用户名: 密码: 验证码:
自由曲面加工刀具路径轨迹规划算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由曲面零件以其优良的空气动力学、流体动力学和热力学等特性,广泛应用于航空航天、造船、汽车、模具制造等领域。自由曲面造型技术已经比较成熟,但是相对而言,自由曲面的加工技术发展稍显落后,随着多轴联动加工中心的发展,自由曲面的数控编程,作为自由曲面设计和多轴联动加工自由曲面的桥梁,越来越凸显出其重要性,特别是其刀具路径轨迹规划技术研究成为该领域内的一个研究热点和难点。
     论文系统地研究了国内外关于自由曲面加工刀具路径轨迹规划的研究进展,以提高自由曲面的表面加工质量和加工效率为目标,对自由曲面加工的刀具路径轨迹规划的若干关键技术进行了深入研究,提出了自由曲面加工的多刀具组合自动优化算法、等弓高误差变步长算法、基于等残余高度线的刀具路径轨迹规划算法和基于关键刀触点提取的样条曲线插补加工刀具路径轨迹生成算法等。
     论文的主要研究成果和创新点总结如下:
     提出了一种自由曲面加工多刀具组合自动优化算法。改进了遗传算法,为适应自由曲面的主曲率特性,设计了一种新的非线性自适应度函数,给出了新的复制规则,求取自由曲面上的最大主曲率点,以获取满足无曲率干涉加工自由曲面的最大刀具尺寸;提出了自由曲面加工局部干涉区域边界追踪算法,用于曲面分区域划分,然后分区域规划刀具路径轨迹,建立了刀具路径轨迹总长度和刀具尺寸之间的函数关系式,采用遗传算法求取使得加工效率最高的多刀具组合。
     提出了一种等弓高误差变步长算法。算法给出了步长范围内弓高误差的计算方法,然后将黄金分割法应用到最大弓高误差的求取和变步长参数点的求取,给出了基于曲率半径符号判别的弓高误差校核方法,避免了弓高误差中点校核法可能的错误判断,最后给出了完整的等弓高误差变步长算法。
     提出了一种基于等残余高度线的刀具路径轨迹规划算法。由当前刀具路径轨迹计算等残余高度线,根据等残余高度线计算相邻刀具路径轨迹,循环下去直到结束;给出了计算投影点的Newton-Raphson迭代法和计算等残余高度点、相邻刀具路径轨迹刀位点的Newton迭代法;给出了根据自由曲面在步距方向的曲率半径和刀具尺寸计算迭代角度初值的方法,与二分法相比提高了计算效率;最后给出了完整的算法流程图。
     提出了基于关键刀触点提取的样条曲线插补加工刀具路径轨迹生成算法。首先根据离散曲率极值点提取初始关键刀触点,提出了基于偏差分析的多点调整算法,用于确定每次需要新增关键刀触点的个数,然后基于形状指数分析提取出新增关键刀触点;提出了根据提取的所有关键刀触点建立节点矢量的新方法,采用最小二乘法进行B样条曲线逼近;定义了一种新的五轴联动双NURBS样条曲线插补G代码格式,并给出了根据前述刀具路径轨迹规划结果直接生成五轴联动双NURBS样条曲线插补G代码的方法。
Free-form surfaces are widely used in the shipbuilding, automotive, mould, aeronautic andastronautic areas and many other industries for their special functional or aesthetic feature. Comparedwith the maturate free-form surface modeling, free-form surface machining is dropped behind for along time. As a bridge built between the free-form surface designing and machining, NC program offree-form surface is becoming more and more important with the development of multi-axismachining center. As key technology of NC program, tool path planning of free-form surfacemachining is a research hotspot and difficulty in this field.
