用户名: 密码: 验证码:
数控系统速度前瞻控制算法及其实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控技术作为支持现代装备制造业的关键性技术,对航空航天、汽车、轮船等制造业的发展起着重要作用,对制造装备的功能和性能起决定性作用。数控加工中加工路径的尖锐拐角及高曲率容易引起过切、机床震动和数据饥饿等现象,严重影响加工质量和加工速度。本课题提出的数控加工速度前瞻控制算法能够自动分析加工路径,发现并处理路径危险点,对速度轨迹提前规划,实现速度的平滑过渡,防止过切等现象,能有效保证较高的加工效率及加工精度。
     本文在江苏省自然科学基金(招标)项目(No.BK2003005)、国家自然科学基金(No.51005122)和航空基金(No.2008ZE52049)的资助下,系统研究了前瞻控制中的加减速算法、连续微小线段的自适应前瞻控制策略、以及参数曲线的前瞻控制方法并且探讨了NURBS曲线的S型加减速前瞻控制策略。论文的主要工作如下:
     在前瞻控制算法的组成构架中,加减速算法作为研究的基础,本文首先建立了数控前瞻控制中的加减速算法的通用模型,系统分析了前瞻中加减速算法中位移、速度、加速度等变化量,并且充分考虑了前瞻时速度轨迹和实际加工速度轨迹之间的误差,提出了一种实际加工中的速度误差修正方法,使实际加工速度严格按照前瞻时的轨迹进行,为以后研究各种曲线的前瞻控制奠定了基础。
     针对目前数控加工常用的将曲线离散成微小线段的加工方法,提出了一种针对连续微小线段的自适应前瞻控制方法。首先通过分析微小线段衔接处的速度约束条件,确定其衔接处的最优速度,并且根据实际加工路径曲率自适应的确定前瞻距离。通过优化控制策略,最大程度减少了迭代计算。
     针对参数曲线的加工特点,提出了一种参数曲线的前瞻控制算法。此算法根据参数曲线的曲率自适应地调整插补速度,并且根据相邻插补点的速度差值分析加工路径上的速度敏感点,通过比较分析速度敏感点,在前瞻路径上对速度进行统一加减速规划,在满足机床加减速性能的同时,提高了加工表面质量和加工效率。
     在分析参数曲线前瞻控制的基础上,针对目前复杂曲面中常用的NURBS曲线,探讨了一种NURBS曲线的S型加减速前瞻控制策略。通过分析曲率上升和下降区域近似找出速度敏感点,并且针对NURBS曲线和S型加减速计算的复杂性,在频繁加减速的区域用更为简便的三角函数方法统一规划加减速,减少速度的频繁变化和系统的计算量,保证加工的实时性。
     实验结果表明,所提出的数前瞻控制策略能够有效规划加减速路径,在满足机床性能的基础上,提高加工质量和加工效率。
Numerical control technology is the critical technology of modern equipment manufacturingindustry, which plays an important role in aviation, marine, automobile and other projects. Itdetermines the function and performance of manufacture equipment. Overshooting, mechanicalharmful vibrations and data starvation directly impact on the maching quality. This paper proposed alook-ahead algorthm that can analyze tool path, find dangerous points and deal with sensitivesituations in machining automatically. This method can guarantee speed change smoothly andimprove machining efficiency and machining quality.
     Supported by natural science fundation of Jiangsu province (No.BK2003005), National NaturalScience Foundation of China (No.51005122)and Aeronautical Science Foundation of China (No.2008ZE52049), this dissertation places emphases on acceleration and deceleration algorithm,consecutive line blocks look-ahead algorithm, and an adaptive parametric look-ahead interpolationalgorithm. And an S shape acceleration and deceleartion for the NURBS look-ahead algorithm alsohas been reaseached in the dissertation.
     In terms of configuration of look-ahead algorithm, the basic is acceleration and declelerationalgorithm. By analyzing the acceleration and decleration mathematical model in the look-aheadalgorithm, the ralationship between the speed, acceleration and decleration distance can be determined,that laies a foundation for the look-ahead algorithm.
