用户名: 密码: 验证码:
杂交自然单元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然单元法(Natural Element Method,简称NEM)是一种近20年才发展起来的数值算法。它采用基于Voronoi图的Sibson或non-Sibonian插值方法构造全域近似函数和试函数。自然单元法具有无网格不依赖网格的优势,同时形函数构造简单,在边界上满足Delta插值性质,是一种发展前景广阔的求解力学和其他工程技术中偏微分方程的数值方法
     针对自然单元法无法直接求解节点应力且应力解精度不高的缺陷以及采用高阶连续形函数恢复应力计算效率不高的问题,通过引入应力杂交的思想,采用对应力和位移分别插值,提出了杂交自然单元法。利用杂交自然单元法对弹性力学问题、弹塑性力学问题、粘弹性力学问题以及弹性大变形问题进行了分析。具体工作如下:
     将复变量移动最小二乘法引入到自然单元法应力恢复算法中,提出了改进的自然单元法应力恢复算法。与传统应力恢复算法相比,复变量移动最小二乘法待定系数少,可以提高应力恢复算法的计算效率。
     采用自然邻点插值对应力和位移分别进行逼近,结合弹性力学的多变量Hellinger-Reissner变分原理,提出了弹性力学的杂交自然单元法。与传统自然单元法相比,杂交自然单元法有着更高的应力计算精度并能够直接求解节点应力。同时,在相同精度条件下,杂交自然单元法比应力恢复算法有着更高计算效率。
     在杂交自然单元法的基础上,通过对应力和位移增量分别进行插值,提出了适用于非线性问题的增量形式杂交自然单元法。结合弹塑性问题的Hellinger-Reissner变分原理,提出了弹塑性力学问题的杂交自然单元法,并推导了计算公式。与自然单元法相比,杂交自然单元法有着更高的计算精度,比应力恢复算法更加节省计算时间。
     在详细分析了线性粘弹性材料的蠕变特性的基础上,采用各个时间节点上的变形来描述蠕变过程。通过杂交自然单元法与在各个时间节点上建立的Hellinger-Reissner变分原理,推导了适用于线性粘弹性材料蠕变分析的杂交自然单元法。本文方法能够准确的描述材料的蠕变性能;并能够直接求解得到准确的节点应力。
     结合大变形问题的特性,推导了增量型杂交自然单元法分析弹性大变形问题的Total Lagrangian格式下表达方式,数值算例中采用了Newton-Raphson增量迭代法,提出了适用于弹性大变形问题分析的杂交自然单元法。算例表明杂交自然单元法有着更高的计算精度和更快的求解效率。
     利用增量形式的Hellinger-Reissner变分原理结合岩土工程的特点,推导了适用于岩土工程开挖问题的模拟的杂交自然单元法;同时为了模拟隧道的支护过程提出了适用于本文方法的添加节点的方法。
     为了证明本文提出的杂交自然单元法的有效性,采用Matlab编制了数值算例。通过数值算例分析可以看出本文方法的有效性和优越性。
As a new numerical method, Natural Element Method (NEM) has beenproposed at the end of last century. Sibson and non-Sibonian interpolation which arecalled Natural Neighbor Interpolation (NNI) are employed to constitute trial functionin NEM. Because of meshless and easy application, the NEM is one of numericalmethod which has a bright prospect using to solution the partial differentialequations.
     Because of the inaccurate stress solution and poor ability to obtain the stress ofnode, the tradition Natural Element Method(NEM) are rarely used to solve complexquestion. In this paper, the hybrid finite element method was introduced into NEMand the hybrid natural element method (HNEM) has been provided. And the HNEMis applied to solve elasticity problems, elastoplasticity problems, larger deflectionproblems and viscoelasticity problems respectively. The main researches of thisthesis are as follows.
     Based on the complex variables moving least-square, a new stress recoveryalgorithm for NEM is presented. Compared with the traditional stress recoveryalgorithm, the new method can improve calculation efficiency.
     Using NNI to be displacement and stress interpolation function respectively,the HNEM and Hellinger-Reissner variation principle are introduced into analysiselastic problems and the HNEM for elasticity is provided. Comparing with NEM, theHNEM has more precision solution of stress and can obtain the stress of nodesdirectly. In the other hand, the HNEM has higher computational efficiency thanthestress recovery algorithm.
     On the basis of HNEM, the incremental form HNEM for nonlinear analysis ispresented. Combined with the incremental Hellinger-Reissner variation principle, theformula of HENM for the elastic-plastic problem is deduced, and is used to analyszethe elastic-plastic mechanics problem. Its numerical precision is better than NEMand the calculation efficiency is higher
     The creep properties of linear viscoelastic material are analyzed by usingHNEM. The material property of viscoelastic material has close relations with time,so it is difficult to analyze this problem. Based on the detailed analysis of the linearviscoelastic material characteristics, the creep process of material can be expressed by deformation changes on some time points. The HNEM for linear viscoelasticproblem is presented based on Hellinger-Reissner variation principle. The numericalexamples show that the method in this paper can depict the creep properties ofmaterials accurately, and can obtain the stress of nodes directly and quickly.
