用户名: 密码: 验证码:
水资源系统耦合理论及其在泾河水文水资源研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域水资源系统是天然系统和人工系统的耦合系统。气候变化和人类活动可直接对水资源产生影响。除此之外,人类活动还改变着流域下垫面条件,改变着天然状态下的径流形成机制。因此,研究气候变化和人类活动在水资源系统中的作用和影响、开展流域水资源的评价利用具有重要意义。本论文分理论与应用研究两大部分。在理论研究中,论文系统阐述了水资源系统耦合的理论基础,建立了水资源耦合系统模型,提出模型弹性系数的分形计算公式,为开展流域的人类活动影响研究提供简便有效的工具;引入地统计学方法,研究了流域水文要素的空间自相关性,通过对比选用了克里格空间插值方法;根据高含沙河流径流和水资源利用特点,提出的汛期弃水系数计算的分级统计法,可以有效便捷地确定不同沙限的河道水资源可利用量,从而为河流水资源的可持续开发利用研究提出了一种新的理论方法。在应用部分,针对泾河流域的水文要素演变、气候变化的影响、人类活动的影响等特点,用文中提出的理论、模型、方法进行了深入研究,取得一些创新性成果。论文的主要研究成果如下:
     (1)泾河流域降水具有强烈的空间自相关性,流域年降水由南向北递减,呈现出较显著的减少趋势;泾河流域年降水量年际变化幅度大,流域年降雨量Cv值由流域的北部、西部向南部、东部递减;泾河流域年蒸发量在空间的分布规律是从北向南依次递减,年际变化较明显,测站年蒸发量的Cv值小于年降水量的Cv值,蒸发量的年际变化小于降水量的年际变化;流域南部年平均气温较高,而流域北部气温较低,泾河流域年均气温从1984年以来有较为明显的增加,流域平均增温0.71℃。
     (2)泾河流域张家山站天然年径流量呈现出显著的递减趋势,这与流域年降水呈现出递减趋势有关,流域降水量的减少幅度占到了张家山站天然年径流量减少幅度的一半左右,泾河流域降雨量的变化是天然径流变化的最主要原因。
     (3)运用逐步回归法,以1956-2004年的年降水和年天然径流资料为基础研究杨家坪以上流域、雨落坪以上流域和杨家坪-雨落坪-张家山区间年降水量对张家山站年天然径流量的影响,发现杨家坪以上流域年降水量每变化10mm,即532.5mm±10mm,张家山年天然径流量将变化0.11亿m~3,即19.8亿m~3±0.11亿m~3;雨落坪以上流域年降水量每变化10mm,即513.5mm±10mm,张家山年天然径流量将变化0.24亿m~3,即19.8亿m~3±0.24亿m~3;杨家坪-雨落坪-张家山区间年降水量每变化10mm,即591.8mm±10mm,张家山年天然径流量将变化0.10亿m~3,即19.8亿m~3±0.10亿m~3。
     (4)基于系统理论和水资源系统耦合关系,建立了水资源耦合系统模型,实现了天然水文过程和人工系统中的人类活动影响的耦合,提出分形法来计算水资源耦合系统中的输入对输出的弹性系数和系统内部状态对输出的弹性系数,从而方便于对人类活动影响的研究。
     (5)基于本研究提出的水资源耦合系统模型研究了人类活动对径流的影响,并与其它研究者使用其它方法的研究成果进行了比较,结果表明,应用本研究提出的水资源耦合模型来研究人类活动对径流的影响时,所需资料较少且更容易获得,计算过程较为简单且计算结果有较好的合理性和可靠性,从而为研究分析人类活动对径流的影响提供一种简便有效的工具。
     (6)如果把人类活动对径流的影响量与天然径流量的比值来表征人类活动对径流的影响强度,则人类活动对径流的影响强度在20世纪70年代以前相对较小,其平均影响强度仅为0.071,70年代为0.104,80年代为0.132,90年代为0.168,2000-2003年为0.270,人类活动对径流的影响强度呈现增强的趋势,20世纪70年代以前流域的人类活动对径流的影响强度较小,流域状态可以认为是天然状态,20世纪70年代以后人类活动影响强度逐渐增强。
     (7)河道水资源可利用量决定于河道内最小生态需水量和汛期难控制利用的洪水量或汛期弃水量的大小。根据泾河流域径流特点提出分级统计法来确定河道水资源可利用量,并与传统方法进行比较,结果表明分级统计法的计算成果更为合理。基于分级统计法计算成果,当河道水资源利用的沙限为10%时,泾河河道水资源可利用量的多年平均值(1981-2001年)为9.87亿m~3,泾惠渠灌区渠首工程可引水量的多平均值为8.66亿m~3,泾惠渠灌区渠首工程实际引水量的多年平均值为3.56亿m~3,泾惠渠灌区渠首工程可引水量潜力的多年平均值为5.09亿m~3,渠首工程可引水量占天然来水量的44.92%,泾惠渠灌区渠首工程可引水量潜力占天然来水量的26.40%,占渠首工程可引水量的58.78%。
     (8)随着引水沙限的提高,泾惠渠灌区渠首可引水量和可引水量潜力也随之增加,例如当河道水资源利用沙限为12%、14%、16%、18%、20%时,渠首工程可引水量的多年平均值(1981-2001年)分别为8.78亿m~3、8.87亿m~3、8.94亿m~3、8.99亿m~3、9.07亿m~3,分别较10%沙限时增多0.12亿m~3、0.21亿m~3、0.28亿m~3、0.33亿m~3、0.41亿m~3,增加幅度较大;当河道水资源利用沙限为12%、14%、16%、18%、20%时,渠首工程可引水量潜力的多年平均值分别5.21亿m~3、5.31亿m~3、5.37亿m~3、5.43亿m~3、5.51亿m~3,分别较10%沙限时增多0.12亿m~3、0.21亿m~3、0.28亿m~3、0.33亿m~3、0.41亿m~3,增加幅度较大。
Water resources system of watershed is a coupling system with natural system and man-made system. Climate changes and human activities have direct influence on water resources. In addition, human activities can also change the underlaying surface condition of river basin and the formation mechanism of runoff. Therefore, it’s important to reveal the role and effect of climate changes and human activities on water resources system and to perform the evaluation and utilization