     At present, in most CNC system the tool path is discreted consecutive line blocks. So theconsective look-ahead algorithm is proposed in the paper. By presenting the mathematical modeladjust the velocity automatically to achieve maximum in machining of consecutive line blocks withhigh speed, and the high curvature points are found according the speed. Then the optimal look-aheadblocks and velocity characteristic are estimated. Then the algorithm can make velocity changingsmoothly.
     Then a look-ahead interpolation algorithm for parametric curves is studied. This method improvedthe machining accuracy and detected the sensitive points by confining the chord error in a limitedrange. Through dividing look-ahead distance into two parts, sensitive points were analyzed, acontinuous velocity and accelerating profile were found out which reduced the jerk relate problem.This satisfied not only machining accuracy but also acceleration and deceleration performace ofmachine tools.
     Based on the parametric curves look-ahead algorithm, the NURBS look-ahead algorithm based on S shape is researched. By dividing the curve into curvature increased segment and curvaturedecreased segment according to he different curvature movement and re-planning the velocity curvesin the velocity changing frequently tool path to reduce computation. This algorithm can meet the realtime requirements to look ahead in CNC system.
     The experimental results are provided to verify the feasibility and precision of the proposedinterpolation algorithm. The machining qualitiy and efficiently are greatly improved.
引文
[1]周祖德,余文勇,陈幼平.数字制造的概念与科学问题[J].中国机械工程,2001.12(1):100~104.
    [2]王永章.机床的数字控制技术[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [3]叶蓓华.数字控制技术[M].北京:清华大学出版社,2002.
    [4] OSEC-Ⅱ project technical-developement of OSEC(Open system environment forcontroller)[J]. OSE Consortium, October6,1998.
    [5]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002:8~15.
    [6]陈友东,陈五一,王田苗.基于组件的开放式数控系统[J].机械工程学报,2006.42(6):188~192.
    [7]周凯.数控系统体系结构研究[J].中国机械工程,2002.13(5):406~410.
    [8]张俊,魏红根.数控技术发展趋势—智能化数控系统[J].制造技术与机床,2000(04):7~9.
    [9]卞立乾.高起点统筹规划,抓重点集中扶持—关于我过数控技术发展战略初探[J].中国机械工程,1999.10(10):1094~1099.
    [10]田文超,张小波,朱志红,等.数控系统中多轴同步技术策略和实现[J].华中科技大学学报,2001.29(5):4~6.
    [11]吴振勇,王国锋,王太勇,等.数控加工三维实时仿真系统的研究[J].机械工程学报,2002.38(12):107~110.
    [12] Tost D, Puig A, Vidal L P. Boolean operations for3D simulation of CNCmachining of drillingtools[J]. Computer-Aided Design,2004.36(4):315~323.
    [13] Zhang Q G,Greenway R B. Development and implementation of a NURBS curve motioninterpolator[J]. Robotics and Computer-integrated Manufacturing,1998.14(1):27~36.
    [14] Tsai M C, Cheng C W, Cheng M Y. Real-time Variable Feedrate Parametric Interpolation forCNC machining[C].15th IFAC World Congress on Automatic Control,2002:21~26.
    [15]毛红军,李黎川.机床数控软件化结构体系[J].中国机械工程,2000.36(7):48~51.
    [16]杨更更,叶佩青.基于PC+NC型体系结构的高性能数控系统的研究[J].机床与液压,2003(3):44~46.
    [17]陈友东,樊锐,陈五一,等.基于Rtlinux开放式虚轴机床数控系统的研究[J].中国机械工程,2002.13(15):1339~1342.
    [18] Pritschow G. Automation technology-on the way to an open system architecture[J]. Roboticsand Computer-integrated Manufacturing,1990.7(2):103~111.
