用户名: 密码: 验证码:
基于电极界面调控提高有机电致发光器件性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机电致发光器件(OLED)以其质量轻、成本低、材料选择丰富、功耗低,尤其是可实现柔性等优点,受到了越来越多的关注。OLED作为平板显示虽然已经在手机等少数电子产品上应用,但距离大规模应用还有较大差距。面向应用,效率和稳定性等性能还需要进一步提升。OLED的性能归根结底是和器件内部功能层的表面界面密切相关的。本论文的工作从电极界面调控的角度展开工作,具体通过实现电极表面的超平滑以及表面的周期性微结构制备等界面形貌调控和对电极进行p型掺杂等界面能带调控,提高了有机电致发光器件的效率、稳定性和视角等。取得的研究成果主要包括以下几个方面:
     (1)在柔性衬底上制备了亚纳米量级粗糙度的超平滑银膜,并将其应用到有机电致发光器件当中,得到了高度柔性和高效率的器件。相对于在硅衬底上制备的传统器件,具有超平滑电极的有机电致发光器件效率有60%的提升,这些效率的提升来源于底电极表面粗糙度的降低,形成了接触面积更大的底电极与有机材料界面,使得载流子注入,传输能力获得提高。不仅如此,我们还利用结构化的聚合物封装膜对得到的柔性顶发射器件进行了封装,提高了器件的光取出效率和寿命。并且由于结构化的封装膜表面疏水角大,表面能小,减小了水和灰尘附着造成污染的几率,使得器件具有一定的自清洁特性。
     (2)基于超平滑聚合物电极(PEDOT: PSS)的ITO-free柔性OLED。制备了超平滑的聚合物电极(PEDOT: PSS),并应用于柔性OLED,与传统工艺制备的PEDOT:PSS电极相比,其平整度和导电性都有显著提高。器件的效率由传统器件的4.71cd/A提升到了6.21cd/A,提高了38%。为了提升PEDOT: PSS电极的导电性,需用硫酸对PEDOT:PSS进行处理。利用脱模工艺技术,在提高电极表面平整性的同时,可消除硫酸残留对器件稳定性的影响。
     (3)石墨烯氧化物掺杂PEDOT: PSS电极,改善电极界面。为了提高PEDOT: PSS电极的性能,对其进行了石墨烯氧化物的p型掺杂。掺杂后电极的空穴注入和电子阻挡能力都有所增强,并且激子的淬灭也得到了抑制。优化后PEDOT: PSS与GO的掺杂比例为15:1,器件的亮度和效率分别由14415cd/m2和3.17cd/A提高到了23871cd/m2和5.71cd/A。
     (4)利用周期性微结构电极实现宽光谱白光顶发射OLED。通过将周期性微结构引入顶发射有机电致发光器件中,构建周期性起伏的阳极与有机层界面和相对平坦的阴极与有机界面,解决了白光顶发射有机电致发光器件的光谱窄化和光谱随观察角度蓝移的问题,得到了具有稳定光谱和色坐标的宽光谱白光顶发射OLED。当观察角度从0°变化到60°时,器件的色坐标仅有±0.01的变化。
Organic light-emitting device (OLED) have attracted much attention due to theiradvantages in light weight, low cost, abundant materials, low power consumption, andparticularly, sufficiently ductile of the organic material to undergo significant stresswithout cracking. At present, OLED has been used into a mobile phone and a fewother electronic products. Howerer, it is far away from large scale appilicaton. Theperformances, such as efficiency and lifetime, need to be improved. It is nowappreciated that the electrode/organic functional materials interfaces play animportant role in determining the performance of organic optoelectronic devices. Inthis thesis, much research has been done based on regulation of interface betweenelectrode and organic materials. We have realized the improvement of efficiency,stablility and viewing angle by regulating morphology of interface throughultrasmooth electrode and structured electrode and regulating energy band throughp-doping. The research results include the following aspects:
     (1) An ultrasmooth Ag film with sub-nanometer surface roughness on flexiblesubstrate has been fabricated by template stripping process and its effect on organicmaterials deposition and carrier injection and transport in OLEDs has beeninvestigated. We demonstrate highly flexible and efficient OLED which based on theultrasmooth electrode. Compared with conventional devices on Si substrate, theefficiency of devices fabricated with ultrasmooth electrode have60%enhancement. These improvements are obviously originated from carrier injection and transportenhancement as a result of lowered surface roughness of Ag electrode. Moreover, wehave demonstrated a structured polymer encapsulation film on top of TOLED whichcan realize the enhancement of light extraction, the prolongation of lifetime bypreventing moisture and oxygen diffusion into the devices. In addition, theencapsulated devices also have the ability of self-cleaning due to the decrease ofpollution by water droplets and dust arising from high contact angle of structuredsurface.
