S J.Fast Parallel Algorithms for Short-Range Molecular Dynamics[J].J Comp Phys,1995,117:1.
    [221]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2003.
    [222]MCQUARRIE D A.Statistical Mechanics[N].New York:Harper and Row,1976.
    [223]MEIER K,LAESECKE A,KABELAC S.A Molecular Dynamics Simulation Study of the Self-Duffusion Coefficient and Viscosity of the Lennard-Jones Fluid[J].International Journal of ThermoPhysics,2001,22(1):161.
    [224]孙炜,陈中,黄素逸,等.L-J流体扩散系数的分子动力学模拟[J].华中科技大学学报(自然科学版),2004,32(5):84.
    [225]RAPAPORTD C.Hydrogen bonds in water[J].Molecular Physics,1983,50(5):1151-1162.
    [226]ALLEN M E,TILDESLEY D J.Computer Simulation of Liquids[M].Oxford:Clarendon Press,1987.
    [227]NAGHIZADEH J,RICE S A.Kinetic Theory of Dense Fluids.X.Measurement and Interpretation of Self-Diffusion in Liquid Ar,Kr,Xe,and CH4[J].The Journal of Chemical Physics,1962,36(10):2710.
    [228]方俊鑫,陆栋.固体物理学[M].上海:科学技术出版社,1980.
    [229]CHEN C,LI W.Diffusion controlled ice growth with soft impingement inside biological cells during freezing[J].Cryoletters,2008,29(5):371-381.
    [230]BRUN M-A,HAYASHI Y,KATSUMOTO Y,et al.Urea-glycerol system:Liquid associated structure studied by dielectric spectroscopy[J].Physical review B,2007,75:174209.
    [231]CHEN C,LI W.Determination of homogeneous nucleation temperature of intracellular solution during cooling (in Chinese)[J].Acta Phys.-Chim.Sin.,2008,24(1):74-78.
    [232]BARNES A J.Blue-shifting hydrogen bonds—are they improper or proper?[J].Journal of Molecular Structure,2004,704(1-3):3-9.
    [233]RIBEIRO-CLARO P J A,VAZ P D.Towards the understanding of the spectroscopic behaviour of the C-H oscillator in C~H...O hydrogen bonds:the effect of solvent polarity[J].Chemical Physics Letters,2004,390(4-6):358-361.
    [234]CASTELLANO R K.Progress Toward Understanding the Nature and Function of C-H...O Interactions [J],Current Organic Chemistry,2004,8(10):845.
    [235]VAZ P D,NOLASCO M,FONSECA N,et al.C-H...O hydrogen bonding in 4-phenyl-benzaldehyde:a comprehensive crystallographic,spectroscopic and computational study[J].Phys Chem Chem Phys,2005,7(16):3027.
    [236]VAZ P D,RIBEIRO-CLARO P J A.C-H...O Hydrogen Bonds in Small Ring Carbonyl Compounds:Vibrational Spectroscopy and Ab initio Calculations[J].Structure and Chemistry,2005,16(3):287.
    [237]XU Z,LI H,WANG C.Can a Blue Shift of the C-H Stretching Modes of Inactivated C Groups be an Indicator of Weak C-H...O Hydrogen Bonds? [J].ChemPhysChem,2006,7(12):2460-2463.
    [238]ZHANG R,LI H,LEI Y,et al.All-Atom Molecular Dynamic Simulations and Relative NMR Spectra Study of Weak C-H???O Contacts in Amide-Water Systems [J].J.Phys.Chem.B,2005,109(15):7482-7487.
    [239]NOLASCO M M,RIBEIRO-CLARO P J A.C-H...O hydrogen bonds in cyclohexenone reveal the spectroscopic behavior of Csp3- and Csp2-H donors [J].ChemPhysChem,2005,6(3):496-502.
    [240]YUKHNEVICH G V,TARAKANOVA E G.Hydrogen bond CH...O in liquid methanol [J].Journal of Molecular Structure,1998,447(3):257.
    [241]MARQUES M P M,AMORIM DA COSTA A M,RIBEIRO-CLARO P J A.Evidence of C-H...O Hydrogen Bonds in Liquid 4-Ethoxybenzaldehyde by NMR and Vibrational Spectroscopies[J].J.Phys.Chem.A,2001,105(21):5292-5297.
    [242]JEDLOVSZKY P,TURI L.Role of the C-H...O Hydrogen Bonds in Liquids:A Monte Carlo Simulation Study of Liquid Formic Acid Using a Newly Developed Pair-Potential [J].J.Phys.Chem.B,1997,101(27)-.5429-5436.