    [19] Pritschow G, Kaniel C, Junghans G, et al. Open system controllers:a challenge for the future ofthe machine tool industry[J]. Annals of the CIRP,1993.42(1):449~452.
    [20] Altintas Y,Peng J. Design and analysis of a modular CNC system[J]. Computers in Industry,1990.13(4):305~316.
    [21] Rober S J,Shin Y C. Modeling and control of CNC machines using a PC-based openarchitecture controller [J]. Mechatronics,1995.5(4):401~420.
    [22] Yamazaki K, Hanaki Y, Tezuka K. Autonomously proficient CNC controller forhigh-performance machine tools based on an open architecture concept[J]. Annals of the CIRP,1997.46(1):275~278.
    [23] Yellowly I,Pottier P R. The integration of process and geometry within an openarchitecturemachine tool controller[J]. Ineternational Journal of Machine Tools and Manufacture,1994.34(2):277~293.
    [24] Greenfeld I, Hansen F B, Wright P K. Self-sustaining, open-system machinetools[C].Proceeding of the17th American Manufacturing Research Institution,1989:281~292.
    [25] Wright P K, Greenfeld I, Hayes C. A prototype of a next generation-control environment:expertsystems for planning and sensor integration[J]. Transaction of the North American ManufactureResearch Institution,1990:332~328.
    [26]魏仁选,陈幼平,周祖德.开放式数控软件的面向对象建模及其重用研究[J].高技术通讯,1998(12):30~34.
    [27]王振华,朱国力.基于现场总线的新型开放式数控系统研究[J].中国机械工程,2001.12(4):395~397.
    [28]郭长旺,朱国力,龚时华,等.基于组件技术的开放式数控系统研究[J].华中理工大学学报,2000.28(7):38~40.
    [29]林奕鸿,李小力.开放式数控系统的构造、界面与协议[J].中国机械工程,1998.9(5):22~24.
    [30]雷为民,乔建中,李本忍,等.关于软件数控的一些基本构想[J].小型微型计算机系统,1999.20(2):81~87.
    [31]黄金庆,刘明烈.基于开发式结构的高性能数控系统的研制[J].制造技术与机床,1998(8):14~15.
    [32]郇极.开放式数控系统的数字伺服接口和通讯协议[J].中国机械工程,1998.9(5):20~22.
    [33]谢明红.开放式模块化通用数控系统软件设计[J].华侨大学学报(自然科学版),1998.19(2):180~184.
    [34]王宇晗,吴租育,陆志强,等.开放式数控系统的动态建模研究[J].机械科学与技术,2000.19(6):1011~1013.
    [35]刘燕军,宗大华,卢晓光.开放式PC-NC结构体系的探讨[J].制造技术与机床,1999(3):12~13.
    [36]张正勇,熊清平,李作清. Windows平台下开放式CNC系统研究[J].中国机械工程,1999.10(8):878~881.
    [37]郭艳玲,赵万生,董本志.数控发展的趋势—开放式体系结构数控系统[J].东北林业大学学报,2000.28(5):148~150.
    [38]游有鹏,董伟杰,张晓峰,等.开放式数控系统—新一代NC的主流[J].航空制造技术,1999(5):35~37.
    [39]马银萍,王琦.开放式体系结构在数控系统中的应用[J].航空制造工程,1998(6):9~10.
    [40]聂秋根,张一坚.开放式型CNC系统模块化设计的研究[J].南昌航空工业学院学报,1998(4):5~10.
    [41]王爱玲,刘永江.数控原理及数控系统[M].北京:机械工业出版社,2006:55~76.
    [42]倪其民,李从心,林建平,等.圆锥曲线插补技术研究[J].机械研究与应用,1999.12(3):7~8.
    [43]周凯. PC数控原理、系统及应用[M].北京:机械工业出版社,2006:17~19.
    [44]冯庆枝,刘少君,裴海龙.高速加工中微线段的最佳转角速度的研究[J].制造业自动化,2007.29(1):38~39.