of watershed water resources. This dissertation consists of two components, the theoretical research part and the applied one. In the theoretical part, (1) the theoretical basis of water resources system coupling has been expatiated, the model of water resources coupling system has been built and the fractal formulas for the elasticity coefficients of the model have been proposed, which offers one simple and effective tool to analyze human activities of watershed; (2) spatial autocorrelation of watershed hydrological elements has been analyzed with geostatistics and the Krigine interpolation method has been selected by comparing; (3) on the basis of the characteristic of runoff and water resources utilization, a grade statistical method to calculate coefficient of abandoned water in flood season has been presented to determine effectively and conveniently the river available amount of water resources under different sand limit of river water resources utilization, which provides a new approach for the study of sustainable exploitation and utilization of watershed water resources. In the application part, the characteristics such as the evolvement of hydrological elements, the impact of climate change and human activities etc. have been analyzed deeply with the presented theories, models and methods in this study and some innovation achievements have been obtained. Major results obtained are shown as follows:
     (1) The precipitation of Jinghe River Basin shows strong spatial autocorrelation. The mean annual precipitation exhibits a decreasing trend from south to north in spatial distribution and a distinct decreasing trend in temporal distribution. The interannual change of mean annual precipitation is evident. The values of coefficient of variation (Cv) for rainfall decrease from the north to the south, the west to the east of the Jinghe River Basin. The evaporation capacity of Jinghe River Basin shows a north-to-south decreasing trend in spatial distribution. The interannual change of evaporation is rather distinct. The values of Cv from evaporation are smaller than those from rainfall, which demonstrates that the interannual change of evaporation is weaker than that of precipitation. The air temperature in the south of Jinghe River Basin is higher than that in the northern. The watershed has a distinct increase of 0.71℃in temperature from the year of 1984.
     (2) The natural annual runoff from the hydrologic station of Zhangjiashan in the Jinghe watershed exhibits a remarkable decrease trend, which has close relationship with the decrease trend of precipitation in the river basin. About half of the decrease degree of natural annual runoff from Zhangjiashan has been resulted from the decrease of precipitation. The precipitation change in Jinghe River Basin is the most important influence factor on natural runoff change.