     According to the research progress at home and abroad in the field of tool path planning forfree-form surface machining, key technologies of tool path planning for free-form surface machiningare studied and implemented aiming at improving the machining efficiency and quality. Severalalgorithms are proposed, including the algorithm of automatic optimum of multi-cutters combinationfor free-form surface machining, the algorithm of variable forward step with constant chord error intool path planning, the tool path planning algorithm based on constant scallop curve(CSC) forfree-form surface machining, and the algorithm of tool path planning for spline curve interpolationbased on the selection of key cutter contact (CC) points.
     A new algorithm of automatic optimum of multi-cutters combination is proposed. After a novelnon-linear automatic fitness function is designed according to the feature of the principal curvature,and new selection rules of the units to be copied are given, the maximum principal curvature of thefree-form surface is calculated by the new proposed improved genetic algorithm(IGA). The biggestcutter to machining the free-form surface with no curvature interference is selected according to theglobal maximum principal curvature. New interference area boundary tracing algorithm is proposed toclassify the free-form surface into different areas. Tool paths are generated in different areas withdifferent cutter, so the function can be constructed according to the total tool path length and the cuttersize. The optimal combination of multi-cutters are solved by using the genetic algorithm (GA). Themaximum of machining efficiency and avoidance of curvature interference are realized.
     A new algorithm of variable forward step with constant chord error in tool path planning isproposed. Calculation method of the chord error in forward step is proposed. Golden section methodis applied to calculate the maximum chord error and the parameter in every variable forward step.New method of chord error verification based on the sign of the curvature radius is presented to avoidthe wrong verification with mid-point verification method. Full description of the algorithm ofvariable forward step with constant chord error is given at last.
     A new kind of CSC algorithm for free-form surface machining is proposed. The constant scallopcurve is calculated according to the current CC path and the next CC path is calculated according tothe constant scallop curve. This processes are repeated until the free-form surface is covered entirelywith tool paths. Newton-Raphson iterative algorithm to calculate the projection point and the Newtoniterative algorithm to calculate the constant scallop point and the cutter location point are proposed.Calculation method of the initial angle to calculate the side step according to the curvature radius andthe cutter size is presented to improve the calculation efficiency compared that of bisection method.Full description of CSC algorithm is given at last.
     A new algorithm of tool path planning for spline curve interpolation based on the selection of keycutter contact (CC) points is proposed. The initial key points are selected according to the discretecurvature extrema, and the new key points are selected by the analysis of shape index. Number of thenew key points to be added is identified according to the proposed multi-point adjusting algorithmbased on the calculated deviation. The knot vectors are constructed according to the selected keypoints and the corresponding parameters, and least-square method is employed to approximate the CCpoints with least number of control points within the tolerance requirement by the new proposedalgorithm. A new kind of double NURBS curve interpolation G code is defined, and the method togenerate the double NURBS curve interpolation G code from the tool path directly is proposed.
引文
[1] Patrikalakis N, Maekawa T. Shape interrogation for computer aided design andmanufacturing[M]. Springer Verlag,2009.
    [2] Lee S, Yang S. CNC tool-path planning for high-speed high-resolution machining using a newtool-path calculation algorithm[J]. The International Journal of Advanced ManufacturingTechnology,2002,20(5):326-333.
    [3] Chen T, Ye P. A tool path generation strategy for sculptured surfaces machining[J]. Journal ofMaterials Processing Technology,2002,127(3):369-373.
    [4] Fan J, Ball A. Quadric method for cutter orientation in five-axis sculptured surface machining[J].International journal of machine tools and manufacture,2008,48(7-8):788-801.
    [5] Masuda T, Morishige K. The Tool Path Generation by Using Configuration Space for Five-AxisControlled Machining-Application to Rough Cutting by Using Square End Mill[J]. KeyEngineering Materials,2010,447:292-296.
    [6]杨长祺.复杂曲面多轴加工的高精度、高效率数控编程系统研究[博士学位论文].重庆:重庆大学,2004.
    [7]周济,周艳红.数控加工技术[M].北京:机械工业出版社,2002.
    [8]孙全平.高速铣削数控编程基础算法的研究与实现[博士学位论文].南京:南京航空航天大学,2005.
