用户名: 密码: 验证码:
污水厂脱水污泥制陶质地砖及填埋场防渗衬层材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文参照普通陶瓷砖的生产工艺,利用城市污水处理厂脱水污泥为原料烧制了污泥陶质地砖试块。通过对烧后试件抗压性能检测及其主要影响因素分析,探讨了利用城市污水厂脱水污泥烧制室外用地砖的可能性,确定了污泥制地砖的基本工艺流程和配方参数。研究表明:烧制试件的抗压强度随着污泥含量增加而显著下降,适宜的坯料配方为高岭土:污泥粉:长石粉=4:1:2。采用细颗粒污泥配料(粒径小于0.15mm),烧后试件较致密,有利于抗压强度的增加。成型条件对污泥制地砖烧后试件抗压强度存在较大影响,抗压强度随所试含水率、压制压强的增加而增加,适宜的含水率和压强范围为9%~15%和24MPa~45MPa。2h保温可以保障坯料充分发生物理化学反应。采用三层复合材料结构可提高烧制成品的抗压强度,优于单一材料结构:底层采用细颗粒污泥配料的复合结构烧后试件抗压强度达到27.38MPa,底层采用粗颗粒污泥配料的复合结构烧后试件抗压强度达23.70MPa,分别满足《烧结普通砖强度等级(GB5101-93)》中MU25和MU20的强度等级。
     通过城市污水厂脱水污泥制砖烧后试件抗折强度检测及影响因素分析,进一步探讨和确定污泥制地砖适宜的配方配料和工艺参数。在此基础上,通过成分分析、吸水率、抗压强度、抗折强度、抗磨损性、抗腐蚀性等性能检测,对其性能进行全面评估,并通过浸出液腐蚀性、重金属固化作用检测,检测其对环境的影响。研究表明:优选的坯料含水率为11%,烧结温度为1200℃。随污泥含量增加虽然烧制成品的抗折强度略有增加但抗压强度显著下降,适宜的污泥掺量为14.3%。细粒径污泥粉配料烧后试件较致密,有利于提高试件整体强度。14.3%污泥掺量下,采用细颗粒(粒径小于0.15mm)和粗颗粒(粒径为0.15~0.63mm)污泥配料烧后试件的抗压强度分别满足烧结普通砖强度等级中MU30号和MU20砖强度等级;污泥制砖的抗折强度远大于粘土砖的强度指标。通过烧结,污泥制地砖坯料的矿物组成发生了巨大变化。烧后试件属于陶质砖范围,抗磨损性能优于普通砖,满足陶质砖的耐化学腐蚀性要求。这种砖的水浸出液pH值都在6.4~6.9之间,不具有腐蚀性能。研究发现,烧制对污泥中的重金属Mn﹑Cu有明显的固化作用。
     通过渗透试验,探讨了城市污水厂污泥制作复合土作为卫生填埋场防渗衬层材料的可行性,研究表明:最佳污泥掺入量为40%,抗渗透性能随复合土干密度增加而增强。在最佳掺量下,当干密度达到1.08 g/cm3,复合土的渗透系数达到10-7cm/s数量级,符合垃圾填埋场防渗衬层标准要求。渗滤液性质对渗透性能存在较大影响,当电解质浓度较大时,复合土渗透性能随之提高。此外,污泥复合土可以有效吸附去除垃圾渗滤液中的重金属Cu~(2+)、Zn~(2+)。
     进行了向城市污水厂脱水污泥同高岭土复合料中添加土壤固化酶TZ的防渗实验研究。研究表明:TZ酶的加入对污泥复合土的最佳含水率影响不大,均在20%左右。添加土壤固化酶能够显著改善污泥复合土初期抗渗透性能。在最佳酶掺入量0.4mL/10kg土,300kPa压实压强下,24h后污泥填埋土垂直渗透系数比不加酶的减小36%,达到10-7 cm/s数量级,满足垃圾填埋场防渗衬层材料标准。总言之,城市污水厂脱水污泥制造陶质地砖和填埋场防渗衬层材料具有可行性。
Refer to processes of common ceramic tile production, outdoor ground tiles made from dehydrated wastewater treatment sludge were produced on bench scale, and the feasibility was explored through measuring their compressive strength and evaluating main strength influencing factors. The results showed that the compressive strength of the sintered tiles decreased as the sludge contents increased, and the optimum recipe was suggested as kaolin: sludge: feldspar powder = 4:1:2. It was found that tiles made from sludge with fine particles (diameter is less than 0.15mm) were denser and its compressive strength was greater than the tiles made from sludge with coarse particles (diameter is between 0.15mm and 0.63mm). Molding condition of had great influence on compressive strength of sintered tiles whose compressive strength increased as the water content and shape-forming pressure increased. Suitable water content and shape-forming pressure ranged 9%-15% and 24MPa-45MPa, respectively, holding 2h to benefit fully physicochemical reaction of stock was suggested. Further, the sandwich structure was better than single structure in enhance tile’s compressive strength: the compressive strength of tiles with the sandwich structure and final particle sludge was 27.38MPa while the strength of tiles with the sandwich structure and coarse particle sludge was 23.70MP. The strength of the two kinds of tiles respectively meet the strength grade of MU25 and MU20 in“Sintered Brick Strength Grade(GB5101-93)”.
