用户名: 密码: 验证码:
基于光纤束的共聚集荧光内窥成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人口增长和老龄化的加剧,以及抽烟,酗酒,缺乏锻炼,摄入高油脂食物等不良生活习惯,癌症近年来发生的比重越来越多。在发达国家癌症已经成为第一致死因素,在发展中国家癌症成为第二致死因素。研究表明,癌症多发生在上皮细胞的浅层,对癌症的诊断发现越早,成活率越高。所以对癌症的早期诊断已经越来越重要,对癌症早期诊断的各种设备也成为研究的热点。在这些成像诊断方法中,共聚焦荧光内窥系统可以在体实时提供亚细胞分辨率的结构信息,减少或者有可能取代组织活检,受到广泛的关注。本文就基于光纤束的共聚焦荧光内窥成像系统展开研究,并提出了基于傅里叶变换的多光谱荧光内窥成像系统。
     本文研制开发了一种基于光纤束的共聚焦荧光内窥成像系统。并在光学结构,所用主要元件,控制程序和后期数据处理部分都进行了详细的讨论。在共聚焦荧光内窥成像系统中使用CRS共振型振镜实现扫描,取得4帧、秒1024×1024图像。在系统的控制电路中使用NI公司的商用采集卡和图形化编程软件Labview,使得我们能够关注系统的设计而不是繁琐的编程。首先使用标准分辨率板对其横向分辨率进行了测试得到其分辨率4.38微米。使用光栅样品测试系统成像区域为790微米。然后使用标准荧光小球和花粉颗粒检验了其对标准荧光样品的成像能力。最后对正常昆明小鼠的离体和在体组织进行了染色成像实验,验证了系统亚细胞分辨率对组织样品结构信息的分辨能力。
     在多光谱荧光内窥成像系统中,我们结合了光纤束内窥成像的灵活性和傅里叶变换光谱仪的各种优势,可以在体对各种生物器官和组织进行高光谱分辨率的成像。在系统中我们设计使用了迈克尔逊干涉仪结构,选用精度较高的纳米位移台对运动平面镜进行移动。在系统中取出一部分照明光导入迈克尔逊干涉仪中实现对运动平面镜位置的实时监测。该种结构的设计可以保证系统的精确性和长期的稳定性。使用现有的平移台,理论上可以提供的最高光谱分辨率约是4.02cm-1。本文使用光谱稳定的氦氖激光器对其光谱分辨率进行了测量,和理论值有着较好的吻合。然后使用该系统对多色小球进行光谱成像验证了系统分辨多种荧光染料的能力。最后通过对深脑部位神经元进行光谱成像,展示了使用光纤束带来的内窥光谱成像能力。另外本文结合光纤束内窥功能和傅里叶变换光谱仪系统对标准样品和组织的激发光谱进行了测量,展示了使用激发光谱区分不同荧光基团的功能。
     在共聚焦荧光内窥成像系统中使用光纤束可以带来成像的灵活性,但是光纤束本身也有蜂窝状的固有噪声。多种图像处理方法被提出用于消除光纤束的像素化。本文对视觉效果较好的自然邻点插值重建方法进行了论述。
With the aging and growth of the world population as well as an adoption of cancer causing behaviors, smoking, alcoholism,"westernized" diets, the incidence of cancer is increasing drasticly. Cancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Studies found that the majority of cancers arise from malignant cells of epithelium. If diagnosed at early stage, patients will have a higher survival. So detection of cancer will be increasingly important, and multiple biomedical imaging techniques that can diagnose early stage cancer will be the focus of research. Confocal laser microendoscopy is a new tool that allow real time imaging at subcellular resolution during ongoing endoscopy, which reduce or eliminate the need for biopsy and histopathology. In this dissertation, the research focus on high resolution fluorescence microendoscopy and propose a multispectral imaging endo-spectroscopy that is based on fourier transform spectrometer.