    [45]董志宏.CNC工具机之进给速度控制[博士学位论文].台湾:台湾国立中央大学,2002.
    [46] Mou H N, Zhao G H, Su Z X. G2blending of corners by cubic algebraic splines[C].ACMSymposium on solid and Physical Modeling Association for Computing Machinery,2007:445~450.
    [47] Zhao G H, Mou H N, Su Z X. Local method of GI blending of convex polyhedral angles[J].Journal of Information and Computational Science,2006.3(4):1055~1062.
    [48] Dotcheva, Mariana, Millward Huw. The application of tolerance analysis to the theoretical andexperimental evaluation of a CNC[J]. Journal of Materials Processing Technology,2005.170(1-2):284~297.
    [49] Yeh S S,Hsu P L. The Speed-controlled Interpolator for Machining Parametric Curves[J].Computer Aided Design,1999.5(31):349~357.
    [50]游有鹏,王珉,朱剑英.参数曲线的自适应插补算法[J].南京航空航天大学学报,2000.32(6):667~671.
    [51] Hu W. Interpolation algorithm based on central angle division[J]. International journal ofmachine tools and manufacture,2002.42(4):473~478.
    [52] Yang D C H,Wang F C. A Quintic Spline Interpolator for Motion Command Generation ofComputer-Controlled Machines[J]. Journal of Mechanical Design,1994.116(1):226~232.
    [53] Wang F C, Yang D C H. Nearly arc-length parameterized quintic-spline interpolation forprecision machining[J]. Computer Aided Design,1993.25(5):281~288.
    [54] Erkorkmaz K,Altintas Y. Quintic spline interpolation with minimal feed fluctuation[J]. Journalof manufacturing science and engineering,2005.127(2).
    [55] Dimitris K. High precision interpolation algorithm for3D parametric curve generation[J].Computer Aided Design,1993.26(11):850~856.
    [56] Yau H T Lin M.T. Tsai M.S. Real-time NURBS interpolation nusing FPGA for high speedmotioncontrol[J]. Computer Aided Design,2006.38:1123~1133.
    [57] Mandal M Naskar T.K. Introduction of control points in splines for synthesis of optimized CAMmotion program[J]. Mechanism and Machine Theory,2009.44:255~271.
    [58] Lei W T, Sung M P, Lin L Y. Fast real-time NURBS path interpolation for CNC machine[J].International journal of machine tools and manufacture,2007.47:1530~1541.
    [59]郑金兴,张铭均.适于高速加工的五次参数样条曲线插补及其速度生成算法研究[J].哈尔滨工程大学学报,2007.28(7):11~12.
    [60] Wang W K, Zhang H, Yong J H. Reducing control points in lofted B-spine surface interpolationusing conmmon knot vector determination[J]. Computer Aided Design,2008.40(10-11):999~1008.
    [61]叶伯生,杨叔子.任意三维抛物线的一种高速插补方法[J].华中理工大学学报,1996(11):9~11.
    [62]金建新.机床CNC系统中任意空间曲线的可控步长插补方法[J].机械工程学报,2000.36(5):95~97.
    [63]方逵.参数曲线近似弧长参数化的插值方法[J].计算机辅助设计与图形学学报,1996.8(3):115~120.
    [64] Qiu H, Cheng K, Li Y. Optimal circular arc interpolation for NC tool path generation in curvecontour manufacturing[J]. Computer Aided Design,1997.29(11):751~760.
    [65] Lu W. Curves with chord length parameterization[J]. Computer Aided Geometric Design,2009.26:342~350.
    [66] Yang X N. Efficient circular arc interpolation based on active tolerance control[J]. ComputerAided Design,2002.34:1037~1046.
    [67]任琨.高速数控加工的前瞻控制理论及关键技术研究[博士学位论文].上海:上海交通大学,2008.
    [68]毕承恩,丁乃建.现代数控机床[M].北京:机械工业出版社,1991:54~55.