     The flexural strength and influencing factors were tested to further explore and confirm the component recipe and processing parameter of the sludge tiles. The composition analysis, water absorption, compressive strength, flexural strength, abrasion-resistance strength, corrosion resistance were examined to comprehensively evaluate the nature of sludge tiles. Corrosiveness of leaching liquid from the tile and the efficiency of heavy metal sealing in the tiles were also tested to estimate the environmental impacts if applied practically. The results showed that the optimum water content and sintered temperature were 11% and 1200℃, respectively. With the sludge content increased, the compressive strength of the sludge-tile dropped rapidly though flexural strength increased slightly, the optimum sludge content was proposed as 14.3%. The tiles made from fine particle sludge were denser and overall nature was better than that made from coarse particle sludge, indicating decrease of the sludge particle size could enhance the strength of tiles. With the 14.3% sludge content, the compressive strength of tiles made of fine particle sludge and coarse particle sludge meet the strength grade of MU30 and MU20, respectively. The flexural strength of the sludge tiles was much greater than that of common bricks. The mineral compositions of tiles body were greatly changed after sintering. The sintered tiles can be classified as clay-pottery, and it was found that abrasion-resistance property of the sludge tiles was better than common bricks and the tiles could meet the requirements to resistant chemical attack. The leaching liquid from sludge tiles was almost no corrosive for it’s pH varied between 6.4 and 6.9, and the heavy metals Cu and Mn containing in sludge could be well sealed up in the tiles.
     Anti-permeate experiments had been performed to evaluate the possibility of using urban sewage sludge to substitute the compound clay as the major constituent for liner material in waste landfill. It was found that anti-permeability could strengthen with the dry density increasing, and the optimal content of the sludge was 40%. At the optimal content and 1.08 g/cm3 dry density, the permeating coefficient of compound clay reaches 10-7cm/s level which meets the criterion of liner material in waste landfill. The property of permeating liquid could greatly affect the permeating coefficient of the sludge liner, the permeating coefficient of the liner increased with as the concentration of electrolyte increased. The sludge liner clay could also absorb its bearing Cu2+、Zn2+ effectively.
     Permeability resisting experiments had been performed for composite of urban sewage sludge and Kaolin with addition of solidifying enzyme TZ. It was found that though the enzyme TZ had little effect on the optimum moisture content of the composite which was about 20%, the initial permeability resistance of the composite was well improved. Comparing permeating coefficient of the enzyme added composite (0.4mL/10kg composite) pre-molded at 300kPa with that of the non-enzyme added composite, the permeating coefficient of the enzyme added composite decreased by 36% after adding enzyme for 24h, and reached 10-7cm/s level which meet the criterion for the anti-permeable liner material of landfill.