     (3) The influence of mean annual precipitation from the watersheds controlled by hydrologic station of Yangjiaping, Yuluoping or among the station of Yangjiaping- Yuluoping- Zhangjiashan on the natural annual runoff of Zhangjianshan over 70-year (from 1956 to 2004) time periods with the approach of stepwise regression has been carried out. Results demonstrate that when the mean annual precipitation from the watershed controlled by Yangjiaping varies 10mm (532.5mm±10mm), the natural annual runoff of Zhangjiashan will vary 0.011 billion m~3 (1.98 billion m~3±0.011 billion m~3), while the precipitation from the watershed of Yuluoping or Yangjiaping- Yuluoping- Zhangjiashan varies 10mm, respectively, that is (513.5mm±10mm) or (591.8mm±10mm), the natural annual runoff of Zhangjiashan will vary 0.024 billion m~3 (1.98 billion m~3±0.024 billion m~3) or 0.010 billion m~3 (1.98 billion m~3±0.010 billion m~3).
     (4) On the basis of system theory and the coupling relationship of water resources system, the coupling system of water resources was built. The coupling of natural hydrological process and influence from human activities of man-mad system has been achieved. A fractal method has been presented to determine the two elasticity coefficients, that is, the input-to-output one and the inner state-to-output one, of the water resources coupling system. Therefore, the study on influence of human activities is easy to perform.
     (5) The influence of human activities on runoff has been carried out based on the presented model of water resources coupling system. The performance of the proposed water resources coupling model is compared with that of other methods used by other researchers. Results show that data demanded for the presented model in this study is few and easier obtained, the calculating process is simpler and the calculating results are more rational and credible with the proposed water resources coupling model in this study, which offers a simple and efficient tool to analyze the influence of human activities on runoff.
     (6) If the influence intensity of human activities on runoff is defined as the ratio of influence amount of human activities on runoff to natural runoff, the influence intensity is only 0.071 before 1970’s, while 0.104 in 1970’s, 0.132 in 1980’s, 0.168 in 1990’s and 0.270 in 2000-2003, which shows that the influence intensity increases. The influence intensity before 1970’s is very small and the state of river basin at that time period can be considered as the natural one. The influence intensity becomes stronger and stronger after 1970’s.
     (7) The available amount of river water resources is controlled by the smallest amount of water required by the inner river entironment and the flood discharge hard to control and utilize or abandoned flood amount in flood season. A grade statistical method has been proposed to calculate the available amount of river water resources based on the runoff characteristic of Jinghe River. The results from the presented grade statistical method are compared with those from the traditional method. Results demonstrate that the results from the grade statistical method are more rational. When the sand limit of river water resources utilization is set as 10 percent, according to the results of the grade statistical method, the mean annual available amount of river water resources from 1981 to 2001 for Jinghe River is 0.987 billion m~3, the available amount of diversion project for Jinghuiqu irritation district is 0.866 billion m~3, the available potential amount of diversion project for Jinghuiqu irritation district is 0.509 billion m~3; the ratio of the available amount of diversion project to the natural runoff is 0.4492; the ratio of the available potential amount of diversion project to the natural runoff or the available amount of diversion project is 0.2640 or 0.5878.
     (8) The available amount and the available potential amount of diversion project for Jinghuiqu irritation district will increase with the increase of the sand limit of river water resources utilization. For example, when the sand limit of river water resources utilization is 12%, 14%, 16%, 18% or 20%, the mean annual available amount of diversion project for Jinghuiqu irritation district over 21-year (from 1981-2001) time periods is 0.878 billion m~3, 0.887 billion m~3, 0.894 billion m~3, 0.899 billion m~3 or 0.907 billion m~3, respectively, which is larger 0.012 billion m~3, 0.021 billion m~3, 0.028 billion m~3, 0.033 billion m~3 or 0.041 billion m~3 than that of 10% sand limit of river water resources utilization; the available potential amount of diversion project is 0.521 billion m~3, 0.531 billion m~3, 0.537 billion m~3, 0.543 billion m~3 or 0.551 billion m~3, respectively, which is larger 0.012 billion m~3, 0.021 billion m~3, 0.028 billion m~3, 0.033 billion m~3 or 0.041 billion m~3 than that of 10% sand limit of river water resources utilization.