     (2) An efficient ITO-free flexible OLED with ultrasmooth PEDOT: PSS anodehas been demonstrated. The ultrasmooth polymer electrode have been fabricated andapplied to flexible OLED. Compared to spin-coated PEDOT: PSS film on glasssubstrate, the PEDOT: PSS film on polymer substrate fabricated by employingtemplate stripping process has shown superiority on both conductivity and surfacemorphology. The OLED on polymer substrate has also exhibited higher efficiency. Itsmaximum current efficiency is6.21cd/A, while it is4.71cd/A for that with theas-deposited PEDOT: PSS anode on glass substrate, which corresponds to38%enhancement. To further enhance the conduction of PEDOT: PSS film, H2SO4-treatedhas been used. The effect of residual H2SO4on the surface of PEDOT: PSS in H2SO4treatment has been eliminated by template stripping process.
     (3) Graphene oxide (GO) has been used as p-dopant into PEDOT: PSS anode toimprove interface between electrode and organic layer. The GO doped into PEDOT:PSS was beneficial to the performance of OLED. The hole-injection ability and electron blocking effect were both improved and the exciton quenching was alsosuppressed. The PEDOT: PSS/GO (15/1) was optimal doping concentration. In caseof this condition, the maximum luminance and efficiency was23871cd/m2and5.71cd/A while they were14415cd/m2and3.67cd/A with undoped PEDOT: PSS anode.
     (4) WTOLED with angle-independent broadband emission has beendemonstrated by integrating a periodic microstruture into the device structure toconstruct a cavity with gradually changed cavity length. From building a periodicallycorrugated anode and a relatively planar cathode, the shift of the peak emissionwavelength with the viewing angle is successfully suppressed, and moreover, adesired broad emissive spectrum and stable CIE coordinates are both obtained. Thevariation of the CIE coordinates is within±0.01when the viewing angle changedfrom0°to60°.
引文
[1] M. POPE, H.P. KALLMANN, P. MAGNANTE, Electroluminescence in OrganicCrystals [J]. The Journal of Chemical Physics,1963,38(8):2042-2043.
    [2] C.W. TANG, S.A. VANSLYKE, Organic electroluminescent diodes [J]. AppliedPhysics Letters,1987,51(12):913-915.
    [3] J.H. BURROUGHES, D.D.C. BRADLEY, A.R. BROWN, R.N. MARKS, K.MACKAY, R.H. FRIEND, P.L. BURNS, A.B. HOLMES, Light-emitting diodesbased on conjugated polymers [J]. Nature,1990,347(6293):539-541.
    [4] G. GUSTAFSSON, Y. CAO, G.M. TREACY, F. KLAVETTER, N. COLANERI,A.J. HEEGER, Flexible light-emitting diodes made from soluble conductingpolymers [J]. Nature,1992,357(6378):477-479.
    [5] J. KIDO, H. HAYASE, K. HONGAWA, K. NAGAI, K. OKUYAMA, Bright redlight‐emitting organic electroluminescent devices having a europium complex asan emitter [J]. Applied Physics Letters,1994,65(17):2124-2126.
    [6] M.A. BALDO, D.F. O'BRIEN, Y. YOU, A. SHOUSTIKOV, S. SIBLEY, M.E.THOMPSON, S.R. FORREST, Highly efficient phosphorescent emission fromorganic electroluminescent devices [J]. Nature,1998,395(6698):151-154.
    [7] M. GROSS, D.C. MULLER, H.G. NOTHOFER, U. SCHERF, D. NEHER, C.BRAUCHLE, K. MEERHOLZ, Improving the performance of dopedpi-conjugated polymers for use in organic light-emitting diodes [J]. Nature,2000,405(6787):661-665.
    [8] T.H. HAN, Y. LEE, M.R. CHOI, S.H. WOO, S.H. BAE, B.H. HONG, J.H. AHN,T.W. LEE, Extremely efficient flexible organic light-emitting diodes with modifiedgraphene anode [J]. Nature Photonics,2012,6(2):105-110.
    [9] T.W. KELLEY, P.F. BAUDE, C. GERLACH, D.E. ENDER, D. MUYRES, M.A.HAASE, D.E. VOGEL, S.D. THEISS, Recent progress in organic electronics:Materials, devices, and processes [J]. Chemistry of Materials,2004,16(23):4413-4422.
    [10] A.N. KRASNOV, High-contrast organic light-emitting diodes on flexiblesubstrates [J]. Applied Physics Letters,2002,80(20):3853-3855.
    [11] J. LEWIS, S. GREGO, B. CHALAMALA, E. VICK, D. TEMPLE, Highlyflexible transparent electrodes for organic light-emitting diode-based displays [J].Applied Physics Letters,2004,85(16):3450-3452.
    [12] Y.Q. LI, L.W. TAN, X.T. HAO, K.S. ONG, F.R. ZHU, L.S. HUNG, Flexibletop-emitting electroluminescent devices on polyethylene terephthalate substrates[J]. Applied Physics Letters,2005,86(15):153508.
    [13] Z.Y. XIE, L.S. HUNG, F.R. ZHU, A flexible top-emitting organic light-emittingdiode on steel foil [J]. Chemical Physics Letters,2003,381(5-6):691-696.
