用户名: 密码: 验证码:
大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究存在的问题,分别从喷枪模型的建模及其应用、大曲率特征自由曲面的喷涂分片规划、自然二次曲面上喷涂轨迹优化及复杂曲面上喷枪轨迹组合优化等角度对问题进行了系统的研究。研究并在一定程度上解决了目前面向复杂自由曲面喷涂机器人喷枪轨迹优化研究中,从喷枪3D模型的建立、提高大曲率特征自由曲面涂层均匀度和提高复杂曲面喷枪轨迹组合优化时喷涂效果的关键技术和算法。
     文章阐述了面向喷涂机器人离线编程系统的主要结构和技术路线,提出了喷涂机器人喷枪轨迹优化模块为本文研究的重点。
     在喷枪模型的建模及其应用中,基于一组喷釉实验数据,对喷枪模型的建模方法及其在平面喷枪轨迹优化中的应用进行了论述。运用二次样条曲线描述平面上涂料的生长情况,并建立了单位时间内平面和圆弧面上的涂层厚度表达式。分析了平面相对于圆弧面上涂层厚度不一致的原因,并给出了涂层厚度一致性优化方法。由于该类喷枪模型在喷枪轨迹优化时的复杂性,运用最小二乘曲线拟合的方法将复杂涂层厚度模型拟合成表达式较为简单的β分布模型以提高其实用性,给出了拟合算法,并将该模型运用到了平面喷枪轨迹优化研究中。
     在大曲率特征自由曲面喷涂分片规划中,研究了大曲率特征自由曲面分片造型方法和喷枪轨迹生成方法。首先,结合喷涂半径和几何拓扑分片法,给出了提取曲面中大曲率特征曲面的方法;然后,针对大曲率曲面组曲面,提出了运用最小二乘曲线曲面拟合的方法对大曲率组曲面进行拟合造型,生成面片面积较大,形状较匀整的自然二次曲面,提出了运用修正的Gauss-Newton法对非线性最小二乘问题进行求解,并给出了大曲率组曲面造型算法和整个复杂自由曲面的分片规划算法;最后,提出了运用自然二次曲面上的母线规划其上喷枪轨迹的方法。
     在面向自然二次曲面的喷涂轨迹优化中,研究了提高自然二次曲面上涂层均匀度的喷涂轨迹优化方法。基于一种前人已有的喷枪模型,运用面积几何放大定理建立了自然二次曲面上的喷枪3D模型,基于该3D模型在指定的喷枪路径上建立了自然二次曲面上喷枪轨迹参数优化目标函数,并运用黄金分割法和可行方向法对特定的优化问题进行求解。基于PA-PA原则,提出了先优化喷涂半径变化范围,后优化喷枪轨迹参数的方法对不同组合面片交界处的喷枪轨迹进行优化,并建立了不同组合面片交界处的喷枪轨迹参数优化目标函数,并运用乘子法对该类优化问题进行求解。
     在复杂曲面喷枪轨迹组合优化中,重点研究了提高整个复杂曲面上涂层均匀度和涂料利用率的方法。首先,针对喷枪路径规划方式和面片几何形状对喷涂效果的影响,提出了优化两种喷枪路径规划方式的全局路径规划算法。其次,针对影响涂层质量的面片之间的涂层分布干涉问题,运用直接修正轨迹间距法、修正喷枪喷射高度法和两者相结合的方法对交界线平行和近似平行时的涂层分布干涉问题进行论述,分别给出了优化目标函数,并运用非线性整数优化的蚁群算法对问题进行求解。再次,针对影响喷涂效果三要素中的涂料利用率问题,建立了喷涂路径规划时的涂料利用率近似表达式,在满足涂层质量要求的前提下,结合路径分段计算喷枪路径拐角处的涂层厚度法和扫描搜索算法优化了涂料利用率的影响因素,达到提高涂料利用率的目的。最后,基于优化喷涂效率和涂料利用率的矛盾,给出了最佳喷涂效果的评价函数。
     本文对主要的设计方案进行了仿真研究。仿真结果表明,本文提出的数学模型以及各种喷枪轨迹优化方法均可以获得良好的效果。
Be aimed at the problem that spray tool trajectory optimization for large complexfree-form curved surface, separately from the spray tool modeling and its application, thepartition of large curvature complex free-form curved surface, the spray tool trajectoryoptimization for natural quadric surface and the combinatorial optimization of spray tooltrajectory for complex curved surface to study it. The key algorithms of spray tool3Dmodeling and improve the coating thickness uniformity of large curvature complex free-formcurved surface and the spray effect of complex free-form curved surface are investigated anddeveloped.