引文
[1]游进军.水资源系统模拟理论与实践[D].北京:中国水利水电科学研究院,2005.
    [2]李佩成,冯国章.论干旱半干旱地区水资源可持续供给原则及节水型社会的建立[J].干旱地区农业研究,1997,15(2):1-7.
    [3]李佩成.试论人类水事活动的新思维[J].中国工程科学,2000,2(2):5-9.
    [4]冯国章,李佩成.西北内陆河区水资源天然分布的缺陷及其持续开发利用的对策[J].干旱地区农业研究,1997,15(3):65-71.
    [5]李佩成.试论人与自然和谐相处及再造西北山川秀美[J].地球科学与环境学报,2005,27(3):1-4.
    [6]李佩成.治水的哲学思考[A].周孝德,沈冰.水与社会经济发展的相互影响及作用[C].北京:中国水利水电出版社,2005.
    [7]李佩成.发展地球科学,推进人与自然和谐发展[J].西北地质,2007,40(1):1-6.
    [8]汪党献.水资源需求分析理论与方法研究[D].北京:中国水利水电科学研究院,2002.
    [9]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J]水科学进展,1999,10(3):251-259.
    [10]耿艳辉.泾河流域植被生态需水量研究[D].济南:山东师范大学,2005.
    [11]慕富强.最近25年来疏勒河流域气候变化与水文水资源的响应[D].兰州:兰州大学,2005.
    [12]李新.新疆内陆河流域人类活动的水文效应[A].21世纪中国水文科学研究的新问题新技术和新方法[C].北京:科学出版社,2001.
    [13] WMO. Water Resources and Climatic Change: Sensitivity of Water Resources to Climate Change and Variability[M].Geneve:WMO,1987.
    [14]陈来安,陆军令.系统工程原理与应用.北京:学术期刊出版社,1988.
    [15] Stockton C.W., Boggess W.R. Geohydrological implication of climate change on water resources, development[R]. Fort Belvoir, VA: US Army coastal Engineering Research Center, 1979.
    [16] Evans T.E. The effects of changes in the world hydrological cycle on the availability of water resources[A]. Bazzaz F., Sombroek W. Global Climate Change and Agricultural Production[C]. Chichestre, UK: John Wiley and Sons, 1996:15-48.
    [17] Frederick K.D., Major D.C. Climate change and water resources [J]. Climatic Change, 1997,(37):7-23.
    [18] Tao F.L., Yokozawa M., Hayashi Y., et al. Future climate change, the agricultural water cycle and agricultural production in China[J]. Agriculture, Ecosystems and Environment, 2003, 95:203-215.
    [19] Smith L.C., Turcotte D.L., Isacks B.C. Stream flow characterization and feature detection using a discrete wavelet transform[J]. Hydrological Processes, 1998,(12):233-249.
    [20]科恩S. J.哥伦比亚流域气候变化和水资源管理[J].水利水电快报,2001,22(5):1-4.
    [21] Yao Tandong, Lonnie G. Thompson. Trends and features of climatic changes in the pass 5000 years recorded by Dunde Ice core[J]. Annals of Glaciology, 1992, (16).
    [22]于沪宁.王树森,等.农田CO2浓度倍增对作物产量影响的实验研究[A].于沪宁.气候变化对中国农业的影响[C].北京:北京科技出版社,1993.
    [23]张德二.我国中世纪温暖期气候的初步推断[J].第四纪研究,1993,(1).
    [24]姚檀栋,杨志红,刘景涛.冰芯记录所提示的青藏高原升温[J].科学通报,1994,(5).
    [25] Yao Tandong, et al. Climatic and environmental records in Guliya ice cap[J]. Science in China,1995,(38).
    [26] U.S. Environmental Protection Agency. Potential climatic impacts of increasing atmospheric CO2 with emphasis on water availability and hydrology in the United States[D]. Washington D.C.,1984.
    [27] Gleick, P.H. Methods for evaluating the regional hydrologic impacts of global climatic changes[J]. J. Hydrology,1986,(88):97-116.
    [28] Gldick P.H. Methods for evaluating the regional hydrologic impacts of global climate changes[J]. Journal of Hydrology, 1986,88:97-119.