    [14] L.S. ZHOU, A. WANGA, S.C. WU, J. SUN, S. PARK, T.N. JACKSON,All-organic active matrix flexible display [J]. Applied Physics Letters,2006,88(8):083502.
    [15] A.B. CHWANG, M.A. ROTHMAN, S.Y. MAO, R.H. HEWITT, M.S. WEAVER,J.A. SILVERNAIL, K. RAJAN, M. HACK, J.J. BROWN, X. CHU, L. MORO,T. KRAJEWSKI, N. RUTHERFORD, Thin film encapsulated flexible organicelectroluminescent displays [J]. Applied Physics Letters,2003,83(3):413-415.
    [16] J.M. HAN, J.W. HAN, J.Y. CHUN, C.H. OK, D.S. SEO, Novel EncapsulationMethod for Flexible Organic Light-Emitting Diodes usingPoly(dimethylsiloxane)[J]. Japanese Journal of Applied Physics,2008,47(12):8986-8988.
    [17] Y.C. HAN, E. KIM, W. KIM, H.G. IM, B.S. BAE, K.C. CHOI, A flexiblemoisture barrier comprised of a SiO2-embedded organic-inorganic hybridnanocomposite and Al2O3for thin-film encapsulation of OLEDs [J]. OrganicElectronics,2013,14(6):1435-1440.
    [18] E. KIM, Y. HAN, W. KIM, K.C. CHOI, H.G. IM, B.S. BAE, Thin filmencapsulation for organic light emitting diodes using a multi-barrier composedof MgO prepared by atomic layer deposition and hybrid materials [J]. OrganicElectronics,2013,14(7):1737-1743.
    [19] S. KIM, H.J. KWON, S. LEE, H. SHIM, Y. CHUN, W. CHOI, J. KWACK, D.HAN, M. SONG, S. MOHAMMADI, I. KEE, S.Y. LEE, Low-Power FlexibleOrganic Light-Emitting Diode Display Device [J]. Advanced Materials,2011,23(31):3511-3516.
    [20] B.W. D'ANDRADE, S.R. FORREST, Effects of exciton and charge confinementon the performance of white organic p-i-n electrophosphorescent emissiveexcimer devices [J]. Journal of Applied Physics,2003,94(5):3101-3109.
    [21] B.W. D'ANDRADE, S.R. FORREST, White Organic Light-Emitting Devices forSolid-State Lighting [J]. Advanced Materials,2004,16(18):1585-1595.
    [22] M.C. GATHER, A. KOHNEN, K. MEERHOLZ, White Organic Light-EmittingDiodes [J]. Advanced Materials,2011,23(2):233-248.
    [23] H. KANNO, Y. SUN, S.R. FORREST, High-efficiency top-emissivewhite-light-emitting organic electrophosphorescent devices [J]. Applied PhysicsLetters,2005,86(26):263502.
    [24] T.W. LEE, T. NOH, B.K. CHOI, M.S. KIM, D.W. SHIN, J. KIDO,High-efficiency stacked white organic light-emitting diodes [J]. Applied PhysicsLetters,2008,92(4):043301.
    [25] Y. SUN, S.R. FORREST, High-efficiency white organic light emitting deviceswith three separate phosphorescent emission layers [J]. Applied Physics Letters,2007,91(26):263503.
    [26] Q. WANG, J.Q. DING, D.G. MA, Y.X. CHENG, L.X. WANG, X.B. JING, F.S.WANG, Harvesting Excitons Via Two Parallel Channels for Efficient WhiteOrganic LEDs with Nearly100%Internal Quantum Efficiency: Fabrication andEmission-Mechanism Analysis [J]. Advanced Functional Materials,2009,19(1):84-95.
    [27] S.H. YOON, J. SHIN, H.A. UM, T.W. LEE, M.J. CHO, Y.J. KIM, Y.H. SON, J.H.YANG, G. CHAE, J.H. KWON, D.H. CHOI, Novel9,9'-(1,3-Phenylene)bis-9H-carbazole-Containing Copolymers asHole-Transporting and Host Materials for Blue Phosphorescent PolymerLight-Emitting Diodes [J]. Journal of Polymer Science Part a-PolymerChemistry,2014,52(5):707-718.
    [28] M. KUIK, G. WETZELAER, H.T. NICOLAI, N.I. CRACIUN, D.M. DELEEUW, P.W.M. BLOM,25th Anniversary Article: Charge Transport andRecombination in Polymer Light-Emitting Diodes [J]. Advanced Materials,2014,26(4):512-531.
    [29] J. CAO, X.Y. JIANG, Z.L. ZHANG, MoOx modified Ag anode for top-emittingorganic light-emitting devices [J]. Applied Physics Letters,2006,89(25):252108.
    [30] K.H. KIM, S.Y. HUH, S.M. SEO, H.H. LEE, Inverted top-emitting organiclight-emitting diodes by whole device transfer [J]. Organic Electronics,2008,9(6):1118-1121.
    [31] H.J. PENG, J.X. SUN, X.L. ZHU, X.M. YU, M. WONG, H.S. KWOK,High-efficiency microcavity top-emitting organic light-emitting diodes usingsilver anode [J]. Applied Physics Letters,2006,88(7):073517.