     The make use of urban sewage sludge as tiles and liner material in waste landfill was feasible.
引文
[1] 张自杰,林荣忱,金儒霖.排水工程(下册).第三版.北京:中国建筑工业出版社,2000,296-303
    [2] Cenni R,Janish B,Spliethoff H.Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material.Waste Management,2001,20:17-31
    [3] U.S. Environmental Protection Agency Municipal and Industrial Solid Waste Division Office of Solid Waste EPA530-R-99-009.Biosolids Generation,Use, and Disposal in the United States.www.epa.gov,September 1999
    [4] 李季,吴为中.国内外污水处理厂污泥产生、处理及处置分析.见:污泥处理处置技术与装备国际研讨会论文集.北京:中国土木工程学会水工业分会排水委员会,2003,1-10
    [5] 唐建国,马远东,李波,等.污水处理厂污泥处理处置技术介绍.见:污泥处理处置技术与装备国际研讨会论文集.北京:中国土木工程学会水工业分会排水委员会,2003,21-22
    [6] 柯建明,王凯军,田宁宁.北京市城市污水污泥的处理和处置问题研究.中国沼气,2000,18(3):35-38
    [7] 周少奇,肖锦.城市污泥处理处置与资源化.第一版.广州:华南理工大学出版社,2002,2-3
    [8] 周少奇,肖锦.城市污泥处理处置与资源化.第一版.广州:华南理工大学出版社,2002,6-7
    [9] 张建频.上海市城市污泥处理与处置方法探讨.建设科技,2002,10:64-66
    [10] 王璠,霍跃文,杨明等.适合我国国情的市政污泥无害化处理先进技术.见:2004 年国际污泥无害化经验交流会论文汇编.北京:中国市政工程协会城市排水专业委员会,2004,28-29
    [11] 何品晶,邵立明,宗兵年.污水厂污泥综合利用与消纳的可行性途径分析.环境卫生工程,1997,(4):21-25
    [12] 王敦球,解庆林,李金城等.城市污水污泥农用资源化研究.重庆环境科学,1999,21(6):50-52
    [13] 王虹.我国污泥制作肥料的试验与生产现状探讨.给水排水,2000,26(9):1-3
    [14] 周少奇,肖锦.城市污泥处理处置与资源化.第一版.广州:华南理工大学出版社,2002,94-97
    [15] Hall J E.Sewage sludge production,treatment and disposal in the European Union.J CIWEN,1995,333-343
    [16] Ghosh S.Improved sludge gasification by two-phase anaerobic digestion.Journal EE,1987,113(6):1263-1284
    [17] 高延耀,周恭明,周增炎.气浮浓缩污泥两相厌氧消化.同济大学学报,1999,27(1):43-46
    [18] Okazawa K.,M. Henmi,K. Sota.Energy saving in sewage sludge incineration with indirect heat drying.In:Processing of 1986 National Waste Processing Conference.Denver,ASME,1986,177-191
    [19] Bayer B.,M. Kutubuddin.Temperature conversion of sludge and waste to oil.In:Proceedings of the International Recycling Congress.Berlin:EF Verlag,1978,314-318
    [20] Campbell H.W.Sewage Sludge Treatment and Use:New Development.London: Elsevier Applied Science,1989,281-290
    [21] Bridle T. R.,I. Hammerton,C. K. Hertle.Control of heavy metal and organ chlorines using the oil from sewage process.Wat.Sci.Tech.,1990,22(12):249-258
    [22] Forst R.C.,A.M.Bruce.Alternative Uses for Sewage Sludge.Oxford: Pergamon Press,1991,323-341
    [23] 何品晶,顾国维,邵立明等.污水污泥低温热解处理技术研究.中国环境学,1996,16(4):254-257
    [24] 欧国荣,陈奇洲.生活水污泥油化试验研究.环境污染与防治,1996,18(4):20-21
    [25] 何品晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究.中国环境科学,1998,18(1):39-42