     A fiber bundle based high resolution fluorescence microendoscopy is constructed in this thesis. The optical lightpath, major component, control program, and data processing pipeline are discussed in this thesis. A CRS scanner is used in the high resolution fluorescence microendoscopy system to achieve a high imaging speed. A graphical programming language Labview and commercial commercial DAQ and image grab card are used, so the author can focus on the system design, not on the cockamamie programming. First we used the USAF target to verify the resolution of the system, then fluorescence beads and pollen were used to test the performance of the system. Excised tissue samples of normal Kunming mice were stained with0.1%acriflavine and imaged to demonstrate that the structure of tissue can be distinguished with subcellular resolution.
     The multispectral imaging endo-spectroscopy system employs a flexible fiber bundle coupled to a home-built imaging Fourier transform spectroscope. The system retains several advantageous features of Fourier transform spectral measurement method, and can be used for in vivo imaging. A piezoelectric translation stage was used for moving the mirror, and a small portion of the excitation beam was reflected by a beam pickoff to monitor the moving mirror. The monitor channel guaranteed the accuracy of the FTS with long-term stability and eliminates extra spectral calibrations. Maximum spectral resolution of the system is4.02cm-1, very close to our measurement with a stabilized He-Ne laser. To validate its ability to distinguish multi-label objects, a mixture of10.0-14.0μm yellow and purple fluorescent microspheres was used in the experiment. At last, imaging experiment of dual-color cerebral cortex neural cells in vivo was performed to demonstrate the cerebral spectral imaging ability. In addition, we employ a fiber bundle and FTS to maesure the excitation spectrum of fluorescent microspheres and tissue to demonstrate the ability to to distinguish multi-label objects with excitation spectrum.
     Endomicroscopy that emploies flexible fiber bundle can gain visual access to holes, hollows, and cavities that are difficult to enter and examine. However, fiber budle consists limited number of fibers, that leads to imaging artifacts, called comb structures. Many algorithms have been proposed for an effective removal of such artifacts. This thesis focus on the spatial interpolation method, which give a better visual effect.
引文
[1]Minsky, M. Microscopy apparatus. US Patent 1961,3013467.
    [2]Davidovits P., Egger M. D. Scanning laser microscope. Nature,1969,223(5208): 831.
    [3]Sheppard C. J., Wilson, T. Depth of field in the scanning microscope. Optics Letters, 1978,3(3):115.
    [4]Brakenhoff G. J., Blom P., Barends P. Confocal scanning light microscopy with high aperture immersion lenses. Journal of Microscopy,1979,117(2):219-232.
    [5]Koester C. J. Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology. Applied Optics,1980,19(11):1749-1757.
    [6]Aslund N., Carlsson K., Liljeborg. PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence, in: Student-litteratur, Lund Sweden. Third Scandinavian Conference on Image Analysis. Copenhagen:Denmark,1983.338.
    [7]Sandison D. R., Piston D. W., Williams R. M., et al. Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. Applied Optics,1995,34(19):3576-3588.
    [8]Saunders R. L. The flying spot microscope. Canadian Medical Association journal, 1952,67(6):673-675.
    [9]Van Resandt, R. W. W., Marsman H. J. B., Kaplan R., et al. Optical fluorescence microscopy in three dimensions:microtomoscopy. Journal of Microscopy,1985, 138(1):29-34.
    [10]Conchello J. A., Lichtman J. W. Optical sectioning microscopy. Nature Methods, 2005,2(12):920-931.
    [11]Hell S., Reiner G., Cremer C, et al. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. Journal of Microscopy,1993,169(3): 391-405.
    [12]Oheim M., Michael D. J., Geisbauer M., et al. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Advanced drug delivery reviews,2006,58(7):788-808.
    [13]Helmchen F., Denk W. Deep tissue two-photon microscopy. Nature methods,2005, 2(12):932-940.
    [14]Oheim M. Fau, Beaurepaire E., Chaigneau E. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. Journal of Neuroscience Methods,2001, 111(1):29-37.