    [32] S. WEDGE, A. GIANNATTASIO, W.L. BARNES, Surface plasmon-polaritonmediated emission of light from top-emitting organic light-emitting diode typestructures [J]. Organic Electronics,2007,8(2-3):136-147.
    [33] S.M. PARK, K. EBIHARA, T. IKEGAMI, B.J. LEE, K.B. LIM, P.K. SHIN,Enhanced performance of the OLED with plasma treated ITO and plasmapolymerized thiophene buffer layer [J]. Current Applied Physics,2007,7(5):474-479.
    [34] J. LEE, B.J. JUNG, J.I. LEE, H.Y. CHU, L.M. DO, H.K. SHIM, Modification ofan ITO anode with a hole-transporting SAM for improved OLED devicecharacteristics [J]. Journal of Materials Chemistry,2002,12(12):3494-3498.
    [35] S.Y. KIM, J.J. KIM, Outcoupling efficiency of organic light emitting diodes andthe effect of ITO thickness [J]. Organic Electronics,2010,11(6):1010-1015.
    [36] G. LIU, J.B. KERR, S. JOHNSON, Dark spot formation relative to ITO surfaceroughness for polyfluorene devices [J]. Synthetic Metals,2004,144(1):1-6.
    [37] H.-W. LIN, S.-W. CHIU, L.-Y. LIN, Z.-Y. HUNG, Y.-H. CHEN, F. LIN, K.-T.WONG, Device Engineering for Highly Efficient Top-Illuminated Organic SolarCells with Microcavity Structures [J]. Advanced Materials,2012,24(17):2269-2272.
    [38] K. TVINGSTEDT, O. INGAN S, Electrode Grids for ITO Free OrganicPhotovoltaic Devices [J]. Advanced Materials,2007,19(19):2893-2897.
    [39] Y. ZOU, Z.B. DENG, D.H. XU, Z.Y. LU, Y.H. YIN, H.L. DU, Z. CHEN, Y.S.WANG, Enhanced brightness of organic light-emitting diodes based on Mg:Agcathode using alkali metal chlorides as an electron injection layer [J]. Journal ofLuminescence,2012,132(2):414-417.
    [40] S.H. SU, C.H. CHOU, M. YOKOYAMA, Investigation on copper liberation inthe multilayer CuPc/Li/Al cathode of organic light-emitting diodes [J].Electrochemical and Solid State Letters,2003,6(8):H17-H19.
    [41] D. GROZEA, A. TURAK, X.D. FENG, Z.H. LU, D. JOHNSON, R. WOOD,Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes [J].Applied Physics Letters,2002,81(17):3173-3175.
    [42] B.K. KIM, Y.H. CHO, B.T. AHN, D.G. MOON, Structural characterization of theAg/Ca transparent electrode for organic light emitting diodes [J]. ElectronicMaterials Letters,2008,4(1):19-24.
    [43] P.K.H. HO, J.-S. KIM, J.H. BURROUGHES, H. BECKER, S.F.Y. LI, T.M.BROWN, F. CACIALLI, R.H. FRIEND, Molecular-scale interface engineeringfor polymer light-emitting diodes [J]. Nature,2000,404(6777):481-484.
    [44] P.K.H. HO, M. GRANSTR M, R.H. FRIEND, N.C. GREENHAM, UltrathinSelf-Assembled Layers at the ITO Interface to Control Charge Injection andElectroluminescence Efficiency in Polymer Light-Emitting Diodes [J].Advanced Materials,1998,10(10):769-774.
    [45] H.W. CHOI, S.Y. KIM, W.K. KIM, J.L. LEE, Enhancement of electron injectionin inverted top-emitting organic light-emitting diodes using an insulatingmagnesium oxide buffer layer [J]. Applied Physics Letters,2005,87(8):082102.
    [46] T. DOBBERTIN, O. WERNER, J. MEYER, A. KAMMOUN, D. SCHNEIDER,T. RIEDL, E. BECKER, H.H. JOHANNES, W. KOWALSKY, Inverted hybridorganic light-emitting device with polyethylene dioxythiophene-polystyrenesulfonate as an anode buffer layer [J]. Applied Physics Letters,2003,83(24):5071-5073.
    [47] S.T. ZHANG, X.M. DING, J.M. ZHAO, H.Z. SHI, J. HE, Z.H. XIONG, H.J.DING, E.G. OBBARD, Y.Q. ZHAN, W. HUANG, X.Y. HOU,Buffer-layer-induced barrier reduction: Role of tunneling in organiclight-emitting devices [J]. Applied Physics Letters,2004,84(3):425-427.
    [48] H. YOU, Y.F. DAI, Z.Q. ZHANG, D.G. MA, Improved performances of organiclight-emitting diodes with metal oxide as anode buffer [J]. Journal of AppliedPhysics,2007,101(2):026105.
