用户名: 密码: 验证码:
密集颗粒系统的离散单元模型及其宏观力学行为特征的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒物质是自然界存在最多、工程应用最为广泛的物质类型之一,这类物质通常会表现出许多非常复杂的物理性质。作为这一领域的基础性课题,颗粒物质的力学行为研究成为当前科学研究中遇到的最棘手问题之一。系统内粒子的离散性和粒子间作用的非线性耗散性,使得颗粒物质的许多宏观特性都与系统内部的微观力学行为有着密切的联系,因此要研究和揭示颗粒系统产生宏观静态、动态性质的机理,就必须对系统内粒子的排列、接触、碰撞、运动等微观力学性质进行深入分析。本文基于改进的颗粒离散元模型,针对密集颗粒系统在准静态加载下的变形特征及剪切颗粒流的动力学行为等基础性问题,通过对微观尺度下粒子间力学行为的分析与统计,研究和揭示了系统在宏观尺度下的变形及流动行为,在此基础上分析了颗粒系统内接触力网的分布及演化特征。主要工作如下:
     首先,考虑颗粒间发生滚动时的接触特征,给出了一种简化的颗粒滚动接触模型,在此基础上建立了分析和模拟密集颗粒系统的改进离散元模型。同时,给出了不同条件下密集颗粒样本的生成方法,分析了边界应力、初始构型、加载速率、粒子间的摩擦系数等对颗粒系统目标构型的影响。通过对微观尺度下粒子运动的分析与统计,研究了随机分布的密集颗粒系统在平面应变加载状态下的变形特征,得到的宏观变形模式与相应的实验结果吻合良好。数值模拟结果表明:在准静态加载状态下各种材料参数和因素如空隙比、围压、粒子间的摩擦系数等都会对系统的变形特征、承载能力和整体稳定性产生重要的影响。
     其次,从微观尺度下粒子的运动特征出发,利用统计分析的方法研究了环形剪切颗粒流的宏观动力学特性。建立的离散动力学模型和统计方法可以较好的预测已有的实验结果。根据初始体积分数、剪切率、摩擦系数等对系统内剪切速度廓线、局部体积分数和配位数等的影响规律,分析了剪切颗粒系统的平均流动特征。同时,利用概率统计的方法研究了系统内切向速度、法向速度、自旋角速度的分布特征,揭示了不同局部区域内微观粒子的特殊运动现象。最后通过考虑粒子的速度波动,分析了剪切颗粒流内粒子的自扩散系数及其输运特征。通过从不同方面对系统内微观特征量的统计分析,可以为准确有效的描述和刻画不同流动状态下的密集颗粒系统提供重要的理论依据。
     最后,分析了密集颗粒系统内接触力网的分布及演化特征。对系统内接触力网的分析统计有助于从机理上揭示颗粒系统的许多静、动态性质。为此,本文给出了一种颗粒系统内不同力尺度下接触力网的统计方法,并通过与相关实验结果的对比,验证了计算和统计方法的有效性。根据微观尺度下粒子的排列及接触特征,研究了静态堆积颗粒系统和围压约束下静态颗粒系统中接触力网的分布特征,同时分析了粒径分布、体积分数、边界条件等对接触力分布特征的影响。最后对动态剪切颗粒流中的接触力分布进行了研究,主要考虑了不同力尺度下接触力网的演化特征,模拟结果表明在剪切颗粒流内边界剪切会促使系统发生明显的状态转变,强接触力网沿着剪切方向也会表现出各向异性的特征。
     总之,通过本文对密集颗粒系统在准静态条件下的微观变形特征、剪切作用下的流动特征以及系统内接触力网分布特征的研究,可以为揭示和分析密集颗粒系统不同加载状态下的宏观力学行为特征提供微观尺度下的理论依据。此外,开展这方面的基础研究也可以为地质、化工、能源、医药等学科研究和工业部门提供基本的分析方法和定量成果,同时对完善力学自身研究框架体系也具有重要的意义。
Granular matter is widely encountered in the nature and engineering applications, and usually may exhibit many complex and special features. At present, studies of granular material have become a very important research field as such matter has wide applications and scientific implications. The macroscopic behavior of granular material is mostly dependent on the interaction operating between particles. So the understanding on the fundamental properties granular material can only be obtained on the basis of micro-mechanical consideration, for example, arrangement, contact, collision and motion of the discrete particles in space. Based the modified discrete element method, this thesis mainly investigates the localized deformation of stochastic distributed granular material under plain strain conditions and dynamical features of shearing granular flow. Though analysis and statistics of micro-mechanical quantities, we investigate deformation and flow features of granular system on the macro scale. At last, we also investigate the distributing and evolution features of contact force network in dense granular systems. The main works are concluded as follows:
     Firstly, Considering the rolling resistance between particles, a modified discrete element model(MDEM) is established to simulate the dense granular system. For different packing fractions and loading conditions, we have presented several specimen generation methods. The influences of boundary stress, initial configuration, loading rate and friction coefficient between particles on the state and configuration of dense granular system are also examined. Moreover, the features of the localized deformation in stochastically granular material are investigated under plain strain conditions, and obtained pattern of the macro deformation is well consist with measurements. The numerical results show that various material parameters or factors have significant influences on localized deformation features, capacity of carrying loading and whole stability of granular materials.