     The HNEM is applied to elastic large deformation problem in this dissertation.Combining with the incremental Hellinger-Reissner variation principle which accordwith lager deformation analysis the HENM for two-dimensional elastic largedeformation problems is presented based on the total Lagrangian formulation, andthe corresponding formulae are obtained. The Newton-Raphson iteration isemployed in the mumerical implementation. The advantages of HNEM are higherprecision and faster calculation.
     Based on the incremental Hellinger-Reissner variation principle and thecharacters of geotechnical engineering,the HNEM has been used to analyze theproblems of geotechnical engineering,such as tunnel excavation. In order tosimulate the process of tunnel support, the method which can be increase nodes hasbeen proposed.
     In order to show the efficiency of the HNME in the dissertation, the MATLABcodes of the methods above have been written. The numerical examples are provided,and the validity and efficiency of these methods are demonstrated.
引文
[1] Christopher R J. Advanced Methods in Scientific Computing[M]. Computer Science6220, University of Utah, Spring Semester,2002,13~26
    [2]徐次达.固体力学加权残值法[M].上海:同济大学出版社,1978
    [3] Zienkiewicz O C. The finite element method (Third edition)[M]. McGraw-Hill,1977
    [4]李开泰,黄艾香,黄庆怀.有限元方法及其应用(修订本)[M].西安:西安交通大学出版社,1992
    [5]嵇醒,臧跃龙,程玉民.边界元进展及通用程序[M].上海:同济大学出版社,1997
    [6] Brebbia C A. The Boundary Element Method for Engineers[R]. London Pentech Press,1978
    [7] Belytschko T, Krongauz Y, Organ D et al. Meshless methods: an overview and recentdevelopments[J]. Computer Methods in Applied Mechanics and Engineering, Vol.139,1996, pp.3~47
    [8] Li Shaofan, Liu W K. Meshless and particles methods and their applications[J]. AppliedMechanics Review, Vol.55, No.1,2002, pp.1~34
    [9] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods[J]. International Journal forNumerical Methods in Engineering, Vol.37,1994, pp229~256
    [10] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfreemethods[J]. Computational Mechanics, Vol.23,1999, pp.219~230
    [11] Liu W K, Jun S, Zhang Y F. Reproducing kernel partical methods[J]. International Journalfor Numerical Methods in Fluid, Vol.20,1995, pp.1081~1106
    [12] Voth T E, Christon M A. Discretization errors associated with reproducing kernel methods:one-dimensional domains[J]. Computer Methods in Applied Mechanics and Engineering,Vol.190,1996, pp.2429~2446
    [13] Han W, Meng X. Error analysis of the reproducing kernel particle method[J]. ComputerMethods in Applied Mechanics and Engineering, Vol.190,2001, pp.6157~6181
    [14] Braun J, Sambridge M. A numerical method for solving partial differential equations onhighly irregular evolving grids [J]. Nature, Vol.376,1995,pp.655~660
    [15]唐少武,冯振兴.关于无单元法的若干注记[J].力学进展,2003,33(4):560~561
    [16] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. TheAstrophysical Journal, Vol.8, No.12,1977pp.1013~1024
    [17] Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: theory and applications tononspherical stars[J]. Mon Not Roy Astrou Soc, Vol.18,1977, pp.375~389
    [18] Lancaster P, Salkauskas K. Surfaces generated by moving least square methods[J].Mathematics of Computation, Vol.37,1981, pp.141~158
    [19] Babuska I, Melenk J M. The partition of unity method[J]. International Journal forNumerical Methods in Engineering, Vol.40,1997, pp.727~758
    [20] Frink R. Scattered data interpolation: test of some methods[J]. Mathematics ofComputation, Vol.38,1972,pp.181~199
    [21] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids[J].International Journal for Numerical Methods in Engineering,2001,50:937-951
    [22] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods[J]. International Journal forNumerical Methods in Engineering,1994,37:229-256
    [23]张雄,胡炜,潘小飞等.加权最小二乘无网格法[J].力学学报,2003,35(4):425-431
    [24] Atluri S N, Zhu T. A new Meshless local Petrov-Galerkin(MLPG) approach incomputational mechanics[J]. Computational Mechanics,1998,22(2):117-127
    [25] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solvingproblems in elasto-statics[J]. Computational Mechanics,2000,25:169-179
    [26] Atluri S N, Zhu T L. New concepts in meshless methods[J]. International Journal forNumerical Methods in Engineering,2000,47:537-556