    [49] X.Y. JIANG, Z.L. ZHANG, J. CAO, M.A. KHAN, H. KHIZAR UL, W.Q. ZHU,White OLED with high stability and low driving voltage based on a novel bufferlayer MoOx [J]. Journal of Physics D-Applied Physics,2007,40(18):5553-5557.
    [50] J.Z. LI, M. YAHIRO, K. ISHIDA, H. YAMADA, K. MATSUSHIGE, Enhancedperformance of organic light emitting device by insertion ofconducting/insulating WO3anodic buffer layer [J]. Synthetic Metals,2005,151(2):141-146.
    [51] S.Y. KIM, K. HONG, H.W. CHOI, K.Y. KIM, Y.H. TAK, J.L. LEE, CorrelationBetween Charge Injection and Charge Balance in Organic Light EmittingDiodes Using LiF and IrOx Interlayers [J]. Journal of the ElectrochemicalSociety,2009,156(4):J57-J61.
    [52] S.Y. YU, D.C. HUANG, Y.L. CHEN, K.Y. WU, Y.T. TAO, Approaching ChargeBalance in Organic Light-Emitting Diodes by Tuning Charge Injection Barrierswith Mixed Monolayers [J]. Langmuir,2012,28(1):424-430.
    [53] J.W. MA, Z. LIANG, C. JIN, X.Y. JIANG, Z.L. ZHANG, Enhanced powerefficiency for white OLED with MoO3as hole injection layer and optimizedcharge balance [J]. Solid State Communications,2009,149(5-6):214-217.
    [54] B. CHOI, H. YOON, H.H. LEE, Surface treatment of indium tin oxide by SF[sub6] plasma for organic light-emitting diodes [J]. Applied Physics Letters,2000,76(4):412-414.
    [55] N.G. PARK, M.Y. KWAK, B.O. KIM, O.K. KWON, Y.K. KIM, B. YOU, T.W.KIM, Y.S. KIM, Effects of Indium-Tin-Oxide Surface Treatment on OrganicLight-Emitting Diodes [J]. Japanese Journal of Applied Physics Part1,2002,41:1523-1526.
    [56] P. MELPIGNANO, C. CIOAREC, R. CLERGEREAUX, N. GHERARDI, C.VILLENEUVE, L. DATAS, E-beam deposited ultra-smooth silver thin film onglass with different nucleation layers: An optimization study for OLEDmicro-cavity application [J]. Organic Electronics,2010,11(6):1111-1119.
    [57] T.-W. LEE, O.O. PARK, The effect of different heat treatments on theluminescence efficiency of polymer light-emitting diodes [J]. AdvancedMaterials,2000,12(11):801-804.
    [58] N.C. LINDQUIST, T.W. JOHNSON, D.J. NORRIS, S.-H. OH, MonolithicIntegration of Continuously Tunable Plasmonic Nanostructures [J]. Nano Letters,2011,11(9):3526-3530.
    [59] P. NAGPAL, N.C. LINDQUIST, S.-H. OH, D.J. NORRIS, UltrasmoothPatterned Metals for Plasmonics and Metamaterials [J]. Science,2009,325(5940):594-597.
    [60] M. HEGNER, P. WAGNER, G. SEMENZA, Ultralarge atomically flattemplate-stripped Au surfaces for scanning probe microscopy [J]. SurfaceScience,1993,291(1–2):39-46.
    [61] S. VERLAAK, V. ARKHIPOV, P. HEREMANS, Modeling of transport inpolycrystalline organic semiconductor films [J]. Applied Physics Letters,2003,82(5):745-747.
    [62] E. PLACIDI, M. FANFONI, F. ARCIPRETE, F. PATELLA, N. MOTTA, A.BALZAROTTI, Scaling law and dynamical exponent in the Volmer–Webergrowth mode: silver on GaAs(001)2×4[J]. Materials Science and Engineering:B,2000,69–70(0):243-246.
    [63] S.G. CORCORAN, G.S. CHAKAROVA, K. SIERADZKI, Stranski-Krastanovgrowth of Ag on Au(111) electrodes [J]. Physical Review Letters,1993,71(10):1585-1588.
    [64] R. LAZZARI, J. JUPILLE, Silver layers on oxide surfaces: morphology andoptical properties [J]. Surface Science,2001,482–485, Part2(0):823-828.
    [65] Z. YIN, S. SUN, T. SALIM, S. WU, X. HUANG, Q. HE, Y.M. LAM, H. ZHANG,Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene OxideFilms as Transparent Electrodes [J]. ACS Nano,2010,4(9):5263-5268.
    [66] M. AL-IBRAHIM, H.K. ROTH, S. SENSFUSS, Efficient large-area polymersolar cells on flexible substrates [J]. Applied Physics Letters,2004,85(9):1481-1483.
    [67] Y. ZHOU, F. ZHANG, K. TVINGSTEDT, S. BARRAU, F. LI, W. TIAN, O.INGANAS, Investigation on polymer anode design for flexible polymer solarcells [J]. Applied Physics Letters,2008,92(23):233308.
    [68] H.J. BOLINK, E. CORONADO, D. REPETTO, M. SESSOLO, E.M. BAREA, J.BISQUERT, G. GARCIA-BELMONTE, J. PROCHAZKA, L. KAVAN, Invertedsolution processable OLEDs using a metal oxide as an electron injection contact[J]. Advanced Functional Materials,2008,18(1):145-150.
    [69] C.W. CHEN, C.L. LIN, C.C. WU, An effective cathode structure for invertedtop-emitting organic light-emitting devices [J]. Applied Physics Letters,2004,85(13):2469-2471.
    [70] S.Y. CHEN, T.Y. CHU, J.F. CHEN, C.Y. SU, C.H. CHEN, Stable invertedbottom-emitting organic electroluminescent devices with molecular doping andmorphology improvement [J]. Applied Physics Letters,2006,89(5):053518.
    [71] T. DOBBERTIN, M. KROEGER, D. HEITHECKER, D. SCHNEIDER, D.METZDORF, H. NEUNER, E. BECKER, H.H. JOHANNES, W. KOWALSKY,Inverted top-emitting organic light-emitting diodes using sputter-depositedanodes [J]. Applied Physics Letters,2003,82(2):284-286.
    [72] J. ZHONG, Z. GAO, J. GAO, K. DAI, J.L. CHEN, Effect of EncapsulationTechnology on Organic Light Emitting Diode Lifetime [J]. Optical Review,2012,19(2):82-85.
    [73] J. GRANSTROM, J.S. SWENSEN, J.S. MOON, G. ROWELL, J. YUEN, A.J.HEEGER, Encapsulation of organic light-emitting devices using aperfluorinated polymer [J]. Applied Physics Letters,2008,93(19):193304.
    [74] S.-H.K. PARK, J. OH, C.-S. HWANG, J.-I. LEE, Y.S. YANG, H.Y. CHUUltrathin Film Encapsulation of an OLED by ALD [J]. Electrochemical andSolid-State Letters,2005,8(2):H21-H23.
    [75] F.L. WONG, M.K. FUNG, S.L. TAO, S.L. LAI, W.M. TSANG, K.H. KONG,W.M. CHOY, C.S. LEE, S.T. LEE, Long-lifetime thin-film encapsulated organiclight-emitting diodes [J]. Journal of Applied Physics,2008,104(1):014509.
    [76] T.N. CHEN, D.S. WUU, C.C. WU, C.C. CHIANG, Y.P. CHEN, R.H. HORNG,High-Performance Transparent Barrier Films of SiO x SiN x Stacks onFlexible Polymer Substrates [J]. Journal of The Electrochemical Society,2006,153(10):F244-F248.
    [77] S.-F. HSU, C.-C. LEE, S.-W. HWANG, C.H. CHEN, Highly efficienttop-emitting white organic electroluminescent devices [J]. Applied PhysicsLetters,2005,86(25):253508.
    [78] H. KANNO, Y. SUN, S.R. FORREST, High-efficiency top-emissivewhite-light-emitting organic electrophosphorescent devices [J]. Applied PhysicsLetters,2005,86(26):263502-263503.
    [79] M. THOMSCHKE, R. NITSCHE, M. FURNO, K. LEO, Optimized efficiencyand angular emission characteristics of white top-emitting organicelectroluminescent diodes [J]. Applied Physics Letters,2009,94(8):083303.
    [80] M.-T. LEE, M.-R. TSENG, Efficient, long-life and Lambertian source oftop-emitting white OLEDs using low-reflectivity molybdenum anode andco-doping technology [J]. Current Applied Physics,2008,8(5):616-619.
    [81] J.S. XIULING ZHU, XIAOMING YU, MAN WONG, AND HOI-SING KWOKHigh-Performance Top-Emitting White Organic Light-Emitting Devices [J].Japanese Journal of Applied Physics,2007,46:4052-4058.
    [82] G. XIE, Z. ZHANG, Q. XUE, S. ZHANG, L. ZHAO, Y. LUO, P. CHEN, B.QUAN, Y. ZHAO, S. LIU, Highly efficient top-emitting white organiclight-emitting diodes with improved contrast and reduced angular dependencefor active matrix displays [J]. Organic Electronics,2010,11(12):2055-2059.
    [83] Y.R. DO, Y.C. KIM, Y.W. SONG, C.O. CHO, H. JEON, Y.J. LEE, S.H. KIM, Y.H.LEE, Enhanced Light Extraction from Organic Light-Emitting Diodes with2DSiO2/SiNx Photonic Crystals [J]. Advanced Materials,2003,15(14):1214-1218.
    [84] Y. LI, J. ZHANG, S. ZHU, H. DONG, F. JIA, Z. WANG, Z. SUN, L. ZHANG, Y.LI, H. LI, W. XU, B. YANG, Biomimetic Surfaces for High-Performance Optics[J]. Advanced Materials,2009,21(46):4731-4734.
    [85] Y. LI, F. LI, J. ZHANG, C. WANG, S. ZHU, H. YU, Z. WANG, B. YANG,Improved light extraction efficiency of white organic light-emitting devices bybiomimetic antireflective surfaces [J]. Applied Physics Letters,2010,96(15):153305.