    [15]Wilt B. A., Burns L. D., Wei Ho E. T., et al. Advances in light microscopy for neuroscience. The Annual Review of Neuroscience,2009,32:435-506.
    [16]Jain R. K., Munn L. L., Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nature Reviews Cancer,2002,2(4):266-276.
    [17]De Palma G. D., Staibano S. In vivo characterisation of superficial colorectal neoplastic lesions with high-resolution probe-based confocal laser endomicroscopy in combination with video-mosaicing:A feasibility study to enhance routine endoscopy. Digestive and Liver Disease,2010,42(11):791-797.
    [18]Frey M. Endoscopy and microsurgery. New York:Springer-Verlag Wien,2001. 117-119.
    [19]Jackson RW, D. D. Arthroscopy of the knee. New York:Grune & Stratton,1976,55.
    [20]RuddockJ. Peritoneoscopy. South surg,1939,8:113-135.
    [21]Berci G. Fau, Forde K. A., Forde K. A. History of endoscopy:what lessons have we learned from the past. Surgery Endoscopy,2000,14(1):5-15.
    [22]Huang Eh Fau, Forde K. A. Surgical implications of colonoscopy. Surgical Innovation,2003,10(1):13-18.
    [23]Vitale Gc Fau, Davis B. R., Davis Br Fau. The advancing art and science of endoscopy. American Journal of Surgery,2005,190(2):228-233.
    [24]Lee Mh Fau, Buterbaugh K., Buterbaugh K. Fau, et al. Advanced endoscopic imaging for Barrett's Esophagus:current options and future directions. Current Gastroenterol Report,2012,14(3):216-225.
    [25]Jaramillo E. Fau, Watanabe, M., Befrits, R., et al. Small, flat colorectal neoplasias in long-standing ulcerative colitis detected by high-resolution electronic video endoscopy. Gastrointest Endoscopy,1996,44(1):15-22.
    [26]Etzioni R. Fau, Urban N., Ramsey S., McIntosh M., et al. The case for early detection. Nature Review Cancer.2003,3(4):243-252.
    [27]Sung K. B., Liang C, Descour M., et al. Near real time in vivo fibre optic confocal microscopy:sub-cellular structure resolved. Journal of Microscopy,2002,207: 137-145.
    [28]Quinn M. K., Bubi T. C, Pierce M. C, et al. High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings. PloS one,2012,7(9): e44924.
    [29]Becker V., von Delius S., Bajbcouj M., et al. Intravenous application of fluorescein for confocal laser scanning microscopy:evaluation of contrast dynamics and image quality with increasing injection-to-imaging time. Gastrointest Endoscopy,2008, 68(2):319-323.
    [30]Vincent P., Maskos U., Charvet I., et al. Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Reports,2006,7(11): 1154-1161.
    [31]Davenne M., Custody C, Charneau P., et al. In Vivo Imaging of Migrating Neurons in the Mammalian Forebrain. Chemical Senses,2005,30(1):il115-i116.
    [32]Laemmel E., Genet M., Le Goualher G, et al. Fibered Confocal Fluorescence Microscopy (Cell-viZioTM) Facilitates Extended Imaging in the Field of Microcirculation. Journal of Vascular Research,2004,41(5):400-411.
    [33]Polglase A. L., McLaren W. J., Skinner S. A., et al. A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract. Gastrointest Endoscopy,2005,62(5):686-695.
    [34]Sabharwal Y. S., Rouse A. R., Donaldson L., et al. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Applied optics,1999,38(34): 7133-7144.
    [35]Liang C, Descour M., Sung K.B., et al. Fiber confocal reflectance microscope (FCRM) for in-vivo imaging. Optics Express,2001,9(13):821-830.
    [36]www.optiscan.com/About/History.asp. Accessed March 6,2011.
    [37]Kang D., Suter M. J., Boudoux C., et al. Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy. Gastrointest Endoscopy,2010,71(1):35-43.
    [38]www.maunakeatech.com/patients/549/faq.