    [27] Atluri S N, Kim H G, et al. A critical assessment of the truly meshless localPetrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods[J].Computational Mechanics1999,24:348-372
    [28] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computationalmechanics. Applications to convective transport and fluid flow[J]. International Journalfor Numerical Methods in Engineering,1996,39:3839-3866
    [29] Frank C Gunther, Liu W K. Implementation of boundary conditions for meshlessmethods[J]. Computer Methods in Applied Mechanics and Engineering,1998,163:205-230
    [30] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkinmethod[J]. Computational Mechanics,1997,19:264-270
    [31] Ventura G. An augmented Lagranging approach to essential boundary conditions inmeshless Technical Rep methods[J]. International Journal for Numerical Methods inEngineering,2002,53:825-843
    [32] Zhang X, Liu X H, Song K Z et al. Least-square collocation meshless method[J].International Journal for Numerical Methods in Engineering,2001,51(9):1089-1100
    [33] Zhu T, Atluri S N. A modified collocation method and a penalty formulation for enforcingthe essential boundary conditions in the element free Galerkin method[J]. ComputationalMechanics,1998,21:211-222
    [34] Belytschko T, Lu Y Y and Gu L. Crack propagation by element-free Galerkin methods[J].Engng. Fracture Mech.1995,5(12):295-315
    [35] Fleming M, Chu Y A, Moran B and Belytschko T. Enriched element-free Galerkinmethods for crack tip fields[J]. International Journal for Numerical Methods inEngineering,1997,40:1483-1504
    [36] Sukumar N, Moran T, Belytschko T. The natural element method in solid mechanics[J].International Journal for Numerical Methods in Engineering,1998,43(5):839-887
    [37] R Sibson. A vector identity for the Dirichlet tessellation[J]. Math. Proc. Cambridge Philos.Soc.,1980,87:151-155
    [38] R Sibson. A brief description of natural neighbour interpolation[J]. In: V. Barnett Ed.Interpreting Multivariate Data, John Wiley, Chichester1981,21-36
    [39] D F Watson, G M Philip. Neighborhood-based interpolation[J]. Geobyte.1987,2(2):12-16
    [40] D F Watson. Natural neighbor sorting on the N-dimensional sphere[J]. PatternRecognition,1988,21(1):63-67
    [41] G Farin. Surface over Dirichlet tessellation[J]. Computer Aided Geometry Design.1990,7:281-292
    [42] S J Owens. An implementation of natural neighbor interpolation in three dimensions[J].Master’s Thesis, Brigham, Young University,1992.
    [43] Watson DN.. An implementation of natural neighbor interpolation[M]. Published by theAthor.1994
    [44] M. Sambridge, J. Braun, H. McQueen. Geophysical parameterization and interpolation ofirregular data using natural neighbours[J]. Geophys. J. Int.,1995,122:837-857
    [45] Chongjiang Du. An interpolation method for Grid-based terrain modeling[J]. TheComputer Journal,1996,39(10):837-843
    [46] J L Brown. System of coordinates associated with points scattered in the plane[J].Computer Aided Geometric Design,1997,14:547-559
    [47] J L Brown, W L Etheridge. Local approximation of functions over points scattered inRn[J]. Applied Numerical a,1999,29:189-199
    [48] Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system ofpoints in Euclidean space[R]. In: Sydow A. ed.15th IMACS World Congress.24-29August,1997, Berlin, Germany, Proceedings Vol.2, Numerical Mathematics, Wissen.Techn. Verlag,1997,237-242
    [49] V V Belikov, V D Ivanov, V K Kontorovich, S A Korytnik, A Y Semenov. Thenon-Sibson interpolation: A new method of interpolation of the values of a function on anarbitrary set of points[J]. Computational Mathematics and Mathematical Physics,1997,37(1):9-15
    [50] V V Belikov, A Y Semenov. Non-Sibsonian interpolation on arbitray system of points inEuclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics.2000,32:371-387
    [51] Kokichi Sugihara. Surface interpolation based on new local coordinates[J].Computer-Aided Design,1999,31:51-58
    [52] Hisamoto Hiyoshi, Kokichi Sugihara. Two generalizations of an interpolant basedVoronoi diagrams[J]. International Journal of Shape Modeling,1999,5(2):219-231
    [53] Dave Watson. The natural neighbor series manuals and source codes[J]. Computer&Geoscience,1999,25:463-466
    [54] J.-D. Boissonnat, F. Cazals. Natural neighbor coordinates of points on Surface[J].Computational Geometry.2001,19:155-173
    [55] J-D Boissonnat, F Cazals. Smooth surface reconstruction via natural neighbourinterpolation of distance function[J]. Computational Geometry.2002,22:185-203