    [69]张莉彦.基于数据采样插补的加减速控制的研究[J].北京化工大学学报,2002.29(3):91~93.
    [70]康健,陶涛,梅雪松,等.基于数字信号处理器的指数加减速算法仿真[J].系统仿真学报,2003.15(5):678~680.
    [71]郭新贵.面向高速切削的高速高精度插补技术研究[博士学位论文].上海:上海交通大学,2002.
    [72]陈金成,徐志明,徐正飞,等.基于分段三次样条曲线的高速加工平滑运动轮廓自适应算法研究[J].机械工程学报,2002.38(5):61~65.
    [73] Erkorkmaz K,Altintas Y. High speed CNC system design. Part Ⅰ:jerk limited trajectorygeneration and quintic spline interpolation[J]. Ineternational Journal of Machine Tools andManufacture,2001.41(2):1323~1345.
    [74] Khalsa D S. High performance motion control trajectory commands based on the convolutionintegral and digital filtering.[J]. Proceedings of the International Intelligent Motion,1990:54~61.
    [75] Jeon J W,Ha Y Y. A generalized approach for the acceleration and deceleration of industrialrobots and CNC machine tools[J]. IEEE Transactions on Industrial Electronics,2004.47(1):133~139.
    [76] Han Guk Chan, Kim Dong II, Hyo Gyu Kim, et al. A high speed machining algorithm for CNCMachine tools[C].IECON '99Proceedings,1999:1493~1497.
    [77] Sekar M, Narayanan V N, Yang Seung-han. Design of jerk bounded feedrate with ripple effectfor adaptive nurbs interpolator[J]. The International Journal of Advanced ManufacturingTechnolog,2008.37(5-6):545~552.
    [78] Yazar Z, Koch K, Merrick T, et al. Feed rate optimization based on cutting force calculations in3-axis milling of dies and molds with sculptured surfaces[J]. International Journal of MachineTools and Manufacture,1994.34:365~377.
    [79] Lazoglu. Sculpture surface machining: a generalized model of ball-end milling force system[J].International Journal of Machine Tools and Manufacture,2003.43(5):453~462.
    [80] Guzel B. U,Lazoglu. Increasing productivity in sculpture surface machining via off-linepiecewise variable feedrate scheduling based on the force system model[J]. InternationalJournal of Machine Tools and Manufacture,2004.44(1):21~28.
    [81] Ko J H,Cho D W. Feedrate scheduling model considering transverse rupture strength of a toolfor3D ball-end milling[J]. International Journal of Machine Tools and Manufacture,2004.44(10):1047~1059.
    [82] Chen J S, Huang Y K, Chen M S. Feedrate optimization and tool profile modification for thehigh-efficiency ball-end milling process[J]. International Journal of Machine Tools andManufacture,2005.45(9):1070~1076.
    [83] Meng E. E, Lim, Menq Chia Hsiang. Integrated planning for precision machining of complexsurfaces. Part1: Cutting-path and feedrate optimization[J]. International Journal of MachineTools and Manufacture,1997.37(1):67~75.
    [84] Feng H Y,Su N. Integrated tool path and feed rate optimization for the finishing machining of3D plane surfaces[J]. International Journal of Machine Tools and Manufacture,200.40(11):1557~1572.
    [85] Dae K B, Tae J K, Hee S K. Optimization of feedrate in a face milling operation using a surfaceroughness model[J]. International Journal of Machine Tools and Manufacture,2001.41(3):451~462.
    [86] Tounsi N, Elbestawi M. A. Optimized feed scheduling in three axes machining. Part I:Fundamentals of the optimized feed scheduling strategy[J]. International Journal of MachineTools and Manufacture,2003.43(3):253~267.
    [87] Erdim H, Lazoglu I, Ozturk B. Feedrate scheduling strategies for free-form surfaces[J].International Journal of Machine Tools and Manufacture,2006.46(7-8):747~757.