    [9]王延甲.飞速发展中的国产龙门机床[J].世界制造技术与装备市场,2008,97(04):56-59.
    [10]王太勇,张志强,王涛,等.复杂参数曲面高精度刀具轨迹规划算法[J].机械工程学报,2007,43(12):109-113.
    [11] Ye T, Xiong C. Geometric parameter optimization in multi-axis machining[J]. Computer-AidedDesign,2008,40(8):879-890.
    [12] Lasemi A, Xue D, Gu P. Recent development in CNC machining of freeform surfaces: Astate-of-the-art review[J]. Computer-Aided Design,2010,42(7):641-654.
    [13]吴宝海,罗明,张莹,等.自由曲面五轴加工刀具轨迹规划技术的研究进展[J].机械工程学报,2008,44(10):9-18.
    [14] Marshall S, Griffiths J. A survey of cutter path construction techniques for milling machines[J].International Journal of Production Research,1994,32(12):2861-2877.
    [15] Dragomatz D, Mann S. A classified bibliography of literature on NC milling path generation[J].Computer-Aided Design,1997,29(3):239-247.
    [16]王丹,李湉,陈五一.基于Z-buffer的组合曲面圆环面刀具加工方法[J].机械工程学报,2010,46(7):193-198.
    [17]徐汝锋,陈五一,陈志同.基于经线划分的非圆截面环形刀具刀位优化算法[J].航空学报,2010,31(2):410-417.
    [18]朱利民,郑刚,丁汉.圆锥刀五轴侧铣加工刀具路径整体优化原理与方法[J].机械工程学报,2010,46(23):174-179.
    [19]毕庆贞,王宇晗,朱利民,等.刀触点网格上整体光顺五轴数控加工刀轴方向的模型与算法[J].中国科学:技术科学,2010,40(10):1159-1168.
    [20]丁汉,毕庆贞,朱利民,等.五轴数控加工的刀具路径规划与动力学仿真[J].科学通报,2010,55(25):2510-2519.
    [21]朱利民,丁汉,熊有伦.非球头刀宽行五轴数控加工自由曲面的三阶切触法(Ⅰ):刀具包络曲面的局部重建原理[J].中国科学:技术科学,2010,40(11):1268-1275.
    [22]朱利民,丁汉,熊有伦.非球头刀宽行五轴数控加工自由曲面的三阶切触法(Ⅱ):刀位规划算法[J].中国科学:技术科学,2010,40(12):1460-1467.
    [23]蔡玉俊.模具型腔高效数控加工策略及参数优化研究[博士学位论文].大连:大连理工大学,2006.
    [24] Saito T, Takahashi T. NC machining with G-buffer method[J]. Computer Graphics,1991,25(4):207-216.
    [25] Choi B, Ko K. C-space based CAPP algorithm for freeform die-cavity machining[J].Computer-Aided Design,2003,35(2):179-189.
    [26]闫光荣.基于留量模型的数控加工[博士学位论文].北京:北京航空航天大学,2001.
    [27] Farouki R. The approximation of non-degenerate offset surfaces[J]. Computer Aided GeometricDesign,1986,3(1):15-43.
    [28]吴宝海,王尚锦.基于自适应采样的自由曲面偏置算法[J].工程图学学报,2003,24(1):86-91.
    [29]曹利新,宫虎,刘健.曲面接触问题及其等距面接触特性研究[J].大连理工大学学报,2007,47(1):39-44.
    [30] Piegl L, Tiller W. Computing offsets of NURBS curves and surfaces[J]. Computer-AidedDesign,1999,31(2):147-56.
    [31]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,2001.
    [32]张大卫,张永,阎兵,等.自由曲面数控加工刀具路径的自适应算法[J].天津大学学报,1997,30(05):607-612.
    [33] Lee Y. Non-isoparametric tool path planning by machining strip evaluation for5-axis sculpturedsurface machining[J]. Computer-Aided Design,1998,30(7):559-570.