    [56] Fran ois Anton, Darka Mioc, Alain Fournier. Reconstructing2D images with naturalneighbour interpolation[J]. The Visual Computer,2001,17:134-146
    [57] Hisamoto Hiyoshi, Kokichi Sugihara. Improving continuity of Voronoi-basedinterpolation over Delaunay spheres[J]. Computational Geometry,2002,22:167-183
    [58] Isaac Amidror. Scattered data interpolation methods for electronic imaging systems: asurvey[J]. Journal of Electronic Imaging,2002,11(2):157-176
    [59] Sambridge M, Braun J,McQueen H. Geophysical parameterization and interpolation ofirregular data using natural neighbours[J]. Geophys. J. Int.1995,122:837-857
    [60] Sambridge M, Braun J, McQueen H. Computational methods for natural neighbourinterpolation in two and three dimensions[J]. In May and Easton ed. The Seventh BiennialComputational Techniques and Applications Conference,3-7July1995, Melbourne,Australia, Proceedings of CTAC95, World Scientific, Singapore,1996,685-692
    [61] Sukumar N, Moran T, Belytschko T. The natural element method in solid mechanics[J].International Journal for Numerical Methods in Engineering,1998,43(5):839-887
    [62] N Sukumar. The natural element method in solid mechanics[D]. Dissertation,Northwestern University,1998
    [63] N Sukumar. A note on natural neighbor interpolation and the natural element method(NEM)[EB/OL]. URL: http://dilbert.engr.ucdavis.edu/~suku,1997.11
    [64] N Sukumar, B Moran. C1natural neighbor interpolant for partial differential equations[J].Numerical Methods for Partial Differential Equations.1999,15(4):417-447
    [65] Cueto E., Doblare M.. The alpha-shapes-based natural element method[J]. FifthInternational Conference on Computational Structures Technology and the SecondInternational Conference on Engineering Computational Technology,2000:23-30
    [66] E.Cueto, M.Doblare, L.Gracia. Imposing essential boundary conditions in the naturalelement method by means of density-scaled a-shapes[J].. Int. J. Numer. Meth. Engng,2000,49:519-546
    [67] Bueche D..Sukumar N..Moran,B.. Deispersive properties of the natural elementmethod[J].. Computational Mechanics,2000,25(2):207-219
    [68] Yu D.. Some development of the natural boundary element method[J]. International Serieson Advances in Boundary Elements,2000,8:481-490
    [69] Sukumar N.. Natural neighbour Galerkin method[J]. International Journal for NumericalMethod in Engineering,2001,50(1):1-27
    [70] N Sukumar. Sukumar N. Sibson and non-Sibsonian interpolations for elliptic partialdifferential equations[J]. In: K J Bathe,ed. First MIT Conference on CFSM,12-15June2001, MIT Cambridge, USA, Proceedings of First MIT Conference on ComputationalFluid and Solid Mechanics. Elsevier, Cambridge, USA,2001,1665~1667
    [71] N Sukumar. Meshless methods and partition of unity finite elements[J]. In V. Brucato Ed.Proceedings of the Sixth International ESAFORM Conference on Material Forming,Salerno, Italy,2003.603~606
    [72] J M Melenk, I Babuska. The partition of unity finite element method: basic theory andapplication[J]. Computer Methods in Applied Mechanics and Engineering,1996,139:237~262
    [73] Du Qi-Kui, Yu, De-Hao. Natural boundary element method for elliptic boundary valueproblems in domains with concave angle[J]. Journal of Marine Science and Technology,2001,9(2):75-83
    [74] Elastic electrode polarization in a spatial harmonic field and the natural boundary elementmethod[J]. Priceedings of the IEEE Ultrasonics Symposium,2001,1:111-114
    [75] Cueto E., Calvo B., Doblare M.. Modelling three-dimensional piece-wise homogeneousdomains using the alpha-shape-based natural element method[J]. International Journal forNumerical Methods in Engineering,2002,54(6):872-897
    [76] Sergio R Idelsohn, Eugenio Onate, Nestor Calvo, Facundo Del Pin. Meshless finiteelement ideas[R]. In: H A Mang, F G Rammerstorfer, J Eberhardsteiner, Eds. WCCM V,Fifth World Congress on Computational Mechanics, Vienna, Austria,2002
    [77] N Sukumar. Voronoi cell finite difference method for the diffusion operator on arbitraryunstructured grids[J]. International Journal for Numerical Methods in Engineering.2003,57:1~34
    [78] Cueto E., Sukumar N., Calvo B.. Overview and recent advances in natural neighbourGalerkin methods[J]. Archives of Computational Methods in Engineering,2003,10(4):307-384