    [39]Goetz M., Memadathil B., Biesterfeld S., et al. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy. World J Gastroenterol,2007,13(15):2160-2165.
    [40]Gmitro A. F., Aziz D. Confocal microscopy through a fiber-optic imaging bundle. Optics letters,1993,18(8):3.
    [41]Juskaitis R.,Wilson T. Imaging in reciprocal fibre-optic based confocal scanning microscopes. Optics Communications,1992,92(4-6):315-325.
    [42]Knittel J., Schnieder L., Buess G, et al. Endoscope-compatible confocal microscope using a gradient index-lens system. Optics Communications,2001,188(5-6): 267-273.
    [43]Liang C., Sung K. B., Richards-Kortum, R. R., et al. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Applied Optics,2002,41(22):4603-4610.
    [44]Rouse A. R., Kano A., Kroto S. M, et al. Fiber optic confocal microendoscope as a daughter scope for clinical endoscopy. In:Israel G, Optical Fibers and Sensors for Medical Applications III. USA:San Jose, CA.2003.70-78.
    [45]Anne Osdoit, Magalie Genet, Aymeric Perchant, et al. In vivo fibered confocal reflectance imaging:totally non-invasive morphological cellular imaging brought to the endoscopist. In:Guillermo J. Tearney, T. D. W. Endoscopic Microscopy. USA: San Jose, CA,2006.608208.
    [46]Borschitz, T.,Kiesslich, R. Confocal chromolaser endomicroscopy:a supplemental diagnostic tool prior to transanal endoscopic microsurgery of rectal tumors? Int J Colorectal Dis, Jan,2010,25(1):71-77.
    [47]Sung K. B., Liang C., Descour M. R., et al. Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues. IEEE Transactions onBiomedical Engineering,2002,49(10):1168-1172.
    [48]Rege S. S., Tkaczyk T. S.,Descour M. R. Application of the Alvarez-Humphrey concept to the design of a miniaturized scanning microscope. Optics Express,2004, 12(12):2574-2588.
    [49]Goetz M., Hoffman A., Galle P. R., et al. Confocal laser endoscopy:new approach to the early diagnosis of tumors of the esophagus and stomach. Future Oncol,2006, 2(4):469-476.
    [50]Smithwick Q. Y. J., Vagners J., Reinhall P. G, et al. Modeling and control of the resonant fiber scanner of a novel scanning scope. P Ann Int Ieee Embs,2002,2: 977-978.
    [51]Hsiung P. L., Hardy J., Friedland S., et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine,2008, 14(4):454-458.
    [52]Millot, J. M., Sharonov, S.,Manfait, M. Scanning microspectrofluorometry of rhodamine 123 in multidrug-resistant cells. Cytometry,1994,17(1):50-58.
    [53]Zimmermann T. Fau, Rietdorf J., Rietdorf J. Fau. Spectral imaging and its applications in live cell microscopy. FEBS Letters,2003,546(1):87-92.
    [54]Rouse A. R., Gmitro A. F. Multispectral imaging with a confocal microendoscope. Optics letters,2000,25(23):1708-1710.
    [55]Jean F., Bourg Heckly G, Viellerobe B. Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. Optics Express,2007, 15(7):4008-4017.
    [56]Muldoon T. J., Pierce M. C., Nida D. L., et al. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Optics Express,2007,15(25): 16413-16423.
    [57]Li J., Chan R. K. Y., Wang X. Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements. Optics Express,2009,17(23):21083-21090.
    [58]Zhang H., Yuan J., Fu L. Imaging Fourier transform endospectroscopy for in vivo and in situ multispectral imaging. Optics Express,2012,20(21):23349-23360.
    [59]Siegfried Wartewig. IR and Raman spectroscopy:Fundamental Processing. Berlin: Wiley Interscience,2003.37-39.
    [60]Gobel W., Kerr J. N. D., Nimmerjahn A., et al. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Optics Letter,2004,29(21):2521-2523.
    [61]Winter C., Rupp S., Elter M., et al. Automatic adaptive enhancement for images obtained with fiberscopic endoscopes. IEEE Transactions on Biomedical Engineering,2006,53(10):2035-2046.
    [62]Suter M. Fau, Reinhardt J., Montague, P., et al. Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators. Journal of biomedical optics,2005,10(3):34013.1-5.
    [63]Dickens M. M., Houlne M. P., Mitra S., et al. Method for depixelating micro-endoscopic images. Optical Engineering,1999,38(11):1836-1842.
    [64]Han J., Lee J., Lee T., et al. Near infrared imaging of micro-structured polymer-metal surface pattern. Opto-Electronics Review,2010,18(2):163-167.
    [65]Winter C. Fau, Zerfass T. Physically motivated enhancement of color images for fiber endoscopy. Med Image Comput Comput Assist Interv,2007,10(Pt 2): 360-367.
    [66]Huang Y., Kang J. U. Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging. Optical Engineering,2012,51(7): 073203-073511.
    [67]Bedard N., Quang T., Schmeler K., et al. Real-time video mosaicing with a high-resolution microendoscope. Biomedical of Optics Express,2012,3(10): 2428-2435.
    [68]Reichenbach K. L., Xu C. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express,2007,15(5):2151-2165.
    [69]Huang L.,Oesterberg U. L. Measurement of cross talk in order-packed image fiber bundles. SPIE,1995,480-488.
    [70]Chen X. P., Reichenbach K. L., Xu C. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt. Express,2008,16(26): 21598-21607.
    [71]Liang C., Descour M., Sung K. B., et al. Fiber confocal reflectance microscope (FCRM) for in-vivo imaging. Opt. Express,2001,9(13):821-830.
    [72]Chidley M. D., Carlson K. D., Richards-Kortum, R. R., et al. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Applied optics,2006, 45(11):2545-2554.
    [73]Chidley M. D., Liang C., Descour M. R., et al. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy, in:P. K. Manhart and J. M. Sasian, International Optical Design Conference, Proc. SPIE 2002.126-136.
    [74]Motz J. T., Yelin D., Vakoc B. J., et al. Spectral-and frequency-encoded fluorescence imaging. Optics Letter,2005,30(20):2760-2762.
    [75]http://www.camtech.com/index.php?option=com_docman&task=doc_download &gid=183.
    [76]Nguyen Qt Fau, Callamaras N., Hsieh, C., et al. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium,2001,30:383-393.
    [77]Sanderson, M. J. Acquisition of multiple real-time images for laser scanning microscopy. Microscopy and analysis,2004,7(4):17-23.
    [78]http://www.gsig.com/scanners/downloads/manuals/CRS_User_Manual_7om025.pdf.
    [79]Yelin D., Bouma B. E.,Tearney G J. Generating an adjustable three-dimensional dark focus. Optics Letter,2004,29(7):661-663.
    [80]Leybaert L. Fau, Mabilde C, Sanderson M. J., et al. A simple and practical method to acquire geometrically correct images with resonant scanning-based line scanning in a custom-built video-rate laser scanning microscope. Journal of Microscopy,2005, 219(3):13-140.
    [81]Weisz J. R. Software calibration of scan system distortions. SPIE,1991,1454: 265-271.
    [82]Shimony Y., Burshtein Z., Kalisky Y. Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser. Quantum Electronics. IEEE J. Quantum Electron, 1995,31:1738-1741.
    [83]http://www.ni.com/pdf/manuals/373793c.pdf.
    [84]http://digital.ni.com/public.nsf/allkb/OD213E3480DF793286257364001F6F40.
    [85]Prasad P. N. Introduction to Biophotonics. Berlin:Wiley Interscience,2003.
    [86]Tajiri H., Kobayashi M., Izuishi K., et al. Fluorescence Endoscopy in the Gastrointestinal Tract. Digestive Endoscopy,2000,1 (1):28-31.
    [87]Provenzano Pp Fau, Eliceiri, K. W., Campbell J. M., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine,2006,26,4(1): 38.
    [88]Wang W Fau, Goswami S Fau, Lapidus K Fau, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research,2004,64(23):8585-94.
    [89]Skala Me Fau, Riching K. M., Riching Km Fauet al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Biomedical Optics Express,2013,4(2):307-321.
    [90]Chance B. Fau, Schoener B. Fau, Oshino R., et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. The Journal of biological chemistry,1997,254(11):4764-4771.
    [91]Richards-Kortum R., Fau Sevick-Muraca, E., Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annual Review of Physical Chemistry,1996,47(0): 555-606.
    [92]Collier T., Lacy A., Richards-Kortum R., et al. Near real-time confocal microscopy of amelanotic tissue:Detection of dysplasia in ex vivo cervical tissue. Acad Radiol, 2002,9(5):504-512.
    [93]De Palma, G. D. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract. World J Gastroenterol,2009,15(46): 5770-5775.
    [94]Selkin B. Fau, Rajadhyaksha M., Gonzalez S., Langley R. G, et al. In vivo confocal microscopy in dermatology. Journal of Biomedical Optics,2013,18(6): 0612121-0612129.
    [95]Tanbakuchi A. A., Rouse A. R., Udovich J. A., et al. Surgical imaging catheter for confocal microendoscopy with advanced contrast delivery and focus systems. In: Guillermo J. T., Thomas D. W. Endoscopic Microscopy. USA:San Jose CA,2006. 6082021-6082028.
    [96]Kusuzaki K Fau, Murata H Fau, Matsubara T. Fau, et al. Clinical outcome of a novel photodynamic therapy technique using acridine orange for synovial sarcomas. Photochemistry and Photobiology,2005,81(3):705-710.
    [97]Thiberville L., Salaun M., Lachkar S., et al. Confocal fluorescence endomicroscopy of the human airways. Proceedings of the American Thoracic Society,2009,6(5): 444.449.
    [98]Hsiung P. L., Hardy J., Friedland S., et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Medicine,2008, 14(4):454-458.
    [99]Kevin K. T., Keisuke G, Bahram J.2-D Spectrally Encoded Confocal Microscopy and Its Application for Simultaneous Imaging and Laser Surgery with a Single Fiber Probe. In:Baltimore. Conference on Lasers and Electro-Optics. Maryland United States:Endoscopic Imaging Applications (CMCC),2009.1364-1365.
    [100]Jacquinot P. The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot Etalons. Journal of the Optical Society of America,1954,44(10):761-765.
    [101]Arnold Ma Fau, Small G W., Small G. W. Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra. SpectraAnal Chem,1990,62 (14):1457-1464.
    [102]Saptari V. A., Youcef Toumi, K. Sensitivity analysis of near-infrared glucose absorption signals:toward noninvasive blood glucose sensing. Proceedings of SPIE, 2000,4163:45-54.
    [103]Wang X Fau, Chan R. K. Y., Chan Rk Fau, Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors. Review of Scientific Instruments,2008,79 (12):3046281-3046287.
    [104]Chan R. K., Lim P. K., Wang, X., et al. Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique. Optics letters,2006,31(7): 903-905.
    [105]David A. Naylor, M. K., Tahic M. K. Apodizing functions for Fourier transform spectroscopy. Journal of the Optical Society of America A,2007,24(11):3644-3648.
    [106]Filler A. S. Apodization and Interpolation in Fourier-Transform Spectroscopy. Journal of the Optical Society of America,1964,54(6):762-764.
    [107]Norton R. H., Beer R. New apodizing functions for Fourier spectrometry. Journal of the Optical Society of America,1976,66(3):259-264.
    [108]Yang H., Griffiths P. R., Manning C. J. Improved Data Processing by Application of Brault's Method to Ultra-Rapid-Scan FT-IR Spectrometry. Appl. Spectrosc.,2002, 56(10):1281-1288.
    [109]Dutt A., Rokhlin V. Fast Fourier Transforms for Nonequispaced Data, II. Applied and Computational Harmonic Analysis,1995,2(1):85-100.
    [110]Lee J., Greengard, L. The type 3 nonuniform FFT and its applications. Journal of Computational Physics,2005,206(1):1-5.
    [111]Fruhwirth Go Fau, Ameer Beg S., Cook R., et al. Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells. Optics Express,2010, 18(11):11148-11158.
    [112]Sun Y. Fau, Phipps J., Phipps J. Fau, et al. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Optics Letters,2009,34(13): 2081-2083.
    [113]Elson Ds Fau, Jo J. A., Jo Ja Fau. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM):validation with fluorescence dyes, tissue structural proteins and tissue specimens. N. J. Phys,2007,9(127):1-13.
    [114]Siegel J. Fau, Elson, D. S., Elson Ds Fau, et al. Studying biological tissue with fluorescence lifetime imaging:microscopy, endoscopy, and complex decay profiles. Applied Optics,2003,42:2995-3004.
    [115]Makhlouf H., Fau Gmitro, A. F., et al. Multispectral confocal microendoscope for in vivo and in situ imaging. Journal of biomedical optics,2008,13(4): 440161-440169.
    [116]Yuval G, T. Y. I., George M. Spectral imaging:principles and applications. Cytometry Part A 69 A,2006.
    [117]Kauppinen J., Partanen J. Fourier Transforms in Spectroscopy. Berlin:GmbH,2001. 269.
    [118]De Palma, G. D. Confocal laser endomicroscopy in the "in vivo" histological diagnosis of the gastrointestinal tract. Gastrointest Endosc,2005,62:696-697.
    [119]Becker V. Fau, Wallace M. B., Wallace Mb Fau, et al. Needle-based confocal endomicroscopy for in vivo histology of intra-abdominal organs:first results in a porcine model (with videos). Gastrointestinal Endoscopy,71(7):1260-1266.
    [120]Kauppinen J., Partanen, J. Fourier transforms in spectroscopy. Berlin:WILEY-VCH Verlag Berlin GmbH,2001.86-87.
    [121]Murari K., Li N., Rege A., et al. Contrast-enhanced imaging of cerebral vasculature with laser speckle. Applied Optics,2007,46(22):5340-5346.
    [122]Gerhart D. Z., Broderius M. A., Borson N. D., et al. Neurons and microvessels express the brain glucose transporter protein GLUT3. Proceedings of the National Academy of Sciences,1992,89(2):733-737.
    [123]Grammas P., Moore P.,Weigel P. H. Microvessels from Alzheimer's disease brains kill neurons in vitro. The American journal of pathology,1999,154(2):337-342.
    [124]Tsai Ps Fau, Kaufhold J. P., Kaufhold Jp Fau, et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. Journal of Neuroscience,2009,29: 14553-14570.
    [125]Hirschberg J. G., Vereb G, Meyer C. K., et al. Interferometric measurement of fluorescence excitation spectra. Applied optics,1998,37(10):1953-1957.
    [126]Cercek L. Fau, Cercek B., Cercek B Fau, et al. Fluorescein excitation and emission polarization spectra in living cells:changes during the cell cycle. Biophysical Journal, 1978,23(3):395-405.
    [127]Rokos H., Moore J., Hasse S., et al. In vivo fluorescence excitation spectroscopy and in vivo Fourier-transform Raman spectroscopy in human skin:evidence of H2O2 oxidation of epidermal albumin in patients with vitiligo. Journal of Raman Spectroscopy,2004,35(2):125-130.
    [128]Lee S., Wolberg G, Shin S. Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions on Visualization and Computer Graphics,1997,3:228-244.
    [129]Georges Le Goualher, Aymeric Perchant, Magalie Genet, et al. Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope. Lecture notes in Computer Science,2004,3217:761-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700