     The main structure and technical route of off-line programming system for painting robotare introduced in this paper. The key research content is proposed that module of spray tooltrajectory optimization.
     Based on a group of spray glaze experimental data, the method of spray tool modelingand its application are discussed. Quadratic spline is used to describe coating growth on aplane and the coating thickness expressions are developed within unit time when spray on aplane and on an arc surface. The inconsistent reason of coating thickness is analysed on planeand arc surface, the consistent optimization method of coating thickness is given. Because theapplied complexity of this tool model, the least-square curve fitting method is used togenerate a β distributed model which improves its practicability, the fitting algorithm isdeveloped and the spray tool model is used to tool trajectory optimization on a plane.
     The partition of large curvature free-form curved surface and the method of tooltrajectory generation are studied. First, combination with spray radius and topological method,the extraction of large curvature features surface from free-form surface is developed. Than,the least square method is used to fit big curvature surfaces and natural quadric surface oflarge area, leveling shape is generated. The method is proposed that the amendatoryGauss-Newton is used to solve nonlinear least squares problem. The modeling algorithm oflarge curvature surfaces and the partition planning algorithm of a free-form surface are given.Finally, the generatrix of natural quadric surface is used to planning the tool trajectory on it.
     The method of tool trajectory optimization that improves coating uniformity is studied.Based on a existing spray tool2D model, the geometry enlarge theorem is used to develop thespray tool3D model on natural quadric surface and use it to establish optimization objectivefunction of tool trajectory along designated path. The golden section method and feasibledirection method are used to solve optimization problems. Based on the PA-PA principle, themethod that combine optimze spray radius with optimize tool trajectory parameters isproposed to optimize the tool trajectory which at the junction of different combination patchesand optimization objective functions are established, the multiplier method is used to solveoptimization problems.
     The methods that improve coating uniformity and coating utilization factor are studied. Frist, for tool path planning way and geometric shape of patch have an effect on spray effect,the global path planning algorithm is proposed that based on optimization of two pathplanning ways. Secondly, be aimed at the problem that coating distribution interference whichinfluence coating uniformity, the methods of adjust spacing distance, adjust spray height andcombine both are used to study coating distribution interference when border parallel andapproximate parallel, the optimization objective functions are given respectively and the antcolony optimization algorithm for nonlinear integer programming is used to solve them.Again, be aimed at the problem that coating utilization factor influence spray effect, theapproximate expression of coating utilizing factor is given when path planning, on conditionthat meet coating uniformity, The method is proposed that combine coating thicknessfunctions at corner of paths with search algorithm to optimize coating utilization factor.Finally, based on the contradiction between optimize spray efficiency and coating utilizationfactor.
     In this paper, simulations are performed for main design schemes, simulations show thatmathematical model and a variety of tool trajectory optimization can obtain good results.
引文
[1]王燚,赵德安,王振滨等.喷漆机器人喷枪最优轨迹规划的研究.江苏理工大学学报(自然科学版),2001,22(5):55-59.
    [2]王振滨,赵德安,李医民等.喷漆机器人离线编程系统探讨.江苏理工大学学报(自然科学版),2000,21(5):75-82.
    [3]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹设计及影响因素研究.机械科学与技术,2004,23(4):396-398.
    [4] Klein A. CAD-based off-line programming of painting robots. Robotica,1987,5(4):267-271.
    [5] Antonio J. K. Optimal trajectory planning problems for spray coating. In: Proc ofIEEE International Conference on Robotics and Automation. Atlanta,1993,2570-2577.
    [6] Antonio J. K. Optimal trajectory planning problems for spray coating, TR-EE-93-29.School of Electrical Engineering, Puedue University,1993.
    [7] Ramabhadran R, Antonio J. K. Planning spatial paths for automated spray coatingapplications. In: Proc of IEEE International Conference on Robotics and Automation.Minneapolis,1996,1255-1260.
    [8] Ramabhadran R, Antonio J. K. Fast solution techniques for a class of optimaltrajectory planning problems with applications to automated spray coating. IEEETransactions on Robotics and Automation,1997,13(4):519-530.
    [9] Ramabhadran R, Antonio J. K. Fast solution techniques for a class of optimaltrajectory planning problems with applications to automated spray coating,TR-EE-95-9. School of Electrical Engineering, Puedue University,1995.