    [79] Cueto E., Cegonino J, Calvo B.. On the imposition of essential boundary conditions innatural neighbour Galerkin methods[J]. Communications in Numerical Methods inengineering,2003,19(5):361-376
    [80] Matinez MA., Cueto E., Doblare M.. Natural element meshless simulation of flowsinvolving short fiber suspensions[J]. Journal of Non-newtonian Fluild Mechanics,,2003,115(1):51-78
    [81] Toi Yutaka, Kang Sung-Soo. Mesoscale Analysis of solids Contaning a Number ofMicrovoids by Using Natural Element Method(1nd Report, Evaluation of Overall ElasticModuli and Yield Stress)[J]. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of theJapan Society of Mechanical Engineers, Part A,2003.69(7):1101-1107
    [82] Toi Yutaka, Kang Sung-Soo. Mesoscale Analysis of solids Contaning a Number ofMicrovoids by Using Natural Element Method(2nd Report,Ductile Fracture AnalysisConsidering Void Linking)[J]. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions ofthe Japan Society of Mechanical Engineers, Part A,2003.69(7):1108-1113
    [83] Yu De-Hao, Du Qi-Kui. Coulplin of natural boundary element and finite element methodfor2D hyperbolic equations [J]. Journal of Computationsl Mathematics,2003,21(5):585-594
    [84] Yvonnet J., Ryckelynck D., Lorong P., Chinesta F.. A new extension of the natural elementmethod for non-convex and discontinuous problems: The constrained natural elementmethod (C-NEM)[J]. International Journal for Numetical Methods in Engineering,2004,60(8):1451-1474
    [85] Yoo Jeong Wahn, Moran Brian, Chen Jiun-Shyan. Stabilized conforming nodalintegration in the natural-element method [J]. International Journal for NumericalMethods in Engineering,2004,60(5):861-890
    [86] WU Zheng-Peng, Yu De-Hao. Coupling of natural boundary element and finite elementfor semi-linear boundary value problems [J]. Chinese Journal of Coputational Physics,2004,21(6):477-483
    [87] Matinez MA., Cueto E., Doblare M., Chinesta F.. Updated Lagrangian free surface flowsimulations with natural neighbour Galerkin methods [J]. International Journal forNumerical Methods in Engineering,2004,60(13):2105-2129
    [88] Yangchang Cai, Hehua Zhu. A meshless local natural neighbour interpolation method forstress analysis of solids [J]. Engineering Analysis with Boundary Elements,2004,28(6):607-613
    [89] Gonzalez D., Cueto E., Martinez MA. Numerical integration in natural neighbourGalerkin methods [J]. International Journal for Numerical Method in Engineering,2004,60(12):2077-2104
    [90] Gonzalez D., Cueto E., Doblare M.. Volumetric Locking in natural neighbour Galerkinmethods [J]. International Journal for Numerical Method in Engineering,2004,61(4):611-632
    [91] W Barry. A Wachspress meshless local Petrov-Galerkin method [J]. Engineering Analysiswith Boundary Elements,2004,28:509-523
    [92] Chinesta F., Cueto E., Quintela P.. Induced anisotropy in foams forming processes:modelling and simulation [J]. Journal of Material Processing Technology,2004,155:1482-1488
    [93] Yvonnet J., Chinesta F., Lorong Ph., Rycklynck D.. The constrained natural elementmethod (C-NEM) for treating thermal models involving moving interfaces [J].International Journal of Thermal Sciences,2005,44(6):559-569
    [94] Yvonnet J., Chinesta F.. A hybrid element-free Galerkin and natural element meshfreemethod for direct imposition of boundary conditions and faster three-dimensionalcomputations [J].3rd M.I.T. Conference on Computational Fluid and SolidMechanics,2005:547-552
    [95] Calvo B., Martinez MA., Doblare M..On solving large strain hyperelastic problems withthe natural element method [J]. International Journal for Numerical Methods inEngineering,2005,62(2):159-185
    [96] Toi Yutaka, Kang Sung-Soo. Mesoscopic natural element analysis of elastic moduli, yieldstress and fracture of solids containing a number of voids [J]. International Journal ofPlasticity,2005,21(12):2277-2296
    [97] Doblare M., Cueto E., Calvo B..On the employ of meshless methods in biomechanics [J].Computer Methods in Applied Mechanics and Engineering,2005,194(6-8):801-821
    [98] Laguardia JJ., Cueto E., Doblare M.. A natural neighbour Galerkin method with quadtreestructure [J]. International Journal for Numerical Methods in Engineering,2005,63(6):789-812
    [99] Cho J.R., Lee H.W.2-D large deformation analysis of nearly incompressible body bynatural element method [J]. Computers and Structures,2006,84(5-6):293-304