     Secondly, based microscopic motions of particles inside granular system, we have analyzed the macroscopic mechanical features of annular shear granular flow using probability statistic method. The predictions of the proposed discrete dynamical model and statistical method are quite agreeable with the existing experimental results. By considering the influences of initial packing fraction, shear rate and friction coefficient on the shear velocity profile, local packing fraction and coordinate number, we have investigate the mean flow features inside shear granular flows. We have also analyzed the distributing features of tangential velocity, radial velocity and spin angular velocity, and revealed some special particle motions inside different local regions. At last, using velocity fluctuations of microscopic particles, we investigate the self-diffusivity and transport processes inside shear granular flows. Such different kind's statistical results can provide an important theoretical basis for describing the dense shear granular flow accurately.
     Finally, the distributing and evolving features of contact force network in dense granular systems are investigated. The contact force network may provide a micro-mechanism for revealing the static, dynamic features in granular systems. So a statistical method under different force scales about the contact force network inside granular systems is presented, and it is also verified by comparing with the counterpart experiment results. We investigate the contact force distributions inside the static granular systems under the conditions of stochastic packing and confining pressure constraint. The influences of particle size distribution, packing fraction and constraint condition are also considered. Finally, we put our attention on the evolving features of contact force network inside a dynamical shear granular flow. From the numerical results we find a jamming transition and shear-induced anisotropy in dense shear granular flows.
     After all, the theoretical investigations of localized deformations under quasi-static loading, dynamical features under shearing, and distributing features of contact force network in dense granular systems must be important and useful for precise revealing and prediction macro mechanical features of granular systems. Moreover, such fundamental researches can provide some basic analysis methods and quantitative results for geological, chemical, energy, and pharmaceutical engineering, et al, and it is very important for improving the research framework of mechanical system.
引文
[1]Nicot F,Darve F.A multi-scale approach to granular materials.Mechanics of Materials,2005,37:980-1006.
    [2]肖文波,胡林.颗粒物质的两个典型效应及其研究现状的分析.物理实验,2004,24(3):44-46.
    [3]Zuriguel I,Garcimartin A,Maza D,Pugnaloni L A,Pastor J M.Jamming during the discharge of granular matter from a silo.Phys.Rev.E,2005,71:051303.
    [4]Br(a|¨)uer K,Pfitzner M,Krimer D O,Mayer M,Jiang Y M,Liu M.Granular elasticity:Stress distributions in silos and under point loads.Phys.Rev.E,2006,74:061311.
    [5]Fazekas S,T(o|¨)r(o|¨)k.J,Kert(?)sz J.Critical packing in granular shear bands.Phys.Rev.E,2007,75:011302.
    [6]Kiwing T,Lai P Y,Pak H K.Jamming of Granular Flow in a Two-Dimensional Hopper.Phys.Rev.Lett.,2001,86:71-74.
    [7]Hirshfeld D,Rapaport D C.Granular flow from a silo:Discrete-particle simulations in three Dimensions.Eur.Phys.J.E,2001,4:193-199.
    [8]姜泽辉,陆坤权,厚美英,陈唯,陈相君.振动颗粒混合物中的三明治分离.物理学报,2003,52(9):2244-2248.
    [9]史庆藩,阎学群,厚美英,朱小娟,陆坤权.振动混合颗粒形成的巴西果分层及其相图的实验观测.科学通报,2003,48(4):328-330.
    [10]Shinbrot.T.Granular material:The brazil nut effect? In reverse.Nature,2004,429:352-353.
    [11]Catherall A T,L(?)pez-Alcaraz P,S(?)nchez P,Swift M R,King P J.Separation of binary granular mixtures under vibration and differential magnetic levitation force.Phys.Rev.E,2005,71:021303.
    [12]Schr(o|¨)ter M,Ulrich S,Kreft J,Swift J B,Swinney H L.Mechanisms in the size segregation of a binary granular mixture.Phys.Rev.E,2006,74:011307.
    [13]肖文波,胡林,蔡绍洪.颗粒物质中的坍塌现象.中国沙漠,2004,24(6):798-801.
    [14]Bak P,Tang C,Wiesenfeld K.Self-Organized criticality:An explanation of 1/f noise.Phys.Rev.Lett.,1987,59:381-384.
    [15]Lemieux.P.A,Durian D.J.From avalanches to fluid flow:a continuous picture of grain dynamics down a heap.Phys.Rev.Lett.,2000,85(20):4273-4276.
    [16]N(u|¨)bel K,Huang W X.A study of localized deformation pattern in granular media.Comput.Methods Appl.Mech.Engrg.,2004,193:2719-2743.
    [17]Bruji(?) J,Wang P,Song C M,Johnson D L,Sindt O,Makse H A.Granular Dynamics in Compaction and Stress Relaxation.Phys.Rev.Lett.,2005,95:128001.