    [29] Cleick P.H. Global climatic change and regional hydrology: impacts and responses[A]. in: The influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources[C], ed. S.I.Solomon, M. Beran and W. Hogg. (Proc. Vancouver Symposium.). IAHS Publ. 1987,No.168:389-402.
    [30] Bultot F., Coppens A., et al. Repercussions of a CO2 doubling on the water cycle and on the water balance-A case study for Belgium[J]. J Hydrology, 1988, 99:319-347.
    [31] Lettenmaier D.P. and Gan T.Y. Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming[J]. Water Resources Research, 1990,26(1):69-86.
    [32] Panagoulia D. Impacts of GISS-modeled climate changes on catchment hydrology[J]. Hydrol. Sci. J, 1992, 37(2):141-163.
    [33] Vaccaro J.J. Sensitivity of groundwater change estimates to climate variability and change. Columbia Plateau, Washington[J]. J. Geophys. RES., 1992,97(D3):2821-2833.
    [34] Wilkinson W.B. and Copper D.M. The response of idealized aqufer/river system to climate change[J]. Hydrol. Sci. J., 1993, 38(5):379-390.
    [35] Giorgi F., Brodeur C.S., Bates G.T. Regional climate change scenarios over the United States Produced with a nested regional climate model[J]. Journal of Climate, 1994, 7:375-399.
    [36] Sulzman E.W., Polani K.A., Kittl T.G. Modeling human-induced climate change: a summary for environmental managers[J]. Environmental Management, 1995,19(2): 196-224.
    [37] Reid G.C. Solar forcing of global climate change since the mid 17th century[J]. Climate Change, 1997, 37:391-405.
    [38] Wilby R.L., Wigley T.M.L., Conway D., et al. Statistical downscaling of general circulation model output: acomparison of methods[J]. Water Resources Research, 1998, 34(11):2995-3008.
    [39] Panagoulia D. Hydrological response of a medium-sized mountainous catchment to climate changes[J]. Hydrol. Sci. J., 1991,36(6).
    [40] Mimikou M.A. and Kouvopoulos Y.S. Regional climate change impacts: I. Impacts on water resources[J]. Hydrological Sciences Journal-des Sciences Hydrologiques, 1991, 36(3):247-258.
    [41]王湘林,郭生练.汉江流域水文对气候变化的响应[J].水文水资源,2000,21(1)10-12.
    [42]任国玉,吴虹,陈正洪.我国降水变化趋势的空间特征[J].应用气象学报,2000,11(3):322-330.
    [43]李艳春,李艳芳.宁夏近百年来的气候变化及突变分析[J].高原气象,2001,20(1):100-104.
    [44]王文圣,丁晶.降水量时间序列变化的小波特征[J].长江流域资源与环境,2002,11(5):466-470.
    [45]姜逢清,朱诚,胡汝冀.1960-1997年新疆北部降水序列的趋势探测[J].地理科学,2002,22(6):669-672.
    [46]周建康,唐运忆,徐志侠.南京站降水量统计分析[J].水文2003,23(6):35-38.
    [47]杨莲梅.新疆极端降水的气候变化[J].地理学报,2003,58(4):577-583.
    [48]邓自旺,周晓兰,陈海山.江苏降水长期趋势及年代际变化空间差异分析[J].应用气象学报,2004,15(6):696-705.
    [49]董彦雄,马鹏里,白虎志,等.泾河流域近60年降水演变规律[J].干旱地区农业研究,2004, 22(3):154-159.
    [50]信忠保,谢志仁.宁夏气候变化对ENSO事件的响应[J]干旱区地理,2005,28(2):239-243.
    [51]朱拥军,苏炳凯,周叶芳.黄河中上游流域降水量的时空特征及其对三门峡库区水沙量的影响[J].干旱区地理,2005,28(3):282-287.
    [52]杨余辉,魏文寿,杨青,等.新疆三工学流域山地、平原区气候变化特征对比分析[J].干旱区地理,2005,28(3):320-324.
    [53]徐宗学,张玲,阮本清.北京地区降水量时空分布规律分析[J].干旱区地理,2006,29(2):186-192.
    [54]许继军,杨大文,雷志栋,等.长江流域降水量和径流量长期变化趋势检验[J]人民长江,2006, 37(9):63-67.