    [100] Illoul L., Yvonet J., Chinesta F., Clenet S..Application of the natural-element method tomodel moving electromagnetic devices [J]. IEEE Transactions on Magnetics,2006,42(4):727-730
    [101] Alfaro I., Bel D., Cueto E.. Three-dimensional simulation of aluminium extrusion by theα-shape based natural element method [J]. Computer Methods in Applied Mechanics andEngineering,2006,195(33-36):4269-4286
    [102] Alfaro I., Gonzalez D., Bel D.. Recent advances in the meshless simulation ofaluminium extrusion and other related forming processes [J]. Archives of ComputationalMethods in Engineering,2006,13(1):3-43
    [103] Ryckelynck D., Chinesta F., Cueto E.. On the a priori model reduction: Overview andrecent developments [J]. Archives of Computational Methods inEngineering,2006,13(1):91-128
    [104] Alfaro I., Yvonet J., Cueto E.. Meshless methods with application to metal forming.Computer Methods in Applied Mechanics and Engineering,2006,195(48-49):6661-6675
    [105] Gonzalez D., Cueto E., Chinesta F.. A natural element updated Lagrangian strategy forfree-surface fluid dynamics[J]. Journal of Computaitional Physics,2006,223(1):127-150
    [106] Alfaro I., Yvonet J., Chinesta F.. A study on the performance of natural neighbour-basedGalerkin methods. Internation Journal for Numerical Methods in Engineering,2007,71(12):1436-1465
    [107] Cho J.R., Lee H.K..2-D frictionless dynamic contact analysis of large deformable bodiesby Petrov-Galerkin natural element method. Computers and Structures,2007,85(15-16):1230-1242
    [108] Most Thomas. A natural neighbour-based moving least-squares approach for theelement-free Galerkin method. International Journal for Numerical Methods inEngineering,2007,71(2):224-252
    [109] Hiyoshi Hisamoto, Suqihara. Smooth natural neighbour interpolants over the wholedomain [J]. International Journal of Computational Science and Engineering,2007,3(1):3-13
    [110] Danshmand F., Niroomandi S.. Natural neighbour Galerkin computation of the vibrationmodes of fluid-structure systems [J]. Engineering Computations (Swansea,Wales),2007,24(3):269-287
    [111] Zhang Sheng, Yu Dehao. Multigrid algorithm for the coupling system of natural boundaryelement method and finite element method for unbounded domain problems [J]. Journalof Computational Mathematics,2007,25(1):13-26
    [112] Dinis L.M.J.S., Natal Jorge R.M., Belinha J.. Analysis of3D solids using the naturalneighbour radial point interpolation method [J]. Computer Methods in Applied Mechanicsand Engineering,2007,196(13-16):2009-2028
    [113] Cho J.R.,Lee H.W..Polygon-wise constant curvature natural element approximation ofKirchhoff plate model [J]. International Journal of Solids and Structures,2007,44(14-15):4860-4871
    [114] Illoul L., Le Menach Y., Clenet S., Chinesta F.. A mixed finite element/meshless naturalelement method for simulating rotative electromagnetic machines [J]. EPJ AppliedPhysics,2008,43(2):197-208
    [115] Pena E., Martinez M.A., Calvo B., Doblare M.. Application of the natural element methodto finite deformation inelastic problems in isotropic and fiber-reinforced biological softtissues [J]. Computer Methods in Applied Mechanics andEngineering,2008,197(21-24):1983-1996
    [116] Gonzalez David, Cueto E., Doblare M.. Higher-order natural element methods: Towardsan isogeometric meshless method[J]. International Journal for Numerical Methods inEngineering,2008,74(13):1928-1954
    [117] Liu Dongjie, Yu Dehao. Coupling method of natural and infinite element forvisco-elastical analysis in geotechnical engineering [J]. CMES-Computer Modeling inEngineering and Sciences,2008,37(3):305-329
    [118] Alfaro I., Fratini L., Cueto E., Chinesta F.. Numerical Simulation of Friction Stir Weldingby Natural Element Methods [J]. International Journal of Material Forming,2008,1(1):1079-1082
    [119] Balachandran G.R., Rajaqopal A., Sivakumar S.M.. Mesh free Galerkin method based onnatural neighbors and conformal mapping [J]. Computational Mechanics,2008,42(6):885-905
    [120] Wei-hong Peng, Zheng-zhu Dong. Chu-wen Guo. Natural convection of micropolar fluidin an enclosure with boundary element method [J]. Procedia Earth and PlanetaryScience,2009,1(1):465-470
    [121] Chen Yiming, Li jijnxian, Feng Bin, Gijian Wei. Hermite cubic spline multi-waveletnatural boundary element method [J]. ICIC Express Letters,2009,3(2):213-217