    [18]Wang Dengming,ZHOU Youhe.Discrete element simulation of localized deformation in stochastic distributed granular materials.Science in China Series G,2008,51(9):1403-1415.
    [19]Fierro A,Nicodemi M,Tarzia M,Candia A,Coniglio A.Jamming transition in granular media:A mean-field approximation and numerical simulations.Phys.Rev.E,2005,71:061305
    [20]季顺迎,Shen H H.颗粒介质在类固-液相变过程中的时空参数特征.科学通报,2006,51(3):255-262.
    [21]Potiguar F Q,Makse H A.Effective temperature and jamming transition in dense,gently sheared granular assemblies.Eur.Phys.J.E,2006,19:171-183.
    [22]季顺迎.非均匀颗粒材料的类固-液相变行为及本构方程.力学学报,2007.39(2):223-237.
    [23]Majmudar T S,Sperl M,Luding S,Behringer R P.Jamming Transition in Granular Systems.Phys.Rev.Lett.,2007,98:058001.
    [24]Hsiau S S,Yang S C.Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges.Chemical Engineering Science,2003,58:339-351.
    [25]Choi J,Kudrolli A,Rosales R R,Bazant M Z.Diffusion and Mixing in gravity-Driven Dense Granular Flows.Phys.Rev.Lett.,2004,92:174301.
    [26]Geng J F,Behringer R P.Diffusion and Mobility in a Stirred Dense Granular Material.Phys.Rev.Lett.,2004,93:238002.
    [27]Utter B,Behringer R P.Self-diffusion in dense granular shear flows.Phys.Rev.E,2004,69:031308
    [28]Yang W L,Hsiau S S.The effect of liquid viscosity on sheared granular flows.Chemical Engineering Science,2006,61:6085-6095.
    [29]Rosato A D,Lan Y D,Richman M W.On the calculation of self-diffusion in vertically agitated granular beds.Powder Technology,2008,182:228-231.
    [30]Evgeny S.Asmolov.Shear-induced self-diffusion in a wall-bounded dilute suspension.Phys.Rev.E,2008,77:066312.
    [31]陈伟中,魏荣爵,王本仁.孤子形隆起的形成机制的实验研究.科学通报,1996,41(9):980-982.
    [32]缪国庆,隋磊,魏荣爵.颗粒物质表面波动的简单模型.声学技术,2000,19(3):110-111.
    [33]Kim K,Pak H K.Ordering dynamics of striped patterns in vertically vibrated granular layers.Physica A,2002,315:181-186.
    [34]Conway S L,Glasser B J.Density waves and coherent structures in granular Couette flows.Physics of Fluids,2004,16(3):509-529.
    [35]Hostler S R,Brennen C E.Pressure wave propagation in a granular bed.Phys.Rev.E,2005,72:031303.
    [36]Eakins D,Thadhani N N.Discrete particle simulation of shock wave propagation in a binary Ni+Al powder mixture.Journal of Applied Physics,2007,101:043508.
    [37]陆坤权,刘寄星.颗粒物质(上).物理,2004,33(9):629-635.
    [38]Gennes PG.de.Granular matter:a tentative view.Reviews of Modern Physics,1999,71(2):S374-S382.
    [39]Ahadi A,Krenk S.Implicit integration of plasticity models for granular materials.Comput.Methods.Appl.Mech.Engrg.,2003,192:3471-3488.
    [40]Shen Z J.Development of structural model for soils.Computer Method and Advance in Geomehamics.1997:235-240.
    [41]Mehrabadi M M,Nemat-Nasser S,Oda M.On statistical description of stess and fabric in granular mechanics.Int J Numer Anal Meth Geomech,1982,6(1):95-108.
    [42]Nemat-Nasser S.A micromechanically-based constitutive model for firctional deformation of granular materials.Journal of the Mechanics and Physics of Solids,2000,48:1541-1563.
    [43]Nemat-Nasser S,Zhang J H.Constitutive relations for cohesionless frictional granular materials.International Journal of Plasticity,2002,18:531-547.
    [44]Chang C S,Ma L.A Micromechanical-Based microploar Theory for Deformation of Granular Solids.Journal of Solid Stuctures,1991,28(1):67-86.
    [45]Chang C S,Ma L.Elastic Material Constants for lsotropic Granular materials,Journal of Solid Structures,1992,29(8):1001-1018.
    [46]Ching S,Chang S J,Chang Y.Estimates of elastic moduli for granular material with anisotropic random packing structure.Journal of Solid Structures,1995,32(14):1989-2008.
    [47]Fadeev A.Prospers of Geological Materials and their Realization by Finite Element Method.Computer Methods and Advances Geomechanics,1997:133-139.
    [48]Trentadue F.A micromechanical model for a non-linear elastic granular material based on local equilibrium conditions.International Journal of Solids and Structures,2001,38:7319-7342.
    [49]Nguyen V H,Duhamel D,Nedjar B.A continuum model for granular materials taking into account the no-tension effect.Mechanics of Materials,2003,35:955-967.
    [50]Brrzsrnyi T,Eckel R E.Rapid granular flows on a rough incline:Phase diagram,gas transition,and effects of air drag.Phys.Rev.E,2006,74:061301.