    [55]李佩成.咸海萎缩原因、后果、对策及启示[C].杨凌:西北农业大学,1989:1-26.
    [56]李佩成.论咸海萎缩问题及其对国土开发治理中水事活动的启示[J].国土开发与整治,1993,3(4):53-60.
    [57]史辅成,王国安,高治定,等.黄河1922-1932年连续11年枯水段的分析研究[J].水科学进展,1991,2(4):258-263.
    [58]秦伯强.气候变化及人类活动对乌伦古湖的影响分析[J].干旱区地理,1992,15(1):10-16.
    [59]冯国章,李佩成.人类活动对渭河流域径流情势的影响浅析[J].西北水资源与水工程, 1996,7(3):26-32.
    [60]何新林,郭生练.气候变化对新疆玛纳斯河流域水文水资源的影响[J].水科学进展,1998,9(1):77-83.
    [61]胡兴林.甘肃省主要河流径流时空分布规律及其变化趋势分析[J].水文水资源,1999,20(4):3-6.
    [62]王国庆,王云璋,尚长昆.气候变化对黄河水资源的影响[J].人民黄河,2000,22(9):40-41,45.
    [63]张士锋,贾绍凤.降水不均匀性对黄河天然径流量的影响[J].地球科学进展,2001,20(4):355-363.
    [64]张学成,王玲.黄河天然径流量变化分析[J].水文,2001,21(5):30-33.
    [65]莫芳兰.青海省主要河流径流时空分布规律及其变化趋势分析[J].青海环境,2001,11(2):75-78.
    [66]胡汝骥,马虹,樊自力,等.新疆水资源对气候变化的响应[J].自然资源学报,2002,17(1):22-27.
    [67]许炯心,孙季.近50年来降水变化和人类活动对黄河入海通量的影响[J].水科学进展,2003, 14(6):690-695.
    [68]赵雪花,黄强.黄河上游径流变化的影响因素分析研究[J].自然科学进展,2004,14(6):700-704.
    [69]徐素宁,杨景春,李有利.近50a来玛纳斯河流量变化及对气候变化的响应[J].地理与地理信息科学,2004,20(6):65-68.
    [70]杨志峰,李春晖.黄河流域天然径流量突变性与周期性特征[J].山地学报,2004,22(2):140-146.
    [71]唐湘玲.新疆玛纳斯河流域气候变化及其对径流量的影响研究[D].乌鲁木齐:新疆师范大学,2006.
    [72]郭华,姜彤,王艳君,等.1955-2002年气候因子对鄱阳湖流域径流系数的影响[J].气候变化研究进展,2006,2(5):217-222.
    [73]姚玉璧,王润元,邓振镛,等.黄河上游主要产流区气候变化及其对水资源的影响――以甘南高原为例[J].中国沙漠,2007,27(5):903-909.
    [74]粟晓玲,康绍忠,魏晓妹,等.气候变化和人类活动对渭河流域入黄径流的影响[J].西北农林科技大学学报(自然科学版),2007,35(2):153-159.
    [75]崔炳玉.气候变化和人类活动对滹沱河水资源变化的影响[J].山西水利科技,2007,(1):64-66.
    [76] Bhatti A.U., Mulla D., Frazier B. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images [J]. Remote Sensing of Environment, 1991,37:181-191.
    [77] Coovaerts P. Factorial Kriging analysis: A useful tool for exploring the structure of multivariate spatial soil information[J]. Journal of Soil Science, 1992, 43:597-619.
    [78] Liebhold A. M., Rossi R. E., Kemp W. P., et al. Geostatistics and geographic information systems in applied insect ecology[J]. Annual Review of Entomology, 1993,38:303-327.
    [79] Gaers J. Geostatistics: From pattern recognition to pattern reproduction [A]. In: Nikravesh M., Aminzadeh F., Zadeh L. Soft Computing and Intelligent Data Analysis in Oil Exploration [C]. Elsevier Publisher, 2001.
    [80]柏延臣,李新,冯学智.空间数据分析和空间模型[J].地理研究,1999,18(2):185-190.
    [81]肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293-296.
    [82] Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal of Hydrology, 2000,228:113-129.