    [34]蔡永林,席光,樊宏周,等.任意曲面叶轮五坐标数控加工刀具轨迹生成[J].西安交通大学学报,2003,37(01):77-80.
    [35] Cai Y, Xi G. Global tool interference detection in five-axis machining of sculptured surfaces[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2002,216(10):1345-1353.
    [36] Cai Y, Xi G, Wang S. Efficient tool path planning for five-axis surface machining with adrum-taper cutter[J]. International Journal of Production Research,2003,41(15):3631-3644.
    [37]吴宝海,王尚锦.基于正向杜邦指标线的五坐标侧铣加工[J].机械工程学报,2006,42(11):192-196.
    [38]陈良骥,王永章.整体叶轮五轴侧铣数控加工方法的研究[J].计算机集成制造系统,2007,13(01):141-146.
    [39] Wang X, Yu Y. An approach to interference-free cutter position for five-axis free-form surfaceside finishing milling[J]. Journal of Materials Processing Technology,2002,123(2):191-196.
    [40]曹利新,吴宏基,刘健.基于五坐标数控圆柱形刀具线接触加工自由曲面的几何学原理[J].机械工程学报,2003,39(07):134-137.
    [41] Vickers G, Quan K. Ball-Mills Versus End-Mills for Curved Surface Machining[J]. ASMEJournal of Engineering for Industry,1989,111(1):22-26.
    [42]倪炎榕,马登哲,张洪,等.圆环面刀具五坐标数控加工复杂曲面优化刀位算法[J].机械工程学报,2001,37(02):87-91.
    [43]倪炎榕,张洪,郭静萍.圆环面刀具五坐标数控加工复杂曲面刀位算法分析[J].机械科学与技术,2002,21(02):188-190.
    [44]李志强,陈五一.复杂曲面五坐标加工中主曲率匹配法的刃形误差[J].机械工程学报,2006,42(02):135-140.
    [45]陈良骥,程俊伟,王永章.环形刀五轴数控加工刀具路径生成算法[J].机械工程学报,2008,44(03):205-212.
    [46] OuYang D, Van Nest B, Feng H. Determining gouge-free ball-end mills for3D surfacemachining from point cloud data[J]. Robotics and Computer-Integrated Manufacturing,2005,21(4-5):338-345.
    [47] Li L, Zhang Y. An integrated approach towards process planning for5-axis milling of sculpturedsurfaces based on cutter accessibility map[J]. Computer-Aided Design&Applications,2006,3(1-4):249-258.
    [48] Li L, Zhang Y. Cutter selection for5-axis milling of sculptured surfaces based on accessibilityanalysis[J]. International Journal of Production Research,2006,44(16):3303-3323.
    [49] Lee Y, Chang T. Automatic cutter selection for5-axis sculptured surface machining[J].International Journal of Production Research,1996,34(4):977-998.
    [50] Li H, Zhang Y. Automatic tool-path generation in5-axis finish cut with multiple cutters[C].Proceedings of the2009IEEE international conference on Virtual Environments,Human-Computer Interfaces and Measurement Systems. Hong Kong, China,2009:210-213.
    [51] Ding X, Fuh J, Lee K. Interference detection for3-axis mold machining[J]. Computer-AidedDesign,2001,33(8):561-569.
    [52] Jensen C, Red W, Pi J. Tool selection for five-axis curvature matched machining[J].Computer-Aided Design,2002,34(3):251-266.
    [53] Campbell R, Flynn P. A survey of free-form object representation and recognition techniques[J].Computer Vision and Image Understanding,2001,81(2):166-210.
    [54] He W, Lei M, Bin H. Iso-parametric CNC tool path optimization based on adaptive gridgeneration[J]. The International Journal of Advanced Manufacturing Technology,2009,41(5):538-548.
    [55] Sun Y, Guo D, Jia Z, et al. Iso-parametric tool path generation from triangular meshes forfree-form surface machining[J]. The International Journal of Advanced ManufacturingTechnology,2006,28(7):721-726.