    [10] Antonio J. K, Ramabhadran R, Ling T. L. A framework for trajectory planning forautomated spray coating. International Journal of Robotics and Automation,1997,12(4):124-134.
    [11] Narayanan V, Bidanda B. On the development of computer based path planningstrategies for robot spray glazing. Computer and Industrial Engineering,1992,23(4):15-18.
    [12] Bidnada B, Narayanan V, Rubinovitz J. Computer-aided-designed-based interactiveoff-line programming of spray-glazing robots. Computer Integrated Manuacfturing,1993,6(6):357-365.
    [13] Duelen G, Stahlmann H, Liu X. An off-line planning and simulation system for theprogramming of coating robots. Annals of the CIPP,1989,38(1):369-372.
    [14] Suh S. H, Lee J. J, Choi Y. J, Lee S. K. Prototype integrated robotic paintingsystem:sotfware and hardware development. Jounral of Mnauacfturing Systems,1993,12(6):433-439.
    [15] Suh S. H, Woo I. K, Noh S. K. Development of an automatic trajectory planningsystem (ATPS) for spray painting robots. In: Proc of IEEE International Conference onRobotics and Automation. Sacramento,1991,1948-1955.
    [16] Balkan T, Arikan M. A. S. Modeling of paint flow rate flux for circular paint sprays byusing experimental paint thickness distribution. Mechanics Research Communications,1999,26(5):609-617
    [17] Hansbo A, Nylen P. Models for the simulation of spray deposition and robot motionoptimization in thermal spraying of rotating objects. Surface and Coatings Technology,1999(122):191-210
    [18] Zaki A, Eskander M. Spray painting of a general three-dimensional surface. In: Proc ofIEEE/RSJ International Conference on Robotics and Automation. San Francisco,2000,2172-2176.
    [19] Sheng W. H, Xi N, Song M, Chen Y. Automated cad-guided robot path planning forspray painting of compound surfaces. In: Proc of IEEE/RSJ International Conferenceon Intelligent Robots and Systems. Tankamutsa,2000,1918-1923.
    [20] Veljko P, Goran S. D, Dragan K.Dynamics of anthropomorphic painting robot: qualityanalysis and cost reduction. Robotics and Autonomous Systems,2000,32(1):17-38.
    [21] Arikan M. A. S, Balkan T. Process simulation and paint thickness measurement forrobotic spray painting. CIRP Annals-Manufacturing Technology,2001,50(1):291-294
    [22] Chen H. P, Sheng W. H, Xi N, Song M. Automated robot trajectory planning for spraypainting of free-form surfaces in automotive manufacturing. In: Proc of IEEEInternational Conference on Robotics and Automation. Washington DC,2002,450-455.
    [23] Chen H. P, Xi N, Sheng W. H. Cad-based automated robot trajectory planning forspray painting of free-form surfaces. Industrial Robot,2002,29(5):426-433.
    [24] Sheng W. H, Xi N, Chen H. P. Suface partitioning in automated cad guided toolplanning for additive manufacturing. In: Proc of IEEE/RSJ International Conferenceon Intelligent Robots and Systems. Las Vegas,2003,2072-2077.
    [25] Chen H. P, Xi N, Sheng W. H. A general framework for automatic cad-guided toolplanning for surface manufacturing. In: Proc of IEEE International Conference onRobotics and Automation. Taiwan,2003,3504-3509.
    [26] Chen H. P, Xi N, Chen Y. F. Multi-objective optimal robot path planning inmanufacturing. In: Proc of IEEE International Conference on Intelligent Robots andSystems. Las Vegas,2003,1167-1172.
    [27] Chen H. P, Xi N, Wei Z. H. Robot trajectory integration for painting automotive partswith multiple patches. In: Proc of IEEE International Conference on Robotics andAutomation. Taiwan,2003,3984-3989.
    [28] Sheng W. H, Chen H. P, Xi N, Tan J. D. Optimal tool path planning for compoundsurfaces in spray forming processes. In: Proc of IEEE International Conference onRobotics and Automation. New Orleans,2004,45-50.
    [29] Chen H. P, Xi N, Sheng W. H, Chen Y. F. Optimal spray gun trajectory planning withvariational distribution for forming process. In: Proc of IEEE International Conferenceon Robotics and Automation. New Orleans,2004,51-56.
    [30] Chen H. P, Xi N, Masood S. K. Development of automated chopper gun trajectoryplanning for spray forming. Industrial Robot,2004,31(3):297-307.