    [83]李丽娟,王娟,李海滨.无定河流域降雨量空间变异性研究[J].地理研究,2002,21(4):434-441.
    [84]岳文泽,徐建华,徐丽华.基于地统计方法的气候要素空间插值研究[J].高原气象,2005,24(6):974-980.
    [85]门明新,宇振荣,许皞.基于地统计学的河北省降雨侵蚀力空间格局研究[J].中国农业科学, 2006,39(11):2270-2277.
    [86]冉大川.泾河流域水沙特性及减水减沙效益分析[J].水土保持通报,1992,12(5):20-28.
    [87]陈发中,戴明英,吴卿.渭河水沙变化及特性分析[J].人民黄河,1999,21(8):16-18.
    [88]冉大川.泾河流域模糊关系方程输沙量预报模型研究[J].中国水土保持,1995,(2):40-44.
    [89]冉大川.泾河流域年最大洪水量及洪沙量变化分析[J].人民黄河,1998,20(12):27-29.
    [90]冉大川,刘斌,罗全华,等.泾河流域人为活动对水沙变化的影响分析――兼议泾河流域治理方略[J].水土保持学报,2001,15(6):32-35.
    [91]冉大川,刘斌,罗全华,等.泾河流域水土保持措施减水减沙作用分析[J].人民黄河,2001,23(2):6-8.
    [92]冉大川,刘斌,罗全华,等.泾河流域水沙变化水文分析[J].人民黄河,2001,23(2):9-11.
    [93]王小艳,高建恩,安梦雄.泾河水沙基本特性分析[J].西北水资源与水工程,2001,12(3):21-24.
    [94]冉大川,刘斌,罗全华,等.泾河流域水土保持措施减水减沙作用分析[A].汪岗,范昭.黄河水沙变化研究(第二卷)[C].郑州:黄河水利出版社,2002.
    [95]冉大川,寇权,吴永红.环江流域90年代水沙变化研究及治理方略探讨[J].中国水土保持科学,2004,2(2):6-11.
    [96]王兮之,索安宁,洪军,等.黄土高原泾河流域水沙特征分析[J].水土保持学报,2006,20(2):22-25,93.
    [97]韦中兴,蔺生睿.泾河流域水文特征分析[J].水文,1996,(2):52-59.
    [98]孙强,曾维华,沈珍瑶,等.基于地统计学方法的泾河流域降水空间变异规律研究[J].干旱区资源与环境,2004,18(3):47-51.
    [99]陈操操,谢高地,甄霖.泾河流域降雨量变化特征分析[J].资源科学,2007,29(2):172-177.
    [100]沈灿,叶锦昭.世界水文科学与近40年中国地理范畴水文科学的发展[J].中山大学学报, 1996,35(增):1-7.
    [101]刘昌明.21世纪水文学研究展望[C].第六次全国水文学术会议论文集.北京:科学出版社,1997.
    [102]张升堂,拜存有,万三强,等.人类活动的水文效应研究综述[J].水土保持研究,2004,11(3):317-319.
    [103]李怀恩,李越,蔡明,等.河流水质与流域人类活动之间的关系[J].水资源与水工程,2004,15(1):24-28.
    [104]张士锋,贾绍凤,刘昌明,等.黄河源区水循环变化规律及其影响[J].中国科学E,2004,34(A01):117-125.
    [105] Elizabeth K.B., Rober A.B. The global water cycle: geochemistry and environment[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1987.
    [106] Gregory K.J., Walling D.E. Human activity and environmental processes[M]. New York: John Wiley & Sons Ltd,1987.
    [107] Gleick P.H. Climate change, hydrology, and water resources[J]. Review of Geophysics, 1989,7(3):329-344.
    [108] Berna M.A. The climate and hydrological [A]. in: Corell R.W., Anderson P.A. Global Environmental Change, NATO ASI series(Vol.2)[C]. Berlin: Springer-Verlag, 1991,57-81.
    [109] Kite G.W. Simulating Columbia river flows with data from regional-scale climate models [J]. Water Resources Research, 1997, 33(6):1275-1285.
    [110] Arpe K. Simulating of the hydrological cycle over a Europe: Model validation and impacts of increasing greenhouse gases [J]. Advances in Water Resources, 1999, 23(2):105-120.
    [111] Treut H.L. Global hