用户名: 密码: 验证码:
气化炉渣口熔渣流动的实验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业气化炉在长期运行中经常出现渣块堵塞气化炉渣口的现象,严重威胁着装置的经济、安全、稳定运行。根据合成气和熔渣的流向,液态熔渣在气化炉渣口有气渣并流和气渣逆流两种排渣方式。本文采用冷模实验的方法研究了熔渣在渣口下方空间的流动特征,运用数值模拟的方法研究了熔渣在渣口下方水冷壁面上的沉积、相变和生长过程,探讨了Shell气化炉渣口大渣块形成的原因,提出了相应的消除大渣块的措施,同时分析了气渣并流冷模实验装置渣口下方水冷壁面上熔渣的沉积规律。
     (1)熔渣在Shell气化炉渣口排渣属于气渣逆流过程。本文采用糖浆作为模拟介质模拟液态熔渣流动,建立了Shell气化炉渣口区熔渣流动行为冷模实验装置,研究结果表明,模拟熔渣在Shell气化炉渣口并非自由沉降落入渣池,而是破裂形成细长的液丝,部分液丝因高速旋流气流的作用而沉积在渣裙壁面上。模拟熔渣在渣裙壁面上的沉积率随渣口气速的增大而增大,随渣流速的增大而减小;随着粘度的降低和操作负荷的增加,模拟熔渣液丝的数目和模拟熔渣在渣裙壁面上的沉积率都增大;喷嘴使用情况对模拟熔渣在渣口区的流动特征有较大影响。相邻喷嘴和三喷嘴实验条件下,模拟熔渣会集中沉积在渣裙壁面某一区域上。
     (2)建立了Shell气化炉渣口区壁面上熔渣流动、相变和生长的动态模型,研究结果表明,当渣层表面温度低于临界温度时,熔渣全部凝固成固态渣层,平衡时,固态渣层表面覆盖了一层液态渣层且其表面温度高于临界温度;固态渣层的厚度沿着熔渣流动的方向增加;当操作温度和沉积率降低时,固态渣层厚度和特征时间增加,当操作温度和沉积率一定时,粘温特性对固态渣层厚度和特征时间没有影响;固态渣层厚度可以通过增加操作负荷和操作温度来降低,当操作负荷和操作温度增加时,固态渣层厚度一直降低直至达到一个稳定值,相应的特征时间需要数百小时甚至更多。
     (3)本文同时搭建了气化炉渣口气渣并流冷模实验装置,采用糖浆作为模拟介质,研究了突扩比对熔渣在渣口下方流动特征和在突扩圆管壁面上沉积行为的影响。冷模实验研究结果表明,突扩比对熔渣在渣口下方的流动行为有很大影响。当渣口气速、操作负荷、渣流速和模拟介质粘度等因素保持不变时,随着突扩比的增大,模拟熔渣液膜破裂形成的液丝数目减少,模拟熔渣在渣口下方水冷壁面上的沉积率减小,同时熔渣沉积区域远离渣口。
     (4)在气渣并流排渣情况下,系统地研究了熔渣在辐射废锅上方的流动行为。冷模实验研究结果表明,操作负荷和渣口气速较低时,模拟熔渣不会沉积在辐射废锅壁面上,但是当操作负荷和渣口气速较高时,因废锅入口气体的射流和回流区气流的卷吸作用,部分模拟熔渣将会沉积在废锅壁面上;随着操作负荷和渣口气速的增大,模拟熔渣的液丝数量增加,模拟熔渣在废锅壁面上的沉积率增大,同时熔渣沉积区域向渣口靠近;随着模拟介质粘度和渣流速的降低、模拟熔渣的液丝数量增加,模拟熔渣在废锅壁面上的沉积率增大,同时熔渣沉积区域向渣口靠近。
There was slag blockage at the slag tap hole during long tome operation of gasifier sometimes, which is a great threat to the economic, safe and stable operation of device. According to the flow direction of syngas and slag, there were two ways of slag discharge: gas-slag countercurrent flow and gas-slag concurrent flow. Cold model experiment was carried out for observing the simulated slag flow characteristic under the slag tap hole. A dynamic model was developed to clarify the slag deposition、transition and growth on the membrane wall. The reason of slag blockage at the slag tap hole of Shell gasifier was tried to explore and corresponding measures to eliminate slag block were also put forward. The deposition behavior on the membrane wall under the slag tap hole of cold model experiment of gas-slag concurrent flow was also analysised.