    [26] Nagaharu Okuno,Shiro Takahashi.Full scale application of manufacturing brick from sewage.Wat.Sci.Tech.,1997,36(11):243-250
    [27] 桂召龙,邓波,田鲁兴.胜利乐安油田污泥无害化应用研究.水处理技术,2003,29(3):182-184
    [28] 张方梅,陈绍伟.用排水管污泥混合堆肥或作建筑材料的可行性研究.环境卫生工程,1998,6(2):52-56
    [29] Chih-Huang Weng,Deng-Fong Lin,Pen-Chi Chiang.Utilization of sludge as brick materials.Advances in Environmental Research,2003,(7):679-685
    [30] 黄德志,何少先,江映翔.污水处理厂脱水污泥制作轻质陶粒添加剂的研究.环境科学学报,2000,20(特刊):129-132
    [31] 朱斌,王海亮,陆在宏.给水厂脱水污泥烧结陶粒试验.给水排水,2005,31(2):35-36
    [32] Khandbilvardi R.,Afshari S..Sludge ash as fine aggregate for concrete mix.J Env Eng Div ASCE,1995,121(9):633-638
    [33] Valls S,Yague A,Vazquez E,et al.Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant.Cem Concr Res,articale in press,2004,62-78
    [34] Kuen-Sheng wang,Chung-Jen Tseng.The thermal conductivity mechanism of sewage ash lightweight materials.Cem Concr Res,articale in press,2004,22-64
    [35] 谭兴立,吴林森,符巩固.陶粒开发应用现状及在湖南的发展前景.湖南地质,1997,16(1):57-62
    [36] 冯乃谦,邢峰.生态水泥及应用.混凝土与水泥制品,2000,(6):18-21
    [37] 赵庆祥.污泥资源化技术.第一版.北京:化学工业出版社,2002,220-221
    [38] 杨磊,张鸿杰.利用苏州河底泥生产水泥熟料技术研究.水泥,2000,(10):10-12
    [39] 马勇,郁卫华.水泥窑处理污水厂污泥的应用技术.上海建材,2000,(1):38-40
    [40] 史昕龙,陈绍伟.城市污水污泥的处置与利用.环境保护,2001,(3):45-46
    [41] Hisashi Endo,Yoshikazu Nagayoshi,Kenji Suzuki.Productuin of glass cemamics from sewage sludge.Wat. Sci. Tech.,1997,36(11):235-241
    [42] 信息专递.下水道污泥灰制沥青.建材发展动向,2003,(1):24
    [43] Tay Joo-Hwa,Show Kuan-Yeow.Rescource recovery of sludge as a building and construction material—a future trend in sludge management.Wat.Sci.Tech.,1997,36(11):259-266
    [44] Tania Basegio , Felipe Berutti , Andre Bernardes , etal.Environmental and technical aspects of the utilization of tannery sludge as a raw material for clay products.Journal of the European Ceramic Society,2002,(22):2251-2259
    [45] Bernd Weibusch.Utilization of sewage sludge ashes in the brick and tile Industry.Wat.Sci.Tech.,1997,36(11):251-258
    [46] Nagaharu Okuno,Shiro Takahashi.Full scale application of manufacturing bricks from sewage.Wat. Sci.Tech.,1997,36(11):243-250
    [47] Michael Anderson,R Glynn Skerratt,Julian P Thomas,et al.Case study involving using fluidized bed incinerator sludge ash as a partial clay substitute in brick manufacture.Wat. Sci. Tech.,1996,34(3-4):507-515
    [48] Bernd Wiebusch,Carl Franz Seyfried.Utilization of sewage sludge ashes in the brick and tile industry.Wat. Sci.Tech.,1997,36(11):251-258