    [31] Duncan S, Jones P, Wellstead P. Robot path planning for spray coating: a frequencydomain approach. In: Proc of Proceedings of the American Control Conference.Boston,2004(5),4643-4648.
    [32] Sheng W. H, Chen H. P, Xi N. Tool path planning for compound surfaces in sprayforming processes. Automation Science and Engineering,2005,2(6):240-249.
    [33] Chen H. P, Xi N, Sheng W. H. General framework of optimal tool trajectory planningfor free-form surfaces in surface manufacturing. Journal of Manufacturing Science andEngineering,2005,127(1):49-59.
    [34] Chen H. P, Xi N, Sheng W. H. Optimizing material distribution for tool trajectorygeneration in surface manufacturing. In: Proc of IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics. Monterey,2005,1389-1394.
    [35] Duncan S, Jones P, Wellstead P. A frequency-domain approach to determining the pathseparation for spray coating. IEEE Transactions on Automation Science andEngineering,2005,2(3):233-239
    [36] Conner C. D, Greenfield A, Atkar N. P, Rizzi A. A, Choset H. Paint depositionmodeling for trajectory planning on automotive surfaces. IEEE Transactions onAntomation Science and Engineering,2005,2(4):381-392.
    [37] Atkar N. P, Greenfield A, Conner C. D, Choset H, Rizzi A. A. Hierarchicalsegmentation of suifaces embedded in r3for auto-body painting. In: Proc of the2005IEEE International Conference on Robotics and Automation. Barcelona,2005,574-579.
    [38] Prasad N. A, Aaron G, Conner D. C, Choset H, Alfred A. R. Uniform coverage ofautomotive surface patches. The International Journal of Robotics Research,2005,24(11):883-898.
    [39] Prasad N. A. Uniform coverage of simple automotive surfaces:[dissertation].Pittsburgh: Carnegie Mellon University,2005,17-23
    [40] Tewolde G. S, Sheng W. H.Ant colony optimization for tool path integration in sprayforming processes. In: Proc of IEEE International Conference on Intelligent Robotsand Systems. Beijing,2006,2394-2399.
    [41] Chen H. P, Fuhlbrigge T, Li X. Z. Automated industrial robot path planning for spraypainting process: a review. In: Proc of4th IEEE Conference on Automation Scienceand Engineering. Washington DC,2008,522-527.
    [42] Chen H. P, Xi N. Automated Tool trajectory planning of industrial robots for paintingcomposite surfaces. Adv Manuf Technol,2008(35):680–696.
    [43] Chen H. P, Fuhlbrigge T, Li X. Z. A review of cad-based robot path planning for spraypainting. Industrial Robot,2009,36(1):45-50.
    [44] Gyorfi J. S, Gamota D. R, Mok S. M. Evolutionary path planning with subpathconstraints. IEEE Transactions on Electronics Packaging Manufacturing,2010,33(2):143-151
    [45]王燚,赵德安,王振滨.两类喷枪最优轨迹规划的比较.机械工程师,2004(11):35-38.
    [46]王振滨.喷漆机器人最优轨迹设计与仿真[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2001
    [47]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹离线优化方法.农机化研究,2004(l):93-97.
    [48]阙骋.喷漆机器人喷枪轨迹离线编程及仿真技术研究[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2005
    [49]陈伟.喷涂机器人喷枪轨迹优化研究:[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2007
    [50]汤养,陈伟.喷涂机器人喷枪轨迹规划的优化算法研究.机械设计与制造,2007(10):144-146
    [51]赵德安,陈伟,汤养.面向复杂曲面的喷涂机器人喷枪轨迹优化.江苏大学学报:自然科学版,2007,28(5):425-429.
    [52]赵德安,陈伟,汤养.基于遗传算法的喷涂机器人喷枪路径规划.中国机械工程,2008,19(7):777-779.
    [53]王其红,陈伟,赵德安等.自由曲面上喷涂机器人喷枪轨迹规划方法研究.江苏科技大学学报(自然科学版),2007(12):57-60.
    [54]陈伟,赵德安,汤养.自由曲面喷漆机器入喷枪轨迹优化.农业机械学报,2008,35(1):147-150.
    [55]李发忠,赵德安,姬伟等.面向凹凸结构曲面的喷漆机器人轨迹优化研究.江苏科技大学学报:自然科学版,2008,22(4):64-67.
    [56]谢明宏.喷涂机器人轨迹设计与优化:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2008
    [57]缪苏毅.基于点云切片技术的喷枪轨迹获取方法研究:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2009
    [58]李发忠,赵德安,张超等.基于CAD的喷涂机器人轨迹优化.农业机械学报,2010,41(5):213-217.