    [122] Dialami Narges, Daneshmand Farhang. Natural neighbor Galerkin method for deflectionanalysis of inflatable structures [J]. Engineering Computations (Swansea, Wales),2009,26(4):440-456
    [123] Dinis L.M.J.S., Natal Jorge R.M., Belinha J., The natural neighbour radial pointinterpolation method: Dynamic applications [J]. Engineering Computations (Swansea,Wales),2009,26(8):911-949.
    [124] Ata R., Soulaimani A., Chinesta F.. The natural volume method (NVM): Presentation andapplication to shallow water inviscid flows [J]. International Journal for NumericalMethods in Fluids,2009,59(1):19-45
    [125] Shahrokhabadi S., Toufigh M.M., Gholizadeh R.. Application of natural element methodin solving seepage problem [J]. Geotechnical Special Publication,2010,(204):245-252
    [126] Daneshmand Farhang, Javanmard S.A.samad, Liaghat Tahereh, Moshkar MohammadMohsen, Adamowski Jan F.. Numerical solution for two-dimensional flow under sluicegates using the natural element method [J]. Canadian Journal of Civil Engineering,2010,37(12):1550-1559
    [127] Rajagopal Amirtham, Fischer Paul, Kuhl Ellen, Steinmann Paul. Natural element analysisof the Cahn-Hilliard phase-field model amirtham rajagopal [J]. ComputationalMechanics,2010,46(3):471-493
    [128] Ren Lan, Zhao Jinzhou, Hu Yongguan, Luo Wei. Natural difference method forproduction performance simulation in fractured wells [J]. Acta Petrolei Sinica,2010,31(2):501-505
    [129] Shokin Yu I., Afanas Ev. K.E., Application of the natural element method for solution ofproblems of fluid dynamics with free boundaries [J]. Russian Journal of NumericalAnalysis and Mathematical Modelling,2011,26(5):515-531
    [130] Ding Daohong, Zhang Qing, Luo Lingyan. Elasto-plastic natural element method (NEM)and its application in numerical experiments of concrete filled steel tubular (CFST)columns [C].2011International Conference on Remote Sensing, Environment andTransportation Engineering, RSETE2011-Proceedings,2011:1160-1163
    [131] Peng Weihong, Cao Guohua, Dongzhengzhu, Li Shuncai. Darcy-Stokes equations withfinite difference and natural boundary element coupling method [J]. CMES-ComputerModeling in Engineering and Sciences,2011,75(3-4):173-188
    [132] Chen Shenshen, Li Qinghua, Liu Yinghua, Xia Jiangtao, Xue Zhiqing. Dynamicelastoplastic analysis using the meshless local natural neighbor interpolation method [J].International Journal of Computational Methods,2011,8(3):463-481
    [133] Han RuJun, Nie ZhiFeng. C1natural element method for couple-stress elasticity [J].Applied Mechanics and Materials,2012,105-107:370-373
    [134]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法[J].力学学报,2003,35(2):187-193
    [135]蔡永昌,朱合华,王建华.基于局部Petrov-Galerkin过程的自然单元法及其面向对象的设计与实现[J].岩石力学与工程学报2003,22(8):1263-1268
    [136]朱合华,杨宝红,蔡永昌,徐斌.无网格自然单元法在弹塑性分析中的应用[J].岩土力学,2004,25(4):671-674
    [137]戴斌,王建华.自然单元法原理与三维算法实现[J].上海交通大学学报,2004,38(7):1222-1228
    [138]王兆清,冯伟.自然单元法研究进展[J].力学进展,2004,34(4):437-445
    [139]卢波;葛修润;程永辉;自然单元法研究进展[J].岩石力学与工程学报,2004,23(增1):4319-4324
    [140]卢波,葛修润,孔祥礼.有限元法、无单元法及自然单元法之比较研究[J].岩石力学与工程学报,2005,24(5):780-786
    [141]卢波.自然单元法的发展及其应用[D].武汉:中国科学院(武汉岩土力学研究所),2004
    [142]卢波,葛修润,王水林.自然单元法数值积分方案研究[J].岩石力学与工程学报,2005,24(11):1917-1924
    [143]卢波;葛修润;王水林;自适应自然单元法研究——误差估计[J].岩石力学与工程学报,2005,24(22):4006-4071
    [144]卢波;丁秀丽;邬爱清.自然单元法在岩土工程中应用两例[J].岩土力学,2006,27(增刊):1123-1128
    [145]卢波,丁秀丽,邬爱清.自适应自然单元法研究-自适应细化[J].岩土力学,2007,28(增刊):295-299.
    [146]张英新,王建华,高绍武.二维弹塑性自然单元法算法实现[J].上海交通大学学报,2005,39(5):727-730
    [147]李武,姚文娟,朱合华,蔡永昌.蒙特卡罗数值积分在自然单元法中的应用[J].岩土工程学报,2008,20(5):698-704
    [148]江涛,章青.基于Lasserre算法的自然单元法形函数计算[J].力学与实践,2008,30(4):79-83
    [149]江涛,章青,直接增强自然单元法计算应力强度因子[J].计算力学学报,2010,27(2):264-269
    [150]聂志峰,周慎杰,王凯,孔胜利.应变梯度弹性理论C1自然单元法[J].山东大学学报(工学版),2009,39(2):99-102
    [151]王卫东,张敦福,赵国群,程钢.基于偶应力理论的自然单元法研究[J].机械强度,2009,31(4):634-637
    [152]覃立宁,戴自航,周瑞忠.基于平均值定理和点积分方案的自然单元法及其程序实现[J].计算力学学报,2009,26(5):690-696
    [153]曾祥勇.筏板基础无网格计算方法及其在考虑上部结构共同作用分析中的应用[D].重庆大学,2007
    [154]曾祥勇,张鹞,邓安福.双参数地基上Kirchhoff板计算的无网格自然单元法[J].工程力学学报,2008,25(5):296-201
    [155]曾祥勇,朱爱军,邓安福.Winkler地基上厚板分析的自然单元法[J].固体力学学报,2008,29(2):163-169
    [156]余天堂.加锚体自然单元法分析与程序设计[J].计算力学学报,2007,24(5):698-703
    [157]马永政,郑宏,李春光.应用自然邻接点插值法的块体非连续变形分析[J].岩土力学,2008,29(1):119-124
    [158]卢波,丁秀丽,邬爱清.无网格法对岩体不连续面的模拟[J].岩石力学与工程学报,2008,27(10):2108-2117
    [159]褚衍标,王建华.二维Biot固结方程的自然单元法求解[J].上海交通大学学报,2008,42(11):1880-1887
    [160]李晓龙,王复明,徐平.自然元与无限元耦合方法在岩土工程粘弹性分析中的应用[J].振动与冲击,2008,27(12):117-121