    [86] D. WU, Y.-B. ZHAO, S.-Z. WU, Y.-F. LIU, H. ZHANG, S. ZHAO, J. FENG,Q.-D. CHEN, D.-G. MA, H.-B. SUN, Simultaneous efficiency enhancement andself-cleaning effect of white organic light-emitting devices by flexibleantireflective films [J]. Optics Letters,2011,36(14):2635-2637.
    [87] Y. BAI, J. FENG, Y.-F. LIU, J.-F. SONG, J. SIMONEN, Y. JIN, Q.-D. CHEN, J.ZI, H.-B. SUN, Outcoupling of trapped optical modes in organic light-emittingdevices with one-step fabricated periodic corrugation by laser ablation [J].Organic Electronics,2011,12(11):1927-1935.
    [88] M. FURNO, R. MEERHEIM, M. THOMSCHKE, S. HOFMANN, B. L SSEM,K. LEO, Outcoupling efficiency in small-molecule OLEDs: from theory toexperiment [J].2010,7617:761716.
    [89] H.H.P. GOMMANS, D. CHEYNS, T. AERNOUTS, C. GIROTTO, J.POORTMANS, P. HEREMANS, Electro-Optical Study of Subphthalocyanine ina Bilayer Organic Solar Cell [J]. Advanced Functional Materials,2007,17(15):2653-2658.
    [90] J. KIM, S. YIM, Influence of surface morphology evolution of SubPc layers onthe performance of SubPc/C[sub60] organic photovoltaic cells [J]. AppliedPhysics Letters,2011,99(19):193303.
    [91] X. TONG, B.E. LASSITER, S.R. FORREST, Inverted organic photovoltaic cellswith high open-circuit voltage [J]. Organic Electronics,2010,11(4):705-709.
    [92] C. DEIBEL, V. DYAKONOV, Polymer–fullerene bulk heterojunction solar cells[J]. Reports on Progress in Physics,2010,73:096401.
    [93] C. CHIANG, C. FINCHER, Y. PARK, A. HEEGER, H. SHIRAKAWA, E.LOUIS, S. GAU, A.G. MACDIARMID, Electrical conductivity in dopedpolyacetylene [J]. Physical Review Letters,1977,39(17):1098-1101.
    [94] C.K. CHIANG, A.J. HEEGER, A.G. MACDIARMID, H. SHIRAKAWA, P-Typeelectrically conducting doped polyacetylene film and method of preparing same,US4222903A[P],1980.
    [95] M. VOSGUERITCHIAN, D.J. LIPOMI, Z. BAO, Highly conductive andtransparent PEDOT: PSS films with a fluorosurfactant for stretchable andflexible transparent electrodes [J]. Advanced Functional Materials,2012,22(2):421-428.
    [96] Y.H. KIM, C. SACHSE, M.L. MACHALA, C. MAY, L. M LLER‐MESKAMP,K. LEO, Highly Conductive PEDOT: PSS Electrode with Optimized Solventand Thermal Post‐T reatment for ITO‐Free Organic Solar Cells [J]. AdvancedFunctional Materials,2011,21(6):1076-1081.
    [97] Y. XIA, K. SUN, J. OUYANG, Solution‐Processed Metallic ConductingPolymer Films as Transparent Electrode of Optoelectronic Devices [J].Advanced Materials,2012,24(18):2436-2440.
    [98] S. STANKOVICH, D.A. DIKIN, G.H.B. DOMMETT, K.M. KOHLHAAS, E.J.ZIMNEY, E.A. STACH, R.D. PINER, S.T. NGUYEN, R.S. RUOFF,Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [99] A.K. GEIM, K.S. NOVOSELOV, The rise of graphene [J]. Nature Materials,2007,6(3):183-191.
    [100] A.H. CASTRO NETO, F. GUINEA, N.M.R. PERES, K.S. NOVOSELOV, A.K.GEIM, The electronic properties of graphene [J]. Reviews of Modern Physics,2009,81(1):109-162.
    [101] C. LEE, X.D. WEI, J.W. KYSAR, J. HONE, Measurement of the elasticproperties and intrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [102] K.S. NOVOSELOV, A.K. GEIM, S.V. MOROZOV, D. JIANG, Y. ZHANG, S.V.DUBONOS, I.V. GRIGORIEVA, A.A. FIRSOV, Electric field effect inatomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [103] K.H. LIAO, Y.S. LIN, C.W. MACOSKO, C.L. HAYNES, Cytotoxicity ofGraphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts [J].Acs Applied Materials&Interfaces,2011,3(7):2607-2615.
    [104] C. CHEN, W.M. CAI, M.C. LONG, B.X. ZHOU, Y.H. WU, D.Y. WU, Y.J.FENG, Synthesis of Visible-Light Responsive Graphene Oxide/TiO2Composites with p/n Heterojunction [J]. Acs Nano,2010,4(11):6425-6432.