    [51]李水清等.回转筒颗粒表面流的分子动力学模拟和连续理论.科学通报,2006,51(19):2319-2326.
    [52]孙其诚,王光谦.颗粒流动力学及其离散模型评述.力学进展,2008,38(1):8-100.
    [53]吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展.力学进展,2002,32(2):251-258.
    [54]Farrell M,Lun C K,Savage S B.A Simple Kinetic Theory for Granular Flow of Binary Mixtures of Smooth,Inelastic,Spherical Particles.Acta Meehanica,1986,63:45-60.
    [55]Kim S R,Woodcock L V.Kinetic Theory of Granular Shear Flow:Constitutive Relations for the Hard-Disk Model.Journal of Statistical Physics,1993,71,143-162.
    [56]Brey J J,Moreno F,Dufty J W.Model kinetic equation for low-density granular flow.Phys.Rev.E,1996,54:445-456.
    [57]Popken L,Paul W.Clearyy P W.Comparison of Kinetic Theory and Discrete Element Schemes for Modelling Granular Couette Flows.Journal of Computational Physics,1999,155:1-25.
    [58]Massoudi M,Boyle E J.A continuum-kinetic theory approach to the rapid flow of granular materials:the efects of volume fraction gradient.International Journal of Non-Linear Mechanics,2001,36:637-648.
    [59]Liu H P,Liu W T,Zheng J X,Ding J M,Zhao X J,Lu H L.Numerical study of gas-solid flow in a precalciner using kinetic theory of granular flow.Chemical Engineering Journal,2004,102:151-160.
    [60]Montanero J M,Luding S.Rheology of two-and three-dimensional granular mixtures under uniform shear flow:Enskog kinetic theory versus molecular dynamics simulations.Granular Matter,2006,8:103-115.
    [61]Campbell C S.Granular material flows-An overview.Powder Technology,2006,162:208-229.
    [62]Baxter G W,Behringer R P.Cellular automata models of granular flow.Phys.Rev.E,1990,42:1017.
    [63]Fitt A D,Wilmott P.Cellular-automaton model for segregation of a two-species granular flow.Phys.Rev.E,1992,45:2383.
    [64]Ktitarev D V,Wolf D E.Stratification of granular matter in a rotating drum:cellular automaton modeling.Granular Matter,1998,1:141-144.
    [65]Yanagita T.Three-dimensional cellular automation model of segregation of granular materials in a rotating cylinder.Phys.Rev.Lett.,1999,82:3488.
    [66]Kozicki J,Tejchman J.Application of a cellular automaton to simulations of granular flow in silos.Granular Matter,2005,7:45-54.
    [67]LaMarche K R,Conway S L,Glasser B J,Shinbrot T.Cellular automata model of gravity-driven granular flows.Granular Matter,2007,9:219-229.
    [68]Alder B,Wainwright T E.Phase transition for a hard-sphere system.J.Chem.Phys.,1957,27:1208-1209.
    [69]Ercolessi F.A molecular dynamics primer.Spring College in computational physics,ICTP,Trieste.1997.
    [70]Zheng X M,Hill J M.Molecular dynamics modelling of granular chute flow:density and velocity profiles.Powder Technology,1996,86:219-227.
    [71]Zheng X M,Hill J M.Molecular dynamics simulation of granular flows:Slip along rough inclined planes.Computational Mechanics,1996,22:160-166.
    [72]Dippel S,Wolf D E.Molecular dynamics simulations of granular chute flow.Computer Physics Communications,1999,121:284-289.
    [73]Herrmann H J,M(u|¨)ller M Simulations of granular materials on different scales.Computer Physics Communications,2000,127:120-125.
    [74]胡国琦,张训生,鲍德松,唐孝威.二维颗粒流通道宽度效应的分子动力学模拟.物理学报,2004,53(12):4277-4281.
    [75]Li S Q,YAO Q,Chen B,Zhang X,Ding Y L.Molecular dynamics simulation and continuum model-ling of granular surface flow in rotating drums.Chinese Science Bulletin,2007,52(5):692-700.
    [76]Kamrin K,Bazant M Z.Stochastic flow rule for granular materials.Phys.Rev.E,2007,75:041301
    [77]Cundall P A,Strack O D L.A discrete numerical model for granular assemblies.Geotechnique,1979,299(1):47-65.
    [78]Rhodes M J.Study of Mixing in gas-fluidized beds using a DEM model.Chemical Engineering Science,2001,56:2859-2866.
    [79]Cleary P W,Hoyer D.Centrifugal mill charge motion and power draw:Comparison of DEM predictions with experiment.International Journal of Mineral Processing,2000,59(2):131-148.
    [80]Zhou Y C,Xu B H.An experimental and numerical study of the angle of repose of course spheres.Powder Technology,2002,125(1):45-54.
    [81]栗苏文,夏建新,曹斌.颗粒流动特殊现象探析.泥沙研究,2005,6:65-69.
    [82]徐泳.用颗粒离散元法模拟粮仓卸料过程.农业科技学报,1999,15(3):65-69.