     The slag discharge at the slag tap hole of Shell gasifier is gas-slag countercurrent flow process. Cold model experiment study on slag flow at the tap hole region of Shell gasifier was set up and the syrup was used as medium. The results indicate the simulated slag was broke up to slender liquid fragments and a part of the liquid fragments deposit on the screen wall, other than flow into the slag bath under the force of gravity. The deposition rate of slag deposition on the screen wall increases with increasing air velocity at the slag tap hole, whereas it decreases with increasing slag velocity; the liquid fragments of simulated slag and the deposition rate on the screen wall increase with decreasing viscosity and increasing operating load; the use of nozzle has a great influence on the simulated slag flow characteristic at the tap hole region. The simulated slag deposit on certain region of screen wall under experimental conditions using adjacent nozzle or three nozzle.
     A dynamic model of slag flow、transition and growth on the wall of slag tap hole region of Shell gasifier was performed. When the slag surface temperature is lower than critical temperature, the molten slag is totally solidified. When the slag surface temperature is above critical temperature, the solid slag layer is coated with a molten slag layer at equilibrium. the solid slag thickness increases along slag flow; as the operating temperature and deposition rate are decreased, the solid slag thickness and characteristic time increase. When the operating temperature and deposition rate keep constant, viscosity-temperature characteristic has no effect on the solid slag thickness and characteristic time; increasing the operating load and operating temperature make the solid slag become thin, when the operating load and operating temperature increase, the solid slag thickness keeps decreasing until it stabilizes after hundreds of hours or more.
     Cold model experiment of gas-slag concurrent flow was carried out for studying the effect of sudden expansion ratio on the slag flow behavior under the slag tap hole and deposition behavior on the membrane wall. The syrup as used as medium. The results indicate the sudden expansion ratio has a great effect on the flow behavior under the slag tap hole. When the gas velocity at the slag tap hole、operatong load、slag velocity and viscosity of simulated medium keep constant, the liquid fragments of simulated slag and the deposition rate on the membrane wall decrease with increasing sudden expansion ratio, while the distance between deposition region and slag tap hole increases with increasing sudden expansion ratio.
     Cold model experiment of gas-slag concurrent flow was systematacially carried out for observing the simulated slag flow behavior in the upper region of radiant syngas cooler. The results indicate that when the air velocity and operating load is fairly low, the simulated slag doesn't deposit on the wall, but as the air velocity and operating load is fairly high, a part of the simulated slag deposit on the wall by an air jet in the inlet zone and the air entrainment in the recirculation region; the liquid fragments of simulated slag and the deposition rate on the wall increase with increasing operating load and air velocity at the slag tap hole, whereas the distance between deposition region and slag tap hole increases with decreasing operating load and air velocity; the liquid fragments of simulated slag and the deposition rate on the wall increase with decreasing viscosity and slag velocity, whereas the distance between deposition region and slag tap hole increases with increasing viscosity and slag velocity.
引文
[1]中国能源发展报告编辑委员会.中国能源发展报告[M].北京:中国计量出版社.2012
    [2]Dunguo Mou, Zhi Li. A spatial analysis of China's coal flow [J]. Energy Policy.2012,48: 358-368
    [3]Diane Kearney. Energy information administration [R]. Washington, DC,2009
    [4]Higman C, Burt M V D. Gasification [M]. USA:Elsevier Science,2003
    [5]Trapp B, Moock N, Denton D. Coal gasification:ready for prime time power [OL]. Available online:http://www.nucoalenergy.ca/merfiles/Ready_for_Prime_Time_Reprint. pdf,2004
    [6]McDaniel J. Tampa electric polk power station integrated gasification combined cycle project [OL]. Available online:http://www. Tampaelectric.com/data/files/PolkDOEFinal-TechnicalReport.pdf,2002