    [56] Loney G, Ozsoy T. NC machining of free form surfaces[J]. Computer-Aided Design,1987,19(2):85-90.
    [57]杨旭静.自由曲面高性能数控加工刀具路径技术研究[博士学位论文].长沙:湖南大学,2006.
    [58] Elber G, Cohen E. Toolpath generation for freeform surface models[J]. Computer-Aided Design,1994,26(6):490-496.
    [59]吴福忠,柯映林.组合曲面参数线五坐标加工刀具轨迹的计算[J].计算机辅助设计与图形学学报,2003,15(10):1247-1252.
    [60] Feng H, Teng Z. Iso-planar piecewise linear NC tool path generation from discrete measureddata points[J]. Computer-Aided Design,2005,37(1):55-64.
    [61] Kiswanto G, Lauwers B, Kruth J. Gouging elimination through tool lifting in tool pathgeneration for five-axis milling based on faceted models[J]. The International Journal ofAdvanced Manufacturing Technology,2007,32(3):293-309.
    [62] Lartigue C, Thiebaut F, Maekawa T. CNC tool path in terms of B-spline curves[J].Computer-Aided Design,2001,33(4):307-319.
    [63] Huang Y, Oliver J. Non-constant parameter NC tool path generation on sculptured surfaces[J].The International Journal of Advanced Manufacturing Technology,1994,9(5):281-290.
    [64] Bobrow J. NC machine tool path generation from CSG part representations[J]. Computer-AidedDesign,1985,17(2):69-76.
    [65] Ding S, Mannan M, Poo A, et al. Adaptive iso-planar tool path generation for machining offree-form surfaces[J]. Computer-Aided Design,2003,35(2):141-153.
    [66]陈涛,罗宏志,钟毅芳,等.基于曲率的曲面加工刀位轨迹生成算法[J].工程图学学报,2001,22(02):29-34.
    [67]张和明,张玉云,熊光楞.复杂曲面五坐标数控加工干涉检查及刀位修正[J].清华大学学报(自然科学版),1998,38(02):65-68.
    [68]杨勇生.五轴数控加工中刀具干涉处理的特征投影法[J].工程图学学报,2003,24(1):15-22.
    [69] Choi B, Jun C. Ball-end cutter interference avoidance in NC machining of sculptured surface[J].Computer-Aided Design,1989,6(21):371-378.
    [70] Hwang J. Interference-free tool-path generation in the NC machining of parametric compoundsurfaces[J]. Computer-Aided Design,1992,24(12):667-676.
    [71] Li S, Jerard R.5-axis machining of sculptured surfaces with a flat-end cutter[J].Computer-Aided Design,1994,26(3):165-178.
    [72] Kim B, Choi B. Guide surface based tool path generation in3-axis milling: an extension of theguide plane method[J]. Computer-Aided Design,2000,32(3):191-9.
    [73]孟书云.高精度开放式数控系统复杂曲线曲面插补关键技术研究[博士学位论文].南京:南京航空航天大学,2006.
    [74]刘槐光,闫光荣,陈言秋.组合曲面的空间环切等距加工[J].工程图学学报,2002,23(01):1-7.
    [75] Cox J, Takezaki Y, Ferguson H, et al. Space-filling curves in tool-path applications[J].Computer-Aided Design,1994,26(3):215-224.
    [76]杨建中.复杂多曲面数控加工刀具轨迹生成方法研究[博士学位论文].武汉:华中科技大学,2007.
    [77] Suresh K, Yang C. Constant scallop-height machining of free-form surfaces[J]. ASME Journalof Engineering for Industry,1994,116(2):253-259.
    [78] Lin R, Koren Y. Efficient tool-path planning for machining free-form surfaces[J]. ASMEJournal of Engineering for Industry,1996,118(1):20-28.
    [79] Choi Y, Banerjee A. Tool path generation and tolerance analysis for free-form surfaces[J].International Journal of Machine Tools and Manufacture,2007,47(3-4):689-696.
    [80] Sarma R, Dutta D. The geometry and generation of NC tool paths[J]. Journal of MechanicalDesign,1997,119(2):253-258.
    [81] Feng H, Li H. Constant scallop-height tool path generation for three-axis sculptured surfacemachining[J]. Computer-Aided Design,2002,34(9):647-654.
    [82] Lo C. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter[J].Computer-Aided Design,1999,31(9):557-566.
    [83] Hauth S, Richterich C, Glasmacher L, et al. Constant cusp toolpath generation in configurationspace based on offset curves[J]. The International Journal of Advanced ManufacturingTechnology,2010:1-14.
    [84]杨勇生,王珉.复杂曲面数控加工中刀具轨迹生成的非均匀偏置法[J].上海海运学院学报,1999,20(01):11-15.
    [85]叶佩青,陈涛,汪劲松.复杂曲面五坐标数控加工刀具轨迹的规划算法[J].机械科学与技术,2004,23(08):883-886.
    [86]吴宝海,李山,张定华,等.自由曲面的五坐标端铣加工研究[J].中国机械工程,2007,18(10):1135-1139.
    [87]吴宝海,王尚锦.任意曲面叶片四坐标数控加工刀位轨迹的生成方法[J].西安交通大学学报,2004,38(01):64-67.
    [88] Chou J J, Yang D C H. Command Generation for Three-Axis CNC Machines[J]. ASME Journalof Engineering for Industry,1991,113(3):305-310.
    [89] Chou J J, Yang D C H. On the Command Generation of Coordinated Motion of Five-AxisCNC/CMM Machines[J]. ASME Journal of Engineering for Industry,1992,114(1):15-22.
    [90] Lin R. Real-time surface interpolator for3-D parametric surface machining on3-axis machinetools[J]. International journal of machine tools and manufacture,2000,40(10):1513-1526.
    [91] Farouki R, Tsai Y, Yuan G. Contour machining of free-form surfaces with real-time PH curveCNC interpolators[J]. Computer Aided Geometric Design,1999,16(1):61-76.
    [92] Farouki R, Tsai Y. Exact Taylor series coefficients for variable-feedrate CNC curveinterpolators[J]. Computer-Aided Design,2001,33(2):155-165.
    [93] Zhang Q, Greenway R. Development and implementation of a NURBS curve motioninterpolator[J]. Robotics and Computer-Integrated Manufacturing,1998,14(1):27-36.
    [94] Cheng M, Tsai M, Kuo J. Real-time NURBS command generators for CNC servo controllers[J].International journal of machine tools and manufacture,2002,42(7):801-813.
    [95] Tikhon M, Ko T, Lee S, et al. NURBS interpolator for constant material removal rate in openNC machine tools[J]. International journal of machine tools and manufacture,2004,44(2-3):237-245.
    [96]梁宏斌,孟庆鑫,李霞.非均匀有理B样条曲面五轴加工数控指令的构建与处理[J].计算机集成制造系统,2009,15(5):982-989.
    [97]陈良骥,冯宪章.五轴NURBS插补中的速度前瞻控制方法[J].计算机集成制造系统,2009,15(12):2399-2404.
    [98]苏昊.五轴联动双通道车铣复合数控译码系统的研发[硕士学位论文].上海:上海交通大学,2009.
    [99]陈良骥,王永章,富宏亚.五轴联动双NURBS曲线的生成与插补方法研究[J].机械制造,2006,44(01):67-70.
    [100] Shpitalni M, Koren Y, Lo C. Realtime curve interpolators[J]. Computer-Aided Design,1994,26(11):832-838.
    [101] Yeh S, Hsu P. Adaptive-feedrate interpolation for parametric curves with a confined chorderror[J]. Computer-Aided Design,2002,34(3):229-237.
    [102] Yong T, Narayanaswami R. A parametric interpolator with confined chord errors, accelerationand deceleration for NC machining[J]. Computer-Aided Design,2003,35(13):1249-1259.
    [103]叶伯生,杨叔子. CNC系统中三次B-样条曲线的高速插补方法研究[J].中国机械工程,1998,9(3):42-43.
    [104]梁宏斌,王永章,李霞.自动调节进给速度的NURBS插补算法的研究与实现[J].计算机集成制造系统,2006,12(03):428-433.
    [105]杜道山,燕存良,李从心.一种实时前瞻的自适应NURBS插补算法[J].上海交通大学学报,2006,40(5):843-847.
    [106]王昕,王均伟,饶志,等.基于NURBS曲线轨迹规划与速度规划的研究[J].系统仿真学报,2008,20(15):3973-3980.
    [107]李韬.基于PCI运动控制卡的五轴联动水切割控制系统的开发[硕士学位论文].南京:南京航空航天大学,2010.
    [108] Wang Y, Chen L. A real-time NURBS surface interpolator for5-axis surface machining[J].Chinese Journal of Aeronautics,2005,18(03):263-272.
    [109] Wang Y, Ma X, Chen L, et al. Realization Methodology of a5-axis Spline Interpolator in anOpen CNC System[J]. Chinese Journal of Aeronautics,2007,20(04):364-371.
    [110]姚哲,冯景春,王宇晗.面向五轴加工的双NURBS曲线插补算法[J].上海交通大学学报,2008,42(02):235-238.
    [111]姚哲.五轴联动数控系统实时预处理系统研究[硕士学位论文].上海:上海交通大学,2007.
    [112] Yau H, Kuo M. NURBS machining and feed rate adjustment for high-speed cutting of complexsculptured surfaces[J]. International Journal of Production Research,2001,39(1):21-41.
    [113] Li H, Tutunea-Fatan O, Feng H. An improved tool path discretization method for five-axissculptured surface machining[J]. The International Journal of Advanced ManufacturingTechnology,2007,33(9):994-1000.
    [114]康书杰. NURBS曲线实时插补技术研究[硕士学位论文].南京:南京航空航天大学,2007.
    [115]孙玉文.基于NURBS的自由曲面精确拟合方法研究[J].机械工程学报,2004,40(3):10-14.
    [116] Piegl L, Tiller W. The NURBS book[M]. Springer, New York,1997.
    [117]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.
    [118]陈维桓.微分几何[M].北京:北京大学出版社,2006.
    [119] Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-endtools[J]. Computer-Aided Design,2000,32(7):409-420.
    [120]杨大地,冉戎.基于遗传算法的曲面最短路径求解[J].计算机仿真,2006,23(08):168-169.
    [121]席光,蔡永林.用改进遗传算法求取曲面间最小距离[J].计算机辅助设计与图形学学报,2002,14(3):209-213.
    [122]赵文珍,于明.基于遗传算法的无干涉刀位轨迹计算[J].沈阳工业大学学报,2006,28(1):1-4.
    [123] Agrawal R, Pratihar D, Roy Choudhury A. Optimization of CNC isoscallop free form surfacemachining using a genetic algorithm[J]. International Journal of Machine Tools andManufacture,2006,46(7-8):811-819.
    [124] Sarma R. Flat-ended tool swept sections for five-axis NC machining of sculptured surfaces[J].Journal of Manufacturing Science and Engineering,2000,122(1):158-165.
    [125]熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,2004.
    [126]吕林根,许子道.解析几何[M].北京:高等教育出版社,2006.
    [127]任秉银,唐余勇.数控加工中的几何建模理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [128]朱剑英.智能系统非经典数学方法[M].武汉:华中科技大学出版社,2001.
    [129] Gray P, Ismail F, Bedi S. Graphics-assisted rolling ball method for5-axis surface machining[J].Computer-Aided Design,2004,36(7):653-663.
    [130] Gray P, Bedi S, Ismail F. Rolling ball method for5-axis surface machining[J]. Computer-AidedDesign,2003,35(4):347-357.