    [243]MICHELLE KUTTEL J W B K J N.Carbohydrate solution simulations:Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations[J].Journal of Computational Chemistry,2002,23(13):1236-1243.
    [244]REILINGS,SCHLENKRICH M,BRICKMANN J.Force Field Parameters for Carbohydrates [J].Journal of Computational Chemistry,1996,17(4):450-468.
    [245]RYCKAERT J P.Special geometrical constraints in the molecular dynamics of chain molecules [J].Molecular Physics,1985,55(3):549-556.
    [246]DARDEN T,YORK D,PEDERSEN L.Particle mesh Ewald:An N log (N) method for Ewald sums in large systems[J].J.Chem.Phys.,1993,98(12):10089.
    [247]MARTYNA G J,TOBIAS D J,KLEIN M L.Constant pressure molecular dynamics algorithms [J].Journal of Chemical Physics,1994,101(5):4177-4189.
    [248]FELLER S E,ZHANG Y,PASTOR RW,et al.Constant pressure molecular dynamics simulation:The Langevin piston method[J].The Journal of Chemical Physics,1995,103(11):4613-4621.
    [249]BRUNGER A T,X-PLOR.1992,The Howard Hugher Medical Institute and Department of Molecular Biophysics and Biochemistry:Yale University,p.A System for X-ray Crystallography and NMR.
    [250]HAYWARD J A,REIMERS J R.Unit cells for the simulation of hexagonal ice [J].J.Chem.Phys.,1997,106(4):1518.
    [251]GUARDIA E,MARTI J,GARCIA-TARRES L,et al.A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions[J].Journal of Molecular Liquids,2005,117:63-67.
    [252]JEFFREY G A.Hydrogen-Bonding:An Update[J].Crystallography Reviews,2003,9(2-3):135-176.
    [253]ALBINATI A,ROUSE K D,THOMAS M W.Neutron powder diffraction analysis of hydrogen-bonded solids.Ⅱ.Structural study of formic acid at 4.5 K[J].Acta Crystallographica Section B,1978,34(7):2188-2190.
    [254]ELOLA M D,LADANYI B M.Computational study of structural and dynamical properties of formamide-water mixtures [J].The Journal of Chemical Physics,2006,125(18):184506-13.
    [255]MATSUMOTO M,GUBBINS K E.Hydrogen bonding in liquid methanol [J].Journal of Chemical Physics 1990,93:1981.
    [256]FERRARIO M,HAUGHNEY M,MCDONALD I R,et al.Molecular-dynamics simulation of aqueous mixtures:Methanol,acetone,and ammonia[J].The Journal of Chemical Physics,1990,93:5156.
    [257]LEE H-S,TUCKERMAN M E.Dynamical properties of liquid water from ab initio molecular dynamics performed in the complete basis set limit[J].The Journal of Chemical Physics,2007,126(16):164501-16.
    [258]LUZAR A,CHANDLER D.Effect of Environment on Hydrogen Bond Dynamics in Liquid Water [J].Physical Review Letters,1996,76(6):928.
    [259]LUZAR A,CHANDLER D.Hydrogen-bond kinetics in liquid water[J].Nature,1996,379:55.
    [260]XU H,STERN H A,BERNE B J.Can Water Polarizability Be Ignored in Hydrogen Bond Kinetics?[J].The Journal of Physical Chemistry B,2002,106(8):2054-2060.
    [261]SESE G,GUARDIA E,PADRO J A.Molecular dynamics study of Na~+ and Cl~- in methanol [J].The Journal of Chemical Physics,1996,105(19):8826-8834.
    [262]KROPMAN M F,BARKER H J.Dynamics of water molecules in aqueous solvation shells [J].Science,2001,291:2118.
    [263]ENDERBY J E.Ion Solvation via Neutron Scattering[J].Chemical Society Reviews,1995,24:159-168.
    [264]BRODHOLT J P.Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures[J].Chemical Geology,1998,151 (1-4):11-19.
    [265]CHOWDHURI S,CHANDRA A.Hydrogen bonds in aqueous electrolyte solutions:Statistics and dynamics based on both geometric and energetic criteria[J].Physical Review E,2002,66(4):041203.
    [266]ZAHN D.Atomistic Mechanism of NaCl Nucleation from an Aqueous Solution[J].Physical Review Letters,2004,92(4):040801.
    [267]PATRA M,KARTTUNEN M.Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions:Diffusion,free energy of hydration and structural properties[J].Journal of Computational Chemistry,2004,25:678-689.
    [268]NYGARD K,HSKALS M,MANNINEN S,et al.Ion hydration studied by x-ray Compton scattering[J].Physical Review B,2006,73:024208.
    [269]KHALACK J M,LYUBARTSEV A P.Car-Parrinello molecular dynamics simulations of Na~+ -Cl~-ion pair in liquid water[J].Condensed Matter Physics,2004,7(4):683.
    [270]LAAGE D,HYNES J T.Reorientional dynamics of water molecules in anionic hydration shells[J].PNAS,2007,104(27):11167.
    [271]PAULSON S L,BARNES A J.Trihalogenomethane-base complexes studied by vibrational spectroscopy in low-temperature matrices [J].Journal of Molecular Structure,1982,80:151.
    [272]TRUDEAU G,DUMAS J M,DUPUIS P,et al.Intermolecular interactions and anesthesia:infrared spectroscopic studies[J].Topics in Current Chemistry,1980,93:91.
    [273]HOBZA P,SANDORFY C.Quantum chemical and statistical thermodynamic investigations of anesthetic activity.3.The interaction between CH4,CH3Cl,CH2Cl2,CHCl3,CCl4,and an O-H...O hydrogen bond[J].Can.J.Chem.,1984,62:606.
    [274]JUWARKER H,LENHARDT J M,PHAM D M,et al.1,2,3-Triazole CH...Cl~-Contacts Guide Anion Binding and Concomitant Folding in 1,4-Diaryl Triazole Oligomers [J].Angewandte Chemie,2008,120(20):3800-3803.
    [275]LI Y,FLOOD A H.Pure C-H Hydrogen Bonding to Chloride Ions:A Preorganized and Rigid Macrocyclic Receptor [J].Angewandte Chemie International Edition,2008,47(14):2649-2652.
    [276]SMITH D E,DANG L X.Computer simulations of NaCl association in polarizable water [J].The Journal of Chemical Physics,1994,100(5):3757-3766.
    [277]BRODHOLT J P.Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures[J].Chemical Geology,1998,151:11-19.
    [278]VRBKA L,JUNGWIRTH P.Molecular dynamics simulations of freezing of water and salt solutions[J].Journal of Molecular Liquids,2007,134:64-70.
    [279]MARTI J.Transition Path Sampling Study of the Local Molecular Structure in the Aqueous Solvation of Sodium Chloride[J].Molecular Simulation,2001,27(3):169-185.
    [280]NEILSON G W,ENDERBY J E.Neutron and X-ray diffraction studies of concentrated aqueous electrolyte solutions[J].Annu.Rep.Prog.Chem.Sect.C:Phys.Chem.,1979,76:185-220.
    [281]POWELL D H,NEILSON G W,ENDERBY J E.The structure of CI-in aqueous solution:an experimental determination of gClH(r) and gC10(r) [J].Journal of Physics:Condensed Matter,1993,5(32):5723-5730.
    [282]KOYAMA Y,TANAKA H,GAO G,et al.Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials[J].Journal of Chemical Physics,2004,121(16):7926.
    [283]TO E C H,DAVIES J V,TUCKER M,et al.Excess Chemical Potentials,Excess Partial Molar Enthalpies,Entropies,Volumes,and Isobaric Thermal Expansivities of Aqueous Glycerol at 25° C[J].Journal of Solution Chemistry,1999,28(10):1137-1157.
    [284]PARSONS M T,WESTH P,DAVIES J V,et al.A Thermodynamic Study of 1-Propanol-Glycerol-H20 at 25° C:Effect of Glycerol on Molecular Organization of H2O [J].Journal of Solution Chemistry,2001,30(11):1007-1028.
    [285]HAYES A R,PEGG D E.Physical data relevant to the use of ethane-1,2-diol (ethylene glycol) as a cryoprotectant[J].Cryoletters,1996,17:249-256.
    [286]WEAST R C.Handbook of chemistry and physics[M].Cleveland:CRC,1976.
    [287]MATSUMOTO M.Relevance of hydrogen bond definitions in liquid water[J].Journal of Chemical Physics,2007,126:054503.
    [288]LOOF H D,NILSSON L,RIGLER R.Molecular Dynamics Simulation of Galanin in Aqueous and Nonaqueous Solution[J],J.Am.Chem.Soc.,1992,114:4028-4035.
    [289]NAG A,CHAKRABORTY D,CHANDRA A.Effects of ion concentration on the hydration bonded structure of water in the vicinity of ions in aqueous NaCl solutions[J].J.Chem.Sci.,2008,120(1):71-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700