    [7]Wenjia Song, Lihua Tang, Xuedong Zhu, Yongqiang Wu, Yongqiao Rong, Zibin Zhu, Shuntarou Koyama. Fusibility and flow properties of coal ash and slag [J]. Fuel.2009, 88(2):297-304
    [8]J H Patterson, H J Hurst. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers [J]. Fuel.2000,79(13):1671-1678
    [9]Lihua Xu, Hueon Namkung, Hyok-Bo Kwon, Hyung-Taek Kim. Determination of fouling characteristics of various coals under gasification condition [J]. Journal of Industrial and Engineering Chemistry.2009,15(1):98-102
    [10]E C Winegartner, B T Rhodes. An Empirical Study of the Relation of Chemical Properties to Ash Fusion Temperatures [J]. Journal of Engineering for Gas Turbines and Power. 1975,97(3):395-406
    [11]W J Song, L H Tang, X D Zhu, Y Q Wu, Z B Zhu, Shuntarou Koyama. Effect of coal ash composition on ash fusion temperatures [J]. Energy & Fuels.2010,24(1):182-189
    [12]J C van Dyk. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources [J]. Minerals Engineering.2006,19(3): 280-286
    [13]Wall T F, Mai-Viet T, Becker H B, Gupta R P. Fireside deposits and their effect on heat transfer in p.f. boilers:the emissivity and thermal conductivity of deposits and their components [A]. Proceedings Pulverised Coal Firing-The Effects of Mineral Matter [C]. University of Newcastle,1979.1-16
    [14]Raask E. Mineral impurities in coal combustion [M]. Washington, DC:Hemisphere Publishing Corporation,1985
    [15]Anderson D W, Viskanta R, Incropera F P. Effective thermal conductivity of coal ash deposit at moderate to high temperatures [J]. Journal of Engineering for Gas Turbines and Power.1987,109(2):215-221
    [16]Mills K C, Rhine J M. The measurement and estimation of the physical properties of slags formed during coal gasification:2 properties relevant to heat transfer [J]. Fuel,1989, 68(7),904-910
    [17]Mulcahy MFR, Boow J, Goard PRC. Fireside deposits and their effect on heat transfer in a pulverised fuel fired boiler. Part Ⅰ. The radiant emittance and effective thermal conductance of the deposits [J]. Journal of Institute Fuel.1966,39:385-394
    [18]Boow J, Goard PRC. Fireside deposits and their effect on heat transfer in pulverised fuel fired boilers-Part Ⅲ. Journal of Institute Fuel.1969,42:412
    [19]Clements JF. Characteristics of refractory insulating materials [J]. Transactions of the British Ceramic Society.1966,65(8):479-496
    [20]Nowok JW, Steadman EN. Thermal conductivity of coal ashes and slags [C]. Proceeding of the 12th Gasication and Gas Stream Cleanup Systems Contractors Review Meeting. WV, USA, September 1992,154-164
    [21]Nishioka K, Maeda T, Shimizu M. Application of square-wave pulse heat method to thermal properties measurement of CaO-SiO2-Al2O3 system fluxes [J]. ISIJ International. 2006,46(3):427-433
    [22]H.R. Rezaei, R.P. Gupta, GW. Bryant, et al. Thermal conductivity of coal ash and slags and models used [J]. Fuel.2000,79(13):1697-1710
    [23]岑可法,樊建人等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社.1994
    [24]K C Mills, L Yuan, R T Jones. Estimating the physical properties of slags [J]. The Journal of The Southern African Institute of Mining and Metallurgy.2011,161(10):649-658
    [25]M Aineto, A Acosta, J Ma Rincon, M Romero. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant [J]. Fuel.2006,85(16):2352-2358
    [26]J Somlaia, V Jobbagya, K Somlaib, J Kovacsc, Cs Nemethd, T Kovacsa. Connection between radon emanation and some structural properties of coal-slag as building material [J]. Radiation Measurements.2008,43(1):72-76
    [27]S Vaisburd, D G Brandon. A combined unit for viscosity, surface tension and density measurements in oxide melts [J]. Measurement Science and Technology.1997,8(7): 822-826
    [28]陈新民.火法冶金过程物理化学[M].北京:冶金工业出版社,1984
    [29]Mills K C, Keene B J. Physical properties of bos slags [J]. International Materials Reviews.1987,32(1-2):120
    [30]Urbain G. Viscosity and structure of liquid silicoaluminates-1. method of measurement of experimental results [J]. Revue Internationale des Hautes Temperatures et des Refractaires.1974,7(2):133-145
    [31]Mills K C, Rhine J M. The measurement and estimation of the physical properties of slags formed during coal gasification:1. properties relevant to fluid flow[J]. Fuel.1989, 68(2):193-200