    [105] O.C. COMPTON, S.T. NGUYEN, Graphene Oxide, Highly Reduced GrapheneOxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].Small,2010,6(6):711-723.
    [106] S.-S. LI, K.-H. TU, C.-C. LIN, C.-W. CHEN, M. CHHOWALLA,Solution-processable graphene oxide as an efficient hole transport layer inpolymer solar cells [J]. Acs Nano,2010,4(6):3169-3174.
    [107] B.R. LEE, J.-W. KIM, D. KANG, D.W. LEE, S.-J. KO, H.J. LEE, C.-L. LEE,J.Y. KIM, H.S. SHIN, M.H. SONG, Highly efficient polymer light-emittingdiodes using graphene oxide as a hole transport layer [J]. Acs Nano,2012,6(4):2984-2991.
    [108] D.-D. ZHANG, J. FENG, Y.-Q. ZHONG, Y.-F. LIU, H. WANG, Y. JIN, Y. BAI,Q.-D. CHEN, H.-B. SUN, Efficient top-emitting organic light-emitting devicesusing Fe3O4modified Ag anode [J]. Organic Electronics,2010,11(12):1891-1895.
    [109] D.-D. ZHANG, J. FENG, Y.-F. LIU, Y.-Q. ZHONG, Y. BAI, Y. JIN, G.-H. XIE,Q. XUE, Y. ZHAO, S.-Y. LIU, Enhanced hole injection in organic light-emittingdevices by using Fe3O4as an anodic buffer layer [J]. Applied Physics Letters,2009,94(22):223306.
    [110] W. BECKER, A. BERGMANN, M.A. HINK, K. KONIG, K. BENNDORF, C.BISKUP, Fluorescence lifetime imaging by time-correlated single-photoncounting [J]. Microscopy Research and Technique,2004,63(1):58-66.
    [111] R.R. DUNCAN, A. BERGMANN, M.A. COUSIN, D.K. APPS, M.J.SHIPSTON, Multi-dimensional time-correlated single photon counting (TCSPC)fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells [J].Journal of Microscopy-Oxford,2004,215:1-12.
    [112] W. BECKER, H. HICKL, C. ZANDER, K.H. DREXHAGE, M. SAUER, S.SIEBERT, J. WOLFRUM, Time-resolved detection and identification of singleanalyte molecules in microcapillaries by time-correlated single-photon counting(TCSPC)[J]. Review of Scientific Instruments,1999,70(3):1835-1841.
    [113] S. CHEN, L. DENG, J. XIE, L. PENG, L. XIE, Q. FAN, W. HUANG, RecentDevelopments in Top-Emitting Organic Light-Emitting Diodes [J]. AdvancedMaterials,2010,22(46):5227-5239.
    [114] K.T. KAMTEKAR, A.P. MONKMAN, M.R. BRYCE, Recent Advances inWhite Organic Light-Emitting Materials and Devices (WOLEDs)[J]. AdvancedMaterials,2010,22(5):572-582.
    [115] M.C. GATHER, A. K HNEN, K. MEERHOLZ, White OrganicLight‐E mitting Diodes [J]. Advanced Materials,2011,23(2):233-248.
    [116] A.W. LU, A.D. RAKI, Design of microcavity organic light emitting diodes withoptimized electrical and optical performance [J]. Applied Optics,2009,48(12):2282-2289.
    [117] A.B. DJURI?I, A.D. RAKI, Organic microcavity light-emitting diodes withmetal mirrors: dependence of the emission wavelength on the viewing angle [J].Applied Optics,2002,41(36):7650-7656.
    [118] P. FREITAG, S. REINEKE, S. OLTHOF, M. FURNO, B. L SSEM, K. LEO,White top-emitting organic light-emitting diodes with forward directed emissionand high color quality [J]. Organic Electronics,2010,11(10):1676-1682.
    [119] Q. WANG, Z. DENG, D. MA, Realization of high efficiency microcavitytop-emitting organic light-emitting diodes with highly saturated colors andnegligible angular dependence [J]. Applied Physics Letters,2009,94(23):233306.
    [120] M. SHAO, X. GUO, S.-F. CHEN, Q.-L. FAN, W. HUANG, Efficienttop-emitting white organic light emitting device with an extremely stablechromaticity and viewing-angle [J]. Chinese Physics B,2012,21(10):108507.
    [121] Y.Y. TAI PENG, HAI BI, YU LIU, ZHAOMIN HOU AND YUE WANG,Highly efficient white organic electroluminescence device based on aphosphorescent orange material doped in a blue host emitter [J]. Journal ofMaterials Chemistry,2011,21:3551-3553.
    [122] M. SHAW, M. FAIRCHILD, Evaluating the1931CIE colour-matchingfunctions [J]. Color Research and Application,2002,27(5):316-329.
    
    [123] K. SUZUKI, A. ENDO, T. YOSHIHARA, S. TOBITA, M. YAHIRO, D.YOKOYAMA, C. ADACHI, Photophysical study of iridium complexes byabsolute photoluminescence quantum yield measurements using an integratingsphere, SPIE Proceedings,2009,7415:741504-741508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700