    [131] Lee Y, Ma Y, Jegadesh G. Rolling-ball method and contour marching approach to identifyingcritical regions for complex surface machining[J]. Computers in industry,2000,41(2):163-180.
    [132]李健,郑颖.未知曲面数控加工干涉区域求取算法研究[J].计算机测量与控制,2006,14(10):1338-1339.
    [133] Rao N, Ismail F, Bedi S. Tool path planning for five-axis machining using the principal axismethod[J]. International Journal of Machine Tools and Manufacture,1997,37(7):1025-1040.
    [134] Zhou L, Lin Y. An effective global gouge detection in tool-path planning for freeform surfacemachining[J]. The International Journal of Advanced Manufacturing Technology,2001,18(7):461-473.
    [135]严思杰,周云飞,陈学东,等.五轴NC加工干涉检查与避免算法研究[J].中国机械工程,2006,17(17):1822-1825.
    [136] Li H, Feng H. Efficient five-axis machining of free-form surfaces with constant scallop heighttool paths[J]. International Journal of Production Research,2004,42(12):2403-2417.
    [137]杨长祺,贾维,刘海江.多轴机床加工复杂自由曲面的刀底干涉避免[J].机械工程学报,2006,42(06):174-178.
    [138]王瑞秋,陈五一,金曼.多点切触加工中的局部干涉分析[J].北京航空航天大学学报,2006,32(5):580-584.
    [139] Yoon J. Fast tool path generation by the iso-scallop height method for ball-end milling ofsculptured surfaces[J]. International Journal of Production Research,2005,43(23):4989-4998.
    [140] Zhao S, Zhao D, Fu Y. Algorithm of Variable Forward Step Size Planning in Freeform SurfaceMachining[C].2009International Conference on Information and Automation(ICIA).Zhuhai/Macau, China,2009:618-622.
    [141]赵世田,赵东标,付莹莹.自由曲面加工刀具路径生成高精度变步长算法研究[J].机械科学与技术,2010,29(01):32-35.
    [142]杨胜群. VERICUT数控加工仿真技术[M].北京:清华大学出版社,2010.
    [143]吉晓民,张叶飞. NURBS曲面特性分析及重构的方法[J].西安理工大学学报,2004,20(2):131-135.
    [144] Li W, Xu S, Zhao G, et al. Adaptive knot placement in B-spline curve approximation[J].Computer-Aided Design,2005,37(8):791-797.
    [145]Liu G, Wong Y, Zhang Y, et al. Adaptive fairing of digitized point data with discrete curvature[J].Computer-Aided Design,2002,34(4):309-320.
    [146] Park H. An error-bounded approximate method for representing planar curves in B-splines[J].Computer Aided Geometric Design,2004,21(5):479-497.
    [147] Park H, Lee J. B-spline curve fitting based on adaptive curve refinement using dominantpoints[J]. Computer-Aided Design,2007,39(6):439-451.
    [148] Piegl L, Tiller W. Least-Squares B-Spline Curve Approximation with Arbitary EndDerivatives[J]. Engineering with Computers,2000,16(2):109-116.
    [149]来新民,黄田,曾子平,等.基于NURBS的散乱数据点自由曲面重构[J].计算机辅助设计与图形学学报,1999,11(5):433-436.
    [150]周红梅,王燕铭,刘志刚,等.基于最少控制点的非均匀有理B样条曲线拟合[J].西安交通大学学报,2008,42(1):73-77.
    [151] Wang W, Zhang H, Park H, et al. Reducing control points in lofted B-spline surfaceinterpolation using common knot vector determination[J]. Computer-Aided Design,2008,40(10-11):999-1008.
    [152]谭昌柏,周来水,张丽艳.裁剪B样条曲面重建算法研究[J].中国机械工程,2007,18(19):2366-2370.
    [153] Ma W, Kruth J. Parameterization of randomly measured points for least squares fitting ofB-spline curves and surfaces[J]. Computer-Aided Design,1995,27(9):663-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700