    [32]Falcone S K. Ash and slag characterization-gasification [C]. Annual Gasification Contractor's Meeting, Morgantown, USA,1986
    [33]Schobert HH. Lignites of North America. Coal science and technology. Amsterdam: Elsevier Science,1995
    [34]Raask E. Slag-coal interface phenomena [J]. Journal of Engineering for Gas Turbines and Power.1966,88(1):40-44
    [35]Nowok JW, Bieber JA, Benson SA, Jones ML. Physicochemical effects influencing the measurements of interfacial surface tension of coal ashes [J]. Fuel.1991,70(8):951-956
    [36]Nowok JW, Hurley JP, Bieber JA. The cause of surface tension increase with temperature in multicomponent aluminosilicates derived from coal-ash slags [J]. Journal of Material Science.1995,30(2):361-364
    [37]Tobias Melchior, Marc Biasing, Gunther Putz, Michael Miiller. Surface tension measurements of coal ash slags under reducing conditions at elevated pressures [J]. Fuel, 2011,90(1):280-287
    [38]Jianjun Ni, Zhijie Zhou, Guangsuo Yu, Qinfeng Liang, Fuchen Wang. Molten slag flow and phase transformation behaviors in a slagging entrained-flow coal gasifier [J]. Industrial & Engineering Chemistry Research.2010,49(23):12302-12310 [39] Oh MS, Brooker DD, de Paz EF, Brady JJ, Decker TR. Effect of crystalline phase formation on coal slag viscosity [J]. Fuel Processing Technology.1995,44(1-3):191-199
    [40]Folkedahl BC, Schobert HH. Effects of atmosphere on viscosity of selected bituminous and low-rank coal ash slags [J]. Energy & Fuels.2005,19(1):208-215
    [41]Nowok JW, Hurley JP, Stanley DC. Local structure of a lignitic coal ash slag and its effect on viscosity [J]. Energy & Fuels.1993,7(6):1135-1140
    [42]Nowok JW. Viscosity and structural state of iron in coal ash slags under gasification conditions [J]. Energy & Fuels.1995,9(3):534-539
    [43]Wenjia Song, Lihua Tang, Xuedong Zhu, Yongqiang Wu, Zibin Zhu, Shuntarou Koyama. Flow properties and rheology of slag from coal gasification [J]. Fuel,2010,89(7): 1709-1715
    [44]Xiongchao Lin, Keiko Ideta, Jin Miyawaki, Hiromichi Takebe, Seong-Ho Yoon, Isao Mochida. Correlation between fluidity properties and local structures of three typical Asian coal ashes [J]. Energy & Fuels.2012,26(4):2136-2144
    [45]Kato M, Minowa S. Viscosity measurements of molten slag [J]. Transactions of the Iron and Steel Institute of Japan.1969,9(1):31-38
    [46]Hurst H J, Patterson J H, Quintanar A. Viscosity measurements and empirical predictions for some model gasifier slags-II [J]. Fuel.2000,79(14):1797-1799
    [47]Inaba S, Kimura Y. Viscosity measurement of slag formed in the carbon-bearing iron oxide during the rapid heating [J]. ISIJ International.2004,44(12):2067-2072
    [48]Groen J C, Brooker D D, Welch P J, Oh M S. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses [J]. Fuel Processing Technology.1998,56(1):103-127
    [49]Alexander Y I, San S H, Daniel G R, Nikolai N K. The effect of solids and phase compositions on viscosity behaviour and Tcv of slags from Australian bituminous coals [J]. Journal of Non-Crystalline Solids.2011,357(3):893-902
    [50]Haiping Yuan, Qinfeng Liang, Xin Gong. Crystallization of coal ash slags at high temperatures and effects on the viscosity [J]. Energy & Fuels.2012,26(6):3717-3722
    [51]Lingxue Kong, Jin Bai, Zongqing Bai, Zhenxing Guo, Wen Li. Effects of CaCO3 on slag flow properties at high temperatures [J]. Fuel.2012, http://dx.doi.Org/10.1016/j.fuel.2012. 11.014
    [52]Zhenghua Dai, Xin Gong, Xiaolei Guo, Haifeng Liu, Fuchen Wang, Zunhong Yu. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology [J]. Fuel.2008,87(10-11):2304-2313
    [53]Tao Wu, Mei Gong, Ed Lester, Fuchen Wang, Zhijie Zhou, Zunhong Yu. Characterization of residual carbon from entrained-bed coal water slurry gasifiers [J]. Fuel.2007,86(7-8): 972-982
    [54]Suhui Li, Kevin J Whitty. Investigation of coal char-slag transition during oxidation: effect of temperature and residual carbon [J]. Energy & Fuels.2009,23(4):1998-2005
    [55]Vuthaluru H B, French D. Ash chemistry and mineralogy of an Indonesian coal during combustion-Part 1 drop-tube observations [J]. Fuel Processing Technology.2008,89(6): 595-607
    [56]Vuthaluru H B, French D. Ash chemistry and mineralogy of an Indonesian coal during combustion:Part II-Pilot scale observations [J]. Fuel Processing Technology.2008,89(6): 608-621.