    [83]张翠兵等.抛石散体密实过程的离散元数值模拟.岩土力学与工程学报,2004,23(1):95-100.
    [84]Zhou Y H,Li W Q,Zheng X J.Particle dynamics method simulations of stochastic collisions of sandy grain bed with mixed size in aeolian sand saltation.Journal of Geophysical Research,2006,111:D15108.
    [85]Li W Q,Zhou Y H.Statistical behaviors of different-sized grains lifting off in stochastic collisions between mixed sand grains and the bed in aeolian saltation.Journal of Geophysical Research,2007,112:D22106.
    [86]李万清.风沙跃移运动的粒-床随机碰撞数值模拟研究.博士学位论文:兰州大学,2007.
    [87]李万清,周又和,郑晓静.风沙跃移运动发展过程的离散动力学模拟.中国沙漠,2006,26(1):47-53.
    [88]Zheng X J,Zhu W,Xie L.A probability density function of liftoff velocities in mixed-size wind sand flux.Science in China(Series G),2008,51(8):976-985.
    [89]Zheng X J,Bo T L,Zhu W.A Scale-Coupled Method for Simulation of the Formation and Evolution of Aeolian Dune Field.International Journal of Nonlinear Sciences and Numerical Simulation.2009.in Press.
    [90]Tillemans H J,Herrmann H J.Simulating deformations of granular solids under shear.Physica A,1995,217:261-288.
    [91]Lekarp F,Dawson A.Modelling permanent deformation behaviour of unbound granular materials.Construction and Building Materials,1998,12(1):9-18.
    [92]Bension D J,Nesterenko V F,Jonsdottir F,Meyers M A.Quasistatic and Dynamic regimes of Granular Material Deformation Under Impulse Loading.J.Mech.Phys.Solids,1997,45(11):1955-1999.
    [93]Zhu H,Morteza,Mehrabadi M M,Massoudi M.Incorporating the effects of fabric in the dilatant double shearing model for planar deformation of granular materials.International Journal of Plasticity,2006,22:628-653.
    [94]IP(?)rez I,Medina L,Romana M G.Permanent deformation models for a granular material used in road pavements.Construction and Building Materials,2006,20:790-800.
    [95]Wang C H,Tong Z.Transient development of instabilities in bounded shear flow of granular materials.Chemical Engineering Science,1998,53(22):3803-3819.
    [96]Grotenhuis S M,Passchier C W,Bons P D.The influence of strain localization on the rotation behaviour of rigid objects in experimental shear zones.Journal of Structural Geology,2002,24:485-499.
    [97]Oda M,Konishi J,Nemat-Nasser S.Experimental micromechanical evaluation of strength of granular materials:Effects of particle rolling.Mechanics of Material,1982,1(4):269-283.
    [98]Muhlhaus H B,Vardoulakis I.The thickness of shear bands in granular materials.Geotechnique,1987,37(3):271-283.
    [99]Han C,Vardoulakis I,Plane-strain compression experiments on water-saturated fine-grained sand.Geotechnique,1991,41 (1):49-78.
    [100]Finno R J,Harris W W,Mooney M A,Viggiani G.Shear bands in plane strain compression of loose sand.Geotechnique,1997,47 (1):149-165.
    [101]Desrues J,Viggiani G.2004.Strain localization in sand:an overview of the experimental results obtained in Grenoble using sterophotgrammetery.Int.J.Numer.Anal.Methods Geomech.2004,28:279-321.
    [102]Alshibli K A,Batiste S N,Share S.Strain localization in sand:plane strain versus triaxial compression.J.Geotech.Geoenviron.Eng,2003,129 (6):483-494.
    [103]Vardoulakis 1,Goldscheider M,Gudehus G.Formation of shear bands in sand bodies as a bifurcation problem.Int.J.Numer.Anal.Methods Geomech,1978,2:99-128.
    [104]Lade P V.Instability,shear banding,and failure in granular materials.Int.J.Solids Struct,2002,39:3337-3357.
    [105]Alshibli K A,Batiste S N,Sture S.Strain localization in sand:plane strain versus triaxial compression.J.Geotech.Geoenviron.Eng.2003,129 (6):483-494.
    [106]Lade P V,Wang Q.Analysis of shear banding in true triaxial tests on sand.J.Eng.Mech.2001,127 (8):762-768.
    [107]Hill S A,Mazenko G F.Nonlinear hydrodynamical approach to granular materials.Phys.Rev.E,2001,63:031303.
    [108]Rothenburg L,Kruyt N P.Micromechanical definition of an entropy for quasi-static deformation of granular materials.Journal of the Mechanics and Physics of Solids,2009,57:634-655.
    [109]Tejchman J.Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements,Computers and Geotechnics,2004,31:595-611.
    [110]Gardiner B S,Tordesillas A.Micromechanics of shear bands.International Journal of Solids and Structures,2004,41:5885-5901.
    [111]Schultz R A,Siddharthan R.A general framework for the occurrence and faulting of deformation bands in porous granular rocks.Tectonophysics,2005,411:1-18.
    [112]Iwashita K,Oda M.Rolling resistance at contacts in simulation of shear band development by DEM.Journal of Engineering Mechanics,ASCE,1998,124(3):285-292.
    [113]Iwashita K,Oda M.Micro-deformation mechanics of shear banding process based on modified distinct element method.Powder Technology,2000,109:192-205.
    [114]Jiang M J,Yu H S,Harris D.A novel discrete model for granular material incorporating rolling resistance.Computers and Geotechnics,2005,32:340-357.
    [115]Hu N,Molinari J F.Shear bands in dense metallic granular materials.Journal of the Mechanics and Physics Solids,2004,52:499-531.
    [116]Volfson D,Tsimring L S,Aranson I S.Partially fluidized shear granular flows:continuum theory and molecular dynamics simulations.Phys.Rev.E,2003,68:021301.
    [117]Tan M L,Goldhirsch I.Rapid granular flows as mesoscopic systems.Phys.Rev.Lett.,1998,81:3022.
    [118]Midi G.On dense granular flows.Eur.Phys.J.E,2004,14:341-365.
    [119]Veje C T,Howell D W,Behringer R P.Kinematics of a two-dimensional granular Couette experiment at the transition to shearing.Phys Rev E,1999,59:739-745.
    [120]Utter B,Behringer R P.Transients in sheared granular matter.Eur.Phys.J.E,2004,14:373-380.
    [121]Geng J,Behringer R P.Slow drag in two-dimensional granular media.Phys Rev E,2005,71:011302.
    [122]Losert W,Bocquet L,Lubensky T C,Gollub J P.Particle dynamics in sheared granular matter.Phys.Rev.Lett.,2000,85:1428.
    [123]Mueth D M.Measurements of particle dynamics in slow,dense granular Couette flow.Phys Rev E,2003,67:011304.
    [124]Mueth D M,Debregeas G F,Karczmar G S,Eng P J,Nagel S R,Jaeger H M.Signatures of granular microstructure in dense shear flows.Nature,2000,406:385-389.
    [125]Cheng X,Lechman J B,F-Barbero A,Grest G S,Jaeger H M.Three-Dimensional Shear in Granular Flow.Phys.Rev.Lett.,2006,96:038001.
    [126]Cruz F da,Emam S,Prochnow M,Roux J N,Chevoir F.RJieophysics of dense granular materials:Discrete simulation of plane shear flows.Phys.Rev.E,2005,72:021309.
    [127]Aharonov E,Sparks D.Shear profiles and localization in simulations of granular materials.Phys Rev E,2002,65:051302.
    [128]Bose M,Kumaran V.Velocity distribution for a two-dimensional sheared granular flow.Phys.Rev.E,2004,69:061301.
    [129]Schollmann S.Simulation of a two-dimensional shear cell.Phys Rev E.1999,59:889-899
    [130]Latzel M,Luding S,Herrmann H J,Howell D W,Behringer R P.Comparing Simulation and Experiment of a 2D Granular Couette Shear Device.Eur.Phys.J.E,2003,11:325-332
    [131]Iordanoff I,Fillot N,Berthier Y.Numerical study of a thin layer of cohesive particles under plane shearing.Powder Technology,2005,159:46-54
    [132]Xu N,O'Hern C S,Kondic L.Velocity Profiles in Repulsive Athermal Systems under Shear.Phys.Rev.Lett.,2005,94:016001.
    [133]Bray D J,Swift M R,King P J.Velocity statistics in dissipative,dense granular media.Phys.Rev.E,2007,75:062301.
    [134]Drozd J J,Denniston C.Velocity fluctuations in dense granular flows.Phys.Rev.E,2008,78:041304.
    [135]Gaeger H M,Nagel S R,Behringer R P.Granular solids,liquids,and gases.Rev.Mod.Phys.,1996,68:1259-1273.
    [136]Fraysse N,Thorne H,Petit L.Humidity effects on the stability of a sandpile.Eur.Phys.J.B,1999,11:615-619.
    [137]Antony S J,Kuhn M R.Influence of particle shape on granular contact signatures and shear strength:new insights from simulations.International Journal of Solids and Structures,2004,41:5863-5870.
    [138]Astrom J A,Herrmann H J.Fragmentation of grains in a two-dimensional packing.Eur.Phys.J.B,1998,5:551-554.
    [139]Siclen C D V.Force structure of frictionless granular piles.Physica A,2004,333:155-167.
    [140]Geng J F,Howell D,et al.Footprints in Sand:The Response of a Granular Material to Local Perturbations.Phys.Rev.Lett.,2001,87:035506.
    [141]Snoeijer J H,Ellenbroek W G,Vlugt T J H,Hecke M van.Sheared Force Networks:Anisotropies,Yielding,and Geometry.Phys.Rev.Lett.,2006,96:098001.
    [142]Majmudar T S,Behringer R P.Contact force measurements and stress-induced anisotropy in granular materials.Nature (London),2005,435:1079-1082.
    [143]Peters J F,Muthuswamy M,Wibowo J,Tordesillas A.Characterization of force chains in granular material.Phys.Rev.E,2005,72:041307.
    [144]Zhang D Z.Evolution of enduring contacts and stress relaxation in a dense granular medium.Phys.Rev.E, 2005,71:041303.
    [145]Goldenberg C,Goldhirsch I.Effects of friction and disorder on the quasistatic response of granular solids to a localized force.Phys.Rev.E,2008.77:041303.
    [146]Corwin E I,Jaeger H M,Nagel S R.Structural signature of jamming in granular media.Nature (London),2005,435:1075-1078.
    [147]Miller B,O'Hern C,Behringer R P.Stress Fluctuations for Continuously Sheared Granular Materials.Phys.Rev.Lett.,1996,77:3110.
    [148]Tsoungui O,Vallet D,Charmet J -C.Use of contact area trace to study the force distributions inside 2D granular systems.Granular Matter,1998,1:65-69.
    [149]Howell D,Behringer R P.Stress Fluctuations in a 2D Granular Couette Experiment:A Continuous Transition.Phys.Rev.Lett.,1999,82:5241.
    [150]Utter B,Behringer R P.Experimental measures of affine and nonaffine deformation in granular shear.Phys.Rev.Lett.,2008,100,208302.
    [151]Mueth D M,Jaeger H M,Nagel S R.Force distribution in a granular medium.Phys.Rev.E,1998,57:3164.
    [152]Erikson J M,Mueggenburg N W,Jaeger H M,Nagel S R.Force distributions in three-dimensional compressible granular packs.Phys.Rev.E,2002,66:040301.
    [153]Radjai F,Rous S,Moreau J J.Contact forces in a granular packing.Chaos,1999,9:544-550.
    [154]Makse H A,Johnson D L,Schwartz L M.Packing of Compressible Granular Materials,Phys.Rev.Lett.,2002,84:4160.
    [155]Radjai F,Jean M,Moreau J J,Roux S.Force Distributions in Dense Two-Dimensional Granular Systems.Phys.Rev.Lett.,1996,77:274.
    [156]Antony S J.Evolution of force distribution in three-dimensional granular media.Phys.Rev.E,2000,63:011302.
    [157]Kruyt N P.Contact forces in anisotropic frictional granular materials.International Journal of Solids and Structures,2003,40:3537-3556.
    [158]Ngan A H W.Mechanical analog of temperature for the description of force distribution in static granular packings.Phys.Rev.E,2003,68:011301.
    [159]Zhang H P,Makse H A.Jamming transition in emulsions and granular materials.Phys.Rev.E,2005,72:011301.
    [160]Eerd A R T,Ellenbroek W G,Hecke M,Snoeijer J H,Vlugt T J H.Tail of the contact force distribution in static granular materials.Phys.Rev.E,2007,75:060302.
    [161]O'Hern C S,Langer S A,Liu A J,Nagel S R.Random Packings of Frictionless Particles,.Phys.Rev.Lett.,2002,88:075507.
    [162]O'Hern C S,Langer S A,Liu A J,Nagel S R.Force Distributions near Jamming and Glass Transitions,Phys.Rev.Lett.,2001,86:111.
    [163]Coppersmith S N,Liu C H,Majumdar S,Narayan O,Witten T A.Model for force fluctuations in bead packs.Phys.Rev.E,1996,53:4673.
    [164]Snoeijer J H,Vlugt T J H,Ellenbroek W G,Hecke M,Leeuwen J M J.Ensemble theory for force networks in hyperstatic granular matter.Phys.Rev.E,2004,70:061306.
    [165]Snoeijer J H,Vlugt T J H.Hecke M,Saarloos W.Force Network Ensemble:A New Approach to Static Granular Matter.Phys.Rev.Lett.,2004,92:054302.
    [166]Tighe B P,Socolar J E S,Schaeffer D G,Mitchener W G,Huber M L.Force distributions in a triangular lattice of rigid bars.Phys.Rev.E,2005,72:031306.
    [167]Ostojic S,Panja D.Elasticity from the Force Network Ensemble in Granular Media,Phys.Rev.Lett.,2006,97:208001.
    [168]Kruyt N P,Rothenburg L.Probability density functions of contact forces for cohesionless frictional granular materials.International Journal of Solids and Structures,2002,39:571-579.
    [169]Ngan A H W.On distribution of contact forces in random granular packings.Physica A,2004,339:207-221.
    [170]Tighe B P,Eerd A R T,Vlugt A J H.Entropy Maximization in the Force Network Ensemble for Granular Solids.Phys.Rev.Lett.,2008,100:238001.
    [171]Lois G,Lema(?)tre A,Carlson J M.Spatial force correlations in granular shear flow.Ⅰ.Numerical evidence.Phys.Rev.E,2007,76:021302.
    [172]Lois G,Lema(?)tre A,Carlson J M.Spatial force correlations in granular shear flow.Ⅱ.Theoretical implications.Phys.Rev.E,2007,76:021303.
    [173]王泳嘉,邢纪波.离散单元法及其在岩土工程中的应用.沈阳:东北工学院出版社,1991.
    [174]刘凯欣,高凌天.离散元法研究的评述,力学进展,2003,33(4):483-490.