    [49] Joo-Hwa Tay,Kuan-Yeow Show.Resource recovery of sludge as a building and construction material-afuture trend in sludge management.Wat. Sct.Tech.,1997,36(11):259-266
    [50] 桂召龙,邓波,田鲁兴.胜利乐安油田污泥无害化应用研究.水处理技术,2003,29(3):182-184
    [51] 张杰,谢时伟.污泥制砌块探索.中国皮革,2000,29(7):38-40
    [52] Chih-Huang Weng,Deng-Fong Lin,Pen-Chi Chiang.Utilization of sludge as brick materials.Advances in Environmental Research,2003,(7):679-685
    [53] 钱君律,甘礼华,李光明等.上海城市污泥燃烧热的测定.实验室研究与探索,1999,(3):49-51
    [54] 陈胜霞,张亚梅.城市生活污泥在制砖工业中的应用.砖瓦,2004,(2):3-5
    [55] 熊振湖.我国污水厂污泥的处理与资源化研究.天津城市建设学院学报,1999,5(3):6-9
    [56] 张善发,陈华,屈强等.上海市污水污泥处置技术指南与管理政策研究.见:2004 国际污泥无害化经验交流会论文汇编.北京:中国市政工程协会城市排水专业委员会,2004,142-162
    [57] 任伯帜,龙腾锐,陈秋南.粉煤灰-粘土砖烧制过程处理城市污水污泥的试验研究.环境科学学报,2003,23(3):414-416
    [58] Andreadakis A.D. .Sludge utilisation in agriculture:Possibilities and prospects in Greece.Water Science and Technology,2002,46(10):231-238
    [59] SunGuofeng.Utilization of household sewage sludge in brick making.砖瓦,2005,(V00):37-40
    [60] 李南生.利用粉煤灰陶粒生产技术处理剩余污泥的技术.粉煤灰,1995,(3):26-30
    [61] 赵连强,王忠英.粘土矿物在烧结粉煤灰陶粒中的应用研究.湖北地矿,1999,13(1):41-47
    [62] Tania Basegio,Felipe Berutti,Andrea Bernardes,et al.Environmental and technical aspects of the utilization of tannery sludge as a raw material for clay products.Journal of the European Ceramic Society,2002,(22):2251-2259
    [63] 王中平,徐基璇.利用苏州河底泥制备陶粒.建筑材料学报,1999,2(2):176-181
    [64] 昝元峰,王树众,沈林华.污泥处理技术的新进展.中国给水排水,2004,20(6):26
    [65] 黄德志,何少先,江映翔.污水处理厂脱水污泥制作轻质陶粒添加剂的研究.环境科学学报,2000,20(特刊):129-132
    [66] 朱斌,王海亮,陆在宏.给水厂脱水污泥烧结陶粒试验.给水排水,2005,31(2):35-36
    [67] 周少奇,肖锦.城市污泥处理处置与资源化.第一版.广州:华南理工大学出版社,2002,134-136
    [68] 何俊宝,高亮,王永盛等.垃圾卫生填埋场防渗衬层材料—复合土的试验研究.环境卫生工程,1998,6(4):144-147
    [69] 张波,冯林豹,苗群.卫生填埋场的伊-灰复合土防渗技术实验研究.环境工程,1994,12(6):57- 60
    [70] Stoffel C.M.,Ham R.K..Testing of high ash paper mill sludge for use in sanitary landfill construction.Prepared for the City of Eau Claire,WI,by Owen Ayers and Associates,Inc.Eau Claire,WI,U.S.A. 1979,78-124
    [71] Pepin R.G..The use of paper mill sludge as a landfill cap.In:Proceedings of the 1983 National Council of the Paper Industry for Air and Stream Improvement (NCASI)Northeast Regional Meeting.New York,NK,U.S.A.:NCASI,1983,32-76
    [72] Swann C.E. . Study indicates sludge could be effective landfill cover material.American Paper Maker,1991:34-36