    [161]于国辉,赵继伟,自然单元法在水工结构数值分析中的应用[J].华北水利水电学院学报,2009,30(1):31-33
    [162]申晶.自然单元法在电磁场数值计算中的应用[D].沈阳航空工业学院,2009
    [163]盖珊珊,王卫东,张敦福,程钢;自然单元法在线弹性断裂力学中的应用研究[J].计算力学学报,2011,28(3):483-486
    [164]王卫东,赵国群,程钢,马新武.基于刚(粘)塑性流动理论的自然单元法研究[J].计算力学学报,2011,28(4):596-600
    [165]李庆华,陈莘莘,薛志清,曹晖.基于自然元法和精细积分法的功能梯度材料瞬态热传导问题求解[J].计算机辅助工程,2011,20(3):25-28
    [166]陈莘莘,李庆华,刘应华,薛志清.动力弹塑性分析的无网格自然单元法[J].固体力学学报,2011,32(5):493-499
    [167]周书涛,刘应华,陈莘莘.基于自然单元法的极限上限分析[J].固体力学学报,2012,33(1):40-47
    [168] Franz Aurenhammer, Rolf Klein. Voronoi diagram. In: J rg-Rüdiger Sack, Jorge Urrutiaeds. Handbook of Computational Geometry[A], B. V. North-Holland, Amsterdam:Elsever Science Publishers,2000
    [169] G.M.Voronoi. Nouvelles alications des parameters continues a la theorie des formesquadratiques. Dexieme Memoire: Recherches sur les parallelloedres primitives[J]. J.Reine Angew. Math.,1908,134:198-287
    [170] P.J.Green, R.R.Sibson. Computing Dirichlet tessellations in the plane[J]. Comput.J.,1978,21:168-173
    [171] Seed G.M.. Delaunay and Voronoi tessellations and minimal simple cycle in triangularregion and regular-3undirected plarnar praphs[J]. Advances Engineeringsoftware,2001,32:339-351
    [172]晏汀.自然单元法在固体力学中应用的研究[D].武汉:武汉理工大学,2005
    [173] Hisamoto Hiyoshi, Kokichi Sugihara. An interplant based on line segment Voronoidiagrams[M]. METR1990
    [174] Gerald Farin. Curves and surface for computer aided geometric design[M]. London:Academic Press,1998
    [175]程玉民,彭妙娟,李九红.复变量移动最小二乘法及其应用[J].力学学报,2005,37(6):719-723
    [176]程玉民,李九红.弹性力学的复变量无网格法[J].物理学报,2005,54(10),4463-4471
    [177] M. Tabbara, T. Blacker, T. Belytechko. Finite element derivative recovery by moving leastsquares interpolants[J]. Int. J. Numer. Meth. Engng,1994,117:211-223
    [178]蔡永昌,张湘伟.使用高阶覆盖位移函数的数值流形方法及其应力精度的改善[J].机械工程学报,2000,36(9):21-25
    [179] T. H. H. Pian, D. P. Chen, Alternative ways for formulation of hybrid stress elements[J].International Journal for Numerical Methods in Engineering,1982,1:1679-1684.
    [180] Pian T. H. H.. Derivation of element stiffness matrices by assumed stress distributions[J].AIAA.J1964,2:1333-1336
    [181] Pian T. H. H., Tong P.. Basis of finite element methods for solid mechanics[J]. Int. J.Numer. Meth. Engng.1969,1:3-28
    [182] Pian T. H. H. Some notes on the early history of hybrid stress finite element method[J]. Int.J. Number Meth. Engng.2000,47:419-425
    [183]吴长春,卞学鐄.非协调数值分析与杂交元方法[J].北京:科学出版社,1997
    [184]钱伟长.广义变分原理[M].上海:知识出版社,1985
    [185]张灿辉,王东东.一种抑制杂交元零能模式的假设应力场方法[J].固体力学学报,2010,31(1):30-47
    [186]卞学鐄.杂交应力有限元法的研究进展[J].力学进展,2001,31(3):344-349
    [187] Pian T.H.H.. Element stiffness matrices for boundary combustibility and for prescribedboundary stresses [J]. Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDLTR-66-80,1996:457-477
    [188] Courant R, Hilbert D. Methods of Mathematical Physics[M]. Berlin: Springer Berlin,1924
    [189]田宗漱,卞学鐄.多变量变分原理与多变量有限元方法[M].北京:科学出版社,2011
    [190] Reissner E. On a variational theorem of elasticity[J]. J. Math.&Phys.1950,29:90-95
    [191] Reissner E. variational principles in elasticity. Kardestuncer H. Finite Element[J]. NewYork: McGraw-Hill,1987
    [192] Pian T H H. Variational principles for Incremental finite element methods[J]. JournalFranklin Institute,1976,302:437-488
    [193] Dimitris Karamanlidis. On a modified Hellinger-Reissner variational theorem for theanalysis of elastoplastic solids[J]. Jounral of Applied Mechanics,1988,55(3):536-538
    [194]胡平,徐焕然.弹塑性杂交/混合有限元法与实施.计算结构力学及其应用,2989,6(4):77-82
    [195]杨晓,程昌钧.弹性与粘弹性平面问题间的某些恒等关系[J].应用数学和力学,1997,18(12):1081-1088
    [196]杨挺青.黏弹性理论与应用[M].北京:科学出版社,2004
    [197]姚伟岸,杨海天,高强.平面粘弹性问题的辛求解方法[J].计算力学学报.2010.27(1):14-20
    [198]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996
    [199]张肖宁.沥青与沥青混合料的粘弹性力学[M].北京:人民交通出版社,2006
    [200]张之勇,张永昌,张相鳞.杂交/混合有限元增量大位移分析[J].计算结构力学及其应用.1986,3(2):1-8
    [201]郑宏,葛修润,谷先容等.关于岩土工程有限元分析中的若干问题[J].岩土力学,1995,16(3):7-11
    [202] Tusi Y., Cheng Y. K.. A Fundamental study of braced excavation construction[J].Computers and Geotechnics.1989,8:39-64
    [203]钱家欢,殷宗泽.土工数值分析[M].北京:中国铁道出版社,1991
    [204]朱爱军.数值流行方法研究及其在岩土工程中的应用[D].重庆:重庆大学,2005
    [205] Mnan A.I., Clough G. W.. Prediction of movements for braced cuts in clay[J]. Journal ofGeotechnical Engineering Division,1871,107:759-778
    [206]庞作会,陈文胜,邓建辉,葛修润.复杂初始地应力场的反分析[J].岩土工程学报,1998,20(4):44-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700