    [88]王宇晗,肖凌剑,曾水生.小线段高速加工速度衔接数学模型[J].上海交通大学学报,2004.38(6):901~904.
    [89]彭芳瑜,何莹,李斌. NURBS曲线高速插补中的前瞻控制[J].计算机辅助设计与图形学学报,2006(5):625~629.
    [90]曹宇男,王田苗,陈友东.插补前S加减速在CNC前瞻中的应用[J].北京航空航天大学学报,2006.13(5):595~599.
    [91]徐志明,冯正进,汪永生,等.连续微小路径段的高速自适应前瞻插补算法[J].制造技术与机床,2003(12):20~23.
    [92]任琨,傅建中,陈子辰.高速加工中速度前瞻控制新算法[J].浙江大学学报,2006.40(11):1985~1988.
    [93] Xu R Z, Xie L, Li C X, et al. Adaptive parametric interpolation scheme with limitedacceleration and jerk values for NC machining[J]. The International Journal of AdvancedManufacturing Technology,2008.36(3-4):343~354.
    [94]吴文江,张杰彭,正森.基于RT-Linux的数控系统进程间通信方式的研究[J].小型微型计算机系统.2007.28(5):952~955.
    [95]李文,刘瑛,罗学科.基于RTLinux的Open CNC系统平台的研究及应用[J].中国机械工程,2007.5(3):374~378.
    [96] Sebastian D, Timar, Rida T. Algorithm for time-optimal control of CNC machines along curvedtool paths[J]. Robotics and Computer-integrated Manufacturing,2005.21(1):37~53.
    [97] Jae W J. Efficient acceleration and deceleration technique for short distance movement inindustrial robots and CNC machine tools[J]. Electronics Letters,2000.36(8):766~768.
    [98] Yi T, Chin S, An Chen Lee. Path planning for CNC contouring aroud a corner[J]. JSMEInternational Journal,2004.47(1):412~420.
    [99] Narayana S R,Pang J H. Multiresolution analysis as an approach for tool path planning in NCmachining[J]. CAD Computer Aided Design,2003.35(2):167~178.
    [100]苟琪. MasterCAM五轴加工方法[M].北京:机械工业出版社,2005.
    [101]吴光琳.组合曲面实时插补关键技术研究[博士学位论文].上海:上海交通大学,2000.
    [102] Cox J J,Takezaki Y. Space-filling curves in tool path applications[J]. Computer Aided Design,1994.26(3):215~224.
    [103] Lo C C. A new approach to CNC tool path generation[J]. Computer Aided Design,1998.30(8):649~665.
    [104] Tsai M C, Cheng C W, Cheng M Y. A real-time NURBS surface interpolator for precisionthree-axis CNC machining[J]. International journal of machine tools and manufacture,2003.43(12):1217~1227.
    [105] Bahr B, Xiao X M, Krishnan K. A real-time schenme of cubic parametirc curve interpolationsfor CNC systems[J]. Computer Industry,2001.45(3):309~317.
    [106] Tam H Y, Xu H Y, Peter W T. An algorithm for the interpolation of Hybrid curves[J]. ComputerAided Design,2003.35(3):267~277.
    [107] Xu H Y, Zhou Y H, Zhang J J. Angular interpolation of Bi-parameter curves[J]. Computer AidedDesign,2003.35(13):1211~1220.
    [108] Lartigue C,Thiebaut F. CNC tool path in terms B-spline curves[J]. Computer Aided Design,2001.33(4):307~319.
    [109] Bedi S,Quan N. Spline interpolation technique for NC machines[J]. Computer in Industry,1992.18(3):1323~1345.
    [110] Meng S Y,Zhao D D. Direct Interpolation algorithm for pen-cuttiing of sculptured surfaces [J].Journal of Southeast University (English),2006.22(1):73~77.
    [111] Yeh S S,Hsu P L. Adaptive-feedrate interpolation for parametric curves with a confined chorderror[J]. Computer Aided Design,2002.34(3):229~237.