    [57]Hurley J, Wang T M, Nowir J W. The effects of atmosphere and additives on coal slag viscosity [OL]. Available online:http://www.anl.gov/PCS/acsfuel/preprint%20archive/Fil es/41_2_NEW%20ORLEANS_03-96_0691.pdf,1996
    [58]Huffman G P, Huggins F E, Dunmyre G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres [J]. Fuel.1981,60(7): 585-597
    [59]Sage WL, Mcllroy JB. Relationship of coal ash viscosity to chemical composition [J]. Combustion.1959,31(5):41-48
    [60]Corey RC. Measurement and significance of the flow properties of coal-ash slag [R]. Washington, D.C., USA,1964
    [61]Marshak, Ryzhakov. Determination of coal-ash properties [A]. Singer JG. Combustion-F-ossil power [M]. Norwalk, CT:Combustion Engineering Power Systems Group,1991. 1123
    [62]Weymann HD. On the hole theory of viscosity, compressibility and expansivity of liquids [J]. Kolloid and Polymer Science.1962,181(2):131-137
    [63]Einstein A. A Eine neue Bestimmung der Molekiildimensionen [J]. Annalen der Physik. 1906,324(2):289-306
    [64]Roscoe R. The viscosity of suspensions of rigid spheres [J]. British Journal of Appllied Physics.1952,3(8):267-269
    [65]Seetharaman S, Mukai K, Du S. Viscosities of slags-an overview [J]. Steel Research International.2005,76(4):267-278.
    [66]Baxter L L. Ash deposition during biomass and coal combustion:A mechanistic approach [J]. Biomass & Bioenergy.1993,4(2):85-102
    [67]Srinivasachar S, Helble J J, Boni A A. An experimental study of the inertial deposition of ash under coal combustion conditions [J]. Symposium (International) on Combustion. 1991,23(1):1305-1312
    [68]Suhui Li, Yuxin Wu, Kevin J Whitty. Ash deposition behavior during char-slag transition under simulated gasification conditions [J]. Energy & Fuels.2010,24(3):1868-1876
    [69]A Rushdi, A Sharma, R Gupta. An experimental study of the effect of coal blending on ash deposition [J]. Fuel.2004,83(4-5):495-506
    [70]Jianjun Ni, Guangsuo Yu, Qinghua Guo, Zhijie Zhou, Fuchen Wang. Submodel for predicting slag deposition formation in slagging gasification systems [J]. Energy & Fuels. 2011,25(3):1004-1009
    [71]Suhui Li, Kevin J Whitty. Physical phenomena of char-slag transition in pulverized coal gasification [J]. Fuel Processing Technology.2012,95:127-136
    [72]袁宏宇,瞿海根,任海平,王辅臣,于遵宏.气流床气化炉熔渣沉积模拟实验研究[J].华东理工大学学报(自然科学版).2005,31(3):393-397
    [73]屈强.气流床气化炉内熔渣流动及炉体导热过程研究[D].华东理工大学.2003
    [74]程相宣,侯国君,梁钦锋,许建良,刘海峰.水冷壁气化炉熔渣流动的实验研究[J].化学工程.2012,40(3):58-62
    [75]Guangsuo Yu, Qingrui Zhu, Guozhen Chi, Qinghua Guo, Zhijie Zhou. Study on slag composition and flow property in a bench-scale OMB gasifier [J]. Fuel Processing Technology.2012,104:136-143
    [76]Zhiwei Yang, Zhe Wang, Yuxin Wu, Jihong Wang, Junfu Lu, Zheng Li, Weidou Ni. Dynamic model for an oxygen-staged slagging entrained flow gasifier [J]. Energy & Fuels.2011,25(8):3646-3656
    [77]Bo Sun, Yongwen Liu, Xi Chen, Qulan Zhou, Ming Su. Dynamic modeling and simulation of shell gasifier in IGCC [J]. Fuel Processing Technology.2011,92(8): 1418-1425