    [73] Zimmie T.F.,Moo-Young H.K..Hydraulic Conductivity of Paper Sludges Used for Landfill Covers . In : GeoEnvironment 2000(Y.B.Acar & D.E.Daniel eds) .New Orleans,LA,U.S.A.:ASCE Geotechnical Special Publication No.46, 1995,2:932-946
    [74] Eung-Ho Kim,Jin-Kyu Cho,Soobin Yim.Digested sewage sludge solidification by converter slag for landfill cover.Chemosphere,2005,59:387-395
    [75] Malmstead MJ.Closure of a nine-acre industrial using pulp and paper mill residuals.Tappi Journal,1999,82(2):153-160
    [76] Horace K.,Moo-Young Jr,Thomas F.Zimmie.Waste minimization and re-use of paper sludges in landfill covers:a case study.Waste Management & Research, 1997,15:593-605
    [77] 张鹏,吴志超,陈绍伟等.污水厂污泥作填埋场覆盖材料的试验研究.环境科学研究,2002,15(2):45-47
    [78] 陈绍伟,吴志超,张鹏等.自来水厂污泥作填埋场覆盖材料的试验研究.环境污染治理技术与设备,2002,3(1):23-26
    [79] 武秀兰,陈国平,嵇鹰.硅酸盐生产配方设计与工艺控制.第一版.北京:化学工业出版社,2004,39-41
    [80] 中国建筑材料科学研究院.绿色建材与建材绿色化.第一版.北京:化学工业出版社,2003,132-134
    [81] 陆小荣,朱永平,高雅春等.陶瓷工艺学.第一版.长沙:湖南大学出版社,2005,80-180
    [82] 武秀兰,陈国平,嵇鹰.硅酸盐生产配方设计与工艺控制.第一版.北京:化学工业出版社,2004,28-44
    [83] 裴秀娟,石振江.陶瓷墙地砖工厂技术员手册.第一版.北京:化学工业出版社,2004,25-27
    [84] A·И·阿甫古斯契尼克.陶瓷(上册).刘康时.第一版.北京:中国工业出版社,1965,165-173
    [85] 谈国强,刘新年,宁青菊.硅酸盐工业产品性能及测试分析.第一版.北京:化学工业出版社,2004,28-30
    [86] 李家驹,缪松兰,马铁成等.陶瓷工艺学(上册).第一版.北京:中国轻工业出版社,2001,56-61
    [87] 李家驹,缪松兰,马铁成等.陶瓷工艺学(下册).第一版.北京:中国轻工业出版社,2001,146-147
    [88] 纪午生.常用建筑材料试验手册.第一版.北京:中国建筑工业出版社,1986,507-508
    [89] 吴季松,刘雅鸣,刘伟平等.水利技术标准汇编(水资源水环境卷.分析方法).第一版.北京:中国水利水电出版社,2002,982-985
    [90] 吴季松,刘雅鸣,刘伟平等.水利技术标准汇编(水资源水环境卷.分析方法).第一版.北京:中国水利水电出版社,2002,938-944
    [91] 张瑞荣,侯浩波.固体废物填埋场粉煤灰衬垫渗透系数的影响因素分析.粉煤灰综合利用,2002,4:44-46
    [92] 张波,冯林豹,苗群.卫生填埋场的伊-灰复合土防渗技术实验研究.环境工程,1994,12(6):57-60
    [93] 阮燕,方坤河,曾力等.固化粉煤灰防渗铺盖材料的研制.哈尔滨工业大学学报,2003,35(7):826-829
    [94] Malmstead MJ.Closure of a nine-acre industrial using pulp and paper mill residuals.Tappi Journal,1999,82(2):153-160
    [95] 张鹏,吴志超.污水厂污泥作填埋场覆盖材料的试验研究.环境科学研究,2002,15(2):45-47
    [96] 侍倩.土工试验与测试技术.第一版.北京:化学工业出版社,2005,133-144
    [97] 任欣,刘和平,刘金洁等.铬(Ⅵ)在粘土衬层中迁移转化的研究.环境科学研究,1994,7(4):25-29
    [98] 李学恒.土壤化学.第一版.北京:高等教育出版社,2001,167-195
    [99] 巴斯顿,罗杰.有害废物的安全处置—发展中国家的特殊需要和问题.马鸿昌.第一版.北京:中国环境科学出版社,1993,89-131
    [100] 李学恒.土壤化学.第一版.北京:高等教育出版社,2001,226-229
    [101] 缪记生,李秀英,程荣逵.中国古代凝胶材料初探.硅酸盐学报,1981,9(2):234-240
    [102] Medina J , Guida H N . Stabilization of lateritic soils with phosphoric acid.Geotechnical and Geological Engineering,1995,13(4):199-216