    [175]Taberlet N,Richard P,Hinch E J.S shape of a granular pile in a rotating drum.Phys.Rev.E,2006,73:050301.
    [176]Cleary P W,Hoyer D.Centrifugal mill charge motion and power draw:Comparison of EDM predictions with experiment.International Journal of Mineral Processing,2000,59(2):131-148.
    [177]Zhou Y C,Xu B H.An experimental and numerical study of the angle of repose of couase spheres.Powder Technology,2002,125(1):45-54.
    [178]徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展.力学进展,2003,33(2):251-260.
    [179]Boyalakuntla D S.Simulation of granular and Gas-Solid flows using discrete element method.[D]:Carnegie Mellon University,2003.
    [180]楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值办法.博士学位论文:大连理工大学,2006.
    [181]Dutt M.Numerical studies of substrate friction in granular materials.[D]:Duke University,2002.
    [182]亢力强.风沙两相流的PDPA测量与离散颗粒动力学研究.博士学位论文:西安交通大学,2006.
    [183]Vu-Quoc L,Zhang X,Walton O R.A 3-D discrete element method for dry granular flows of ellipsoidal particles.Comput.Methods Appl.Mech.Engrg.,2000,187:483-528.
    [184]Vu-Quoc L,Zhang X.An elastoplastic contact force-displacement model in the normal direction:displacement-driven version.Proc.R.Soc.Lond A,1999,455:4013-4044.
    [185]Han K,Peric D,Crook A J L,Owen D R J.A combined finite/discrete element simulation of peening processes,Part Ⅰ:Studies on 2D interaction laws.Engineering Computation,2000,17:593-619.
    [186]Elperin T,Golshtein E.Comparison of different models for tangential forces using the particle dynamics method.Physica A,1997,242:332-340.
    [187]Mindlin R D,Deresiewicz H.Elastic spheres in contact under varying oblique force.Journal of Applied Mechanics,1953,20:327-344.
    [188]Horner D A.Application of DEM to Micro-mechanical theory for large deformation of Granular media.[D]:University of Michigan,1997.
    [189]Haff P K,Anderson R S.Grain scale simulations of loose sedimentary beds:the example of grain-bed impacts in aeolian saltation.Sedimentology,1993,40:175-198.
    [190]Weber M W.Simulation of cohesive particle flows in granular and Gas-Solid systems.[D]:University of Missouri-Rolla,1998.
    [191]Nie X B.Simulation of Granular Flow and Micro-Flow.[D]:Johns Hopkins University,2003.
    [192]邢纪波,俞良群,张瑞丰,王泳嘉.离散单元法的计算参数和求解方法选择.计算力学学报,1999,16(1):47-51.
    [193]Renzo A D,Maio F P D.Comparison of contact models for the simulation of collisions in DEM-based granular flow codes.Chemical Engineering Science,2004,59:525-541.
    [194]Nezami E G,Hashash M A,Zhao D W,Ghaboussi J.A fast contact detection algorithm for 3-D discrete element method.Computers and Geotechnics,2004,31:575-587.
    [195]Verlet L.Computer “experiments” on classical fluids,I.Themodynamical properties of Lennard-Jones molecules.Phys.Rev.,1967,159:98-103.
    [196]秦建敏.基于离散元模拟的岩土力学性能研究及应变局部化理论分析.博士学位论文:大连理工大学,2007.
    [197]Vemuri B C,Chen L,Vu-Quou L.Efficient and accurate collision detection for granular flow simulation.Graphical Models and Image Processing,1998,60:403-422.
    [198]焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法.岩石力学与工程学报,2000,19:453-458.
    [199]Tanaka H,Momozu M,Oida A,Yamazaki M.Simulation of soil deformation and resistance at bar penetration by the distinct element method.Journal of Terramechanics,2000,37:41-56.
    [200]C.O'Sullivan.The application of discrete element modeling to finite deformation problems in geomechanics,[D]:University of California,Berkeley,2002.
    [201]Cui L,O'Sullivan C.Analysis of a triangulation based approach for specimen generation for discrete element simulations.Granular matter,2003,5:135-145
    [202]Feng Y T,Han K,Owen D R.Filling domains with disks:an advancing front approach.Inter.J.Numer.Methods in Engineering.2003,56(5):699-731.
    [203]Tordesillas A,Walsh D C D.Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media.Powder Technology,2002,124:106-111.
    [204]Khalid A A,Stein S.Shear band formation in plane strain experiments of sand,Journal of Geotechnical and Geoenvironmental Engineering,2000,126(6):495-503.
    [205]Aharanov E,Sparks D W.Rigidity phase transition in granular packings.Phys.Rev.E,1999,60:6890.
    [206]Bertrand F,Levecque L A.DEM-based models for the mixing of granular materials.Chemical Engineering Science,2005,60:2517-2531.
    [207]L(a|¨)tzel M,Luding S,Herrmann H J.Macroscopic material properties from quasi-static,microscopic simulations of a two-dimensional shear-cell.Granular Matter,2000,2(3):1-9.
    [208]Hsiau S S,Yang W L.Transport property measurements in sheared granular flows.Chemical Engineering Science,2005,60:187-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700