    [59]李发忠,赵德安,姬伟等.喷涂机器人空间轨迹到关节轨迹的转换方法.农业机械学报,2010,41(11):198-201.
    [60]胡裕渊.静电喷涂机器人轨迹优化与仿真技术研究:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2010
    [61]陈伟,赵德安,李发忠.复杂曲面的喷涂机器人喷枪轨迹优化与试验.农业机械学报,2011,42(1):204-208
    [62]孙国朋,戴立玲,卢章平等.基于点云处理技术的喷涂机器人喷枪轨迹生成研究.机械设计与制造,2011(1):158-160.
    [63]刘能广,任天然,柴苍修等.基于遗传算法的喷漆机器人轨迹的二层规划.机械设计与制造,2008(6):173-175.
    [64]冯川,孙增沂.机器人喷涂过程中的喷炬建模及仿真研究.机器人,2003,25(4):353-358.
    [65]冯川.机器人喷釉系统的研究与应用[清华大学硕士论文].北京:清华大学计算机系,2004,96-104
    [66]陈雁,颜华,王力强等.机器人匀速喷涂涂层均匀性分析.清华大学学报(自然科学版),2010,50(8):1210-1213.
    [67]张永贵,黄玉美,高峰等.喷漆机器人空气喷枪的新模型.机械工程学报,2006,42(11):226-233.
    [68]张永贵,黄玉美,彭中波等.考虑动力学因素的喷漆机器人喷枪路径优化.机械科学与技术,2006,25(8):993-996.
    [69]龚俊,崔朝玉,翟延华等.喷涂过程中的涂层生长速率模型的建模及仿真研究.机械制造,2008(46):21-23.
    [70]龚俊,崔朝玉.喷枪最优运动轨迹求解条件的优化及仿真实验.现代制造工程,2008(6):46-49.
    [71]黄磊,姜超.喷漆机器人应用程序开发与应用.黄石理工学院学报,2008(6):29-31
    [72]张明.浅谈机器人喷涂的膜厚控制.工业涂装,2006(6):31-33
    [73]孙明,韩光超,张海鸥.机器人等离子喷涂轨迹间距优化及实验研究.北京工商大学学报(自然科学版),2007(7):15-17.
    [74]滕建华,刘亚秋.家具喷涂机器人喷枪轨迹生成分析与研究.自动化技术与应用,2007,26(2):16-19
    [75] Sun M, Han G. C. The design&simulation of spatial path planning for the roboticplasma spraying. In: Proc of20102nd Conference on Environmental Science andInformation Application Technology. Wuhan,2010,755-757.
    [76] Peter H, Lars H, Rune L, John W. P, Henrik G. P. Task curve planning for paintingrobots—part I: process modeling and calibration. IEEE Transaction on Robotics andAutomation,1996,12(2):324-330
    [77] Blane M. M, Lei Z, Civi H. The3l algorithm for fitting implicit polynomial curves andsurfaces to data. IEEE Transactionon Pattern Analysis and Maehine Intelligence,2000,22(3):298-313.
    [78]朱心雄.自由曲线曲面造型技术.北京:北京航空航天大学出版社,1994.
    [79]吕震.反求工程CAD建模中的特征技术研究[浙江大学博士论文].杭州:浙江大学机械工程学院,2002,32-41
    [80]薛嘉庆.最优化原理与方法.北京:冶金工业出版社,2003:121-126
    [81] Persoons W, Brussl H. V. Cad-based robotic coating with highly curved surfaces. In:Proc of ISIR’93. Tokyo,1993:611-618.
    [82] Goodman E. D, Hoppensteradt L. T. W. A method for accurate simulation of roboticspray application using empirical parameterization. In: Proc of the1991IEEEInternational Conference on Robotics and Automation. Sacramento,1991:1357-1368.
    [83]粟塔山等.最优化计算原理与算法程序设计.长沙:国防科技大学出版社,2001:36-39
    [84]陈省身,陈维桓.微分几何讲义.北京:北京大学出版社,2001:201-211
    [85]蒋金山,何春雄等.最优化计算方法.广州:华南理工大学出版社2005:153-155
    [86]阳明盛,罗长童.最优化原理方法及求解软件.北京:科学出版社2006:66-69
    [87]高尚,杨静宇.非线性整数规划的蚁群算法.南京理工大学学报,2005,29(144):120-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700