    [103] Tomohisa S,Sawa K,Naitoh N.Hedoro hardening treatment by industrial wastes.Journal of the Society of Materials Science Japan,1995,44(503): 1023-1026
    [104] Bobrowski I.Injection of a liquid soil stabilizer into subgrade soil-Research rept.Austin:Texas Dept of Transportation,1992,26-39
    [105] Zalihe N,Emin G.Improvement of calcareous expansive soils in semi-arid environment.Journal of Arid Environments,2001,47(4):453-463
    [106] Shirazi H.Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course.Transportation Research Record,1999,1652:270-275
    [107] Bell F G.Assessment of cement-PFA and lime-PFA used to stabilize clay-size materials.Bulletin of the International Association of Engineering Geology,1994,49:25-32
    [108] Miller G A,Zaman M.Field and laboratory evaluation of cement kiln dust as a soil stabilizer.Transportation Research Record,2000,1714:25-32
    [109] Robert B R.Concentrated liquid stabilizers for railroad applications.Roadbed Stabilization and Ballast Symposium.Missouri:St. Louis,2000,(89):349-365
    [110] Saboundjian S . Subbase treatment using EMC2 soil stabilizer-Final rept 1997-2001.Juneau:Alaska Dept of Transportation and Public Facilities, Research and Technology Transfer,2002,1-26
    [111] Attom M F,Munjed M A.Soil stabilization with burned olive waste.Applied Clay Science,1998,13(3):219-230
    [112] Thecan C C.Soil binding properties of mucilage produced by a basidiomycete fungus in a model system.Mycological Research,2002,106(8):930-937
    [113] Nene A S, Paribar Y D.Natural stabilization of expansive soils.Calcatta:Indian Geothechnical Conference,1992,207-209
    [114] 黄晓明,张书生.TR 型土壤固化剂路用性能试验研究.公路交通科技,2002,19(3):23-27
    [115] 周明凯,沈卫国.HS 干硬性土壤固化剂的研究.武汉工业大学学报,1996,18(3):37-40
    [116] 刘瑾,陈晓明. 高分子土固化剂的合成及固化机理研究.材料科学与工程,2002,20(2):230-234
    [117] Mehmet A Y,Bilge A.Leaching of metals from soil contaminated by mining activities.Journal of Hazardous Materials,2001,87(1-3):289-300
    [118] Zhiao S,Larry E.Erickson mathematical model development and simulation of in situ stabilization in lead-contaminated soils.Journal of Hazardous Materials,2001,87(1-3):99-116
    [119] Wang Y M,Chen T C,Yeh K J,et al.Shue stabilization of an elevated heavy metal contaminated site.Journal of Hazardous Materials,2001,88(1):63-74
    [120] 王昌衡,杨松.土壤酶加固土路面结构设计的因素分析.中外建筑,2006,01:102-104
    [121] 张海燕,韩苏建,李云婷等.土壤固化剂用于渠道防渗工程初探.水土保持通报,2004,24(1):40-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700