    [112]Shpitalni M, Koren Y, Lob C C. Realtime Curve Interpolators[J]. Computer Aided Design,1994.26(11):832~838.
    [113] Tsai M S, Nie H W, Yau H T. Development of a real-time look-ahead interpolation methodologywith spline-fitting technique for high-speed machining[J]. The International Journal ofAdvanced Manufacturing Technology,2006.13(3):884~890.
    [114] Yong T,Narayanasami R. A parametric interpolation with confined chord error acceleration anddeceleration for NC machining[J]. Computer Aided Design,2003.35(13):1249~1259.
    [115] Nam S H,Yang M Y. A study on a generalized parametric interpolator with real-time jerk-limitedacceleration[J]. Computer Aided Design,2004.36(1):27~36.
    [116]赵国勇,徐志祥,赵令福.高速高精度数控加工中NURBS曲线插补的研究[J].中国机械工程,2006.17(3):291~294.
    [117]赵巍,王太勇,万淑敏.基于NURBS曲线的加减速控制方法研究[J].中国机械工程,2006.17(1):1~3.
    [118] Fleisig R V,Spence A D. A constant feed and reduced angular acceleration interpolationalgorithm for multi-aixs machining[J]. Computer Aided Design,2001.33(1):1~15.
    [119]杨长祺,秦大同,石万凯.自由曲面五轴等残余高度高精度加工的路径规划[J].计算机辅助设计与图形学学报,2003.15(5):621~625.
    [120]蔺宏伟,王国瑾.光滑曲面上的G1插值曲线[J].计算机辅助设计与图形学学报,2003.15(5):541~546.
    [121]陈明君,赵清亮.基于双圆弧步长伸缩数控插补非圆曲线算法的研究[J].机械工程学报,2003.39(1):111~116.
    [122] Les A P,Wayne T. Computing offsets of NURBS curves and surfaces[J]. Computer AidedDesign,1999.34(3):209~228.
    [123]Bedi S, Ali I, Quan N. Adavanced techniques for CNC machines[J]. Industrial Electronics,1993.115:329~336.
    [124] Omirou S L. Space curve interpolation for CNC machines[J]. Journal of Materials ProcessingTechnology,2003.141(5):343~350.
    [125] Liu X B, Fahad A, Kazuo Y. Adaptive interpolation scheme for NURBS curves[J]. Internationaljournal of machine tools and manufacture,2005.45(3):433~444.
    [126] Ming C H, Yean R H, Chang H H. Five-axis tool orientation smoothing usingquaternioninterpolation algorithm[J]. International journal of machine tools and manufacture,2003.43(3):1259~1267.
    [127] Balasubramaniam M, Sarma S, Adachi Y. Generation collision-free5-axis tool paths using ahaptic surface[J]. Computer Aided Design,2002.34:267~279.
    [128]刘凯.弧齿锥齿论数控洗齿机运动分析及控制系统研究[博士学位论文].南京:南京航空航天大学,2007.
    [129]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [130] Koren Y. Computer control of manufacturing system[C].McGraw-Hill,1982:113~129.
    [131]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [132] Lo C C. Feedback interpolators for CNC machine tools[J]. Journal of Computer Science andEngineering,1997.119(4):587~592.
    [133] Tsai M C,Cheng C W. A real-time predictor corrector interpolator for CNC machining[J].Journal of Computer Science and Engineering,2003.125(3):449~460.
    [134]王昕,王均伟,饶志,等.基于NURBS曲线轨迹规划与速度规划的研究[J].系统仿真学报,2008.20(15):3973~3980.
    [135]陈良骥,冯宪章.五轴NURBS插补中的速度前瞻控制算法[J].计算机集成制造系统,2009.15(12):2339~2404.
    [136]马朝阳,张承瑞.实时前瞻功能的NURBS动态插补算法[J].组合机床与自动化加工技术,2008(5):7~10.
    [137]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700