    [78]Sze Zheng Yong, Marco Gazzino, Ahmed Ghoniem. Modeling the slag layer in solid fuel gasification and combustion-Formulation and sensitivity analysis [J]. Fuel.2012,92(1): 162-170
    [79]Daniel G Roberts, David J Harris, Alexander Tremel, Alexander Y Ilyushechkin. Linking laboratory data with pilot scale entrained flow coal gasification performance. Part 2:Pilot scale testing [J]. Fuel Processing Technology.2012,94(1):26-33
    [80]Qinfeng Liang, Xiaolei Guo, Zhenghua Dai, Haifeng Liu, Xin Gong. An investigation on the heat transfer behavior and slag deposition of membrane wall in pilot-scale entrained-flow gasifier [J]. Fuel.2012,102:491-498
    [81]Bingzhi Li, Anders Brink, Mikko Hupa. Simplified model for determining local heat flux boundary conditions for slagging wall [J]. Energy & Fuels.2009,23(7):3418-3422
    [82]M J Bockelie, M K Denison, Z M Chen, T Linjewile, C L Senior, A F Sarofim. CFD modeling for entrained flow gasifiers in vision 21 systems [C].19th Annual International Pittsburgh Coal Conference, Pittsburgh, USA,2002
    [83]P J Benyon. Computational modeling of entrained flow slagging gasifiers [D], Sydney, Australia, University of Sydney.2002
    [84]M Seggani. Modelling and simulation of time varying slag flow in a Prenflo entrained flow gasifier [J]. Fuel.1998,77(14):1611-1621
    [85]S Liu, Y L Hao. Numerical study on slag flow in an entrained-flow gasifier [C]. ASME International Mechanical Engineering Congress and Exposition, Washington, USA,2007
    [86]韩志明,李政,倪维斗.Shell气化炉的动态建模和仿真[J].清华大学学报(自然科学版).1999,39(3):111-114
    [87]周俊虎,匡建平,周志军,刘建忠,岑可法.粉煤气化炉喷嘴受热分析和渣层模型的数值模拟[J].中国电机工程学报.2007,27(26):23-29
    [88]姚月华,陈晏杰,江振西,张香平,任保增,汪敬恒,黄磊,董海峰.Shell粉煤气化炉 及Texaco水煤浆气化模拟对比及分析[J].计算机与应用化学.2012,29(1):75-79
    [89]高丽.壳牌煤粉加压气化的应用现状和存在问题探讨[J].煤炭技术.2010,29(6):221-223
    [90]宋文佳,唐黎华,朱学栋,吴勇强,荣用巧,朱子彬.Shell气化炉中灰渣的熔融特性与流动特性[J].化工学报.2009,60(7):1781-1786
    [91]盛新.Shell粉煤气化炉堵渣机理初探[J].大氮肥.2012,35(2):125-128
    [92]张冬梅,李寒旭,石旵东,张琨,杨和彦.Shell粉煤气化炉大渣块形成机理探讨[J].广东化工.2012,39(4):174-177
    [93]林高平,龚晓波,冯霄,郁永章.圆管突扩层流流动计算[J].西安交通大学学报.2000,34(6):108-110
    [94]李国美,王跃社,亢力强.突扩圆管内液-固两相流固体颗粒运动特性的DPM数值模拟[J].工程热物理学报.2008,29(12):2061-2064
    [95]李飞,祁海鹰,由长福,包英捷.突扩圆管气固两相流动湍流变动研究[J].工程热物理学报.2006,27(1):201-204
    [96]赵加佩,周昊,岑可法.辐射废锅内高温高压合成气的辐射特性[J].浙江大学学报(工学版).2010,44(9):1781-1786.
    [97]龚岩,倪建军,梁钦锋,周志杰,于广锁.气化炉与辐射废锅接口壁面熔渣流动数值模拟[J].计算机与应用化学.2010,27(7):858-864
    [98]李贤斌,郭庆华,周志杰,代正华,于广锁.辐射废锅入口结构对流场及颗粒分布的影响[J].中国电机工程学报.2012,32(29):15-21
    [99]Guangsuo Yu, Jianjun Ni, Qinfeng Liang, Qinghua Guo, Zhijie Zhou. Modeling of multiphase flow and heat transfer in radiant syngas cooler of an entrained-flow coal gasification [J]. Industrial & Engineering Chemistry Research.2009,48(22): 10094-10103
    [100]Jianjun Ni, Guangsuo Yu, Qinghua Guo, Qinfeng Liang, Zhijie Zhou. Experimental and numerical study of the flow field and temperature field for a large-scale radiant syngas cooler [J]. Industrial & Engineering Chemistry Research.2010,49(9):4452-4461
    [101]黄斌,杨建荣.德士古气化炉废锅结渣原因分析与探讨[J].大氮肥.2009,32(4):228-230
    [102]朱冬梅,聂成元.德士古气化炉渣堵机理探讨[J].化肥工业.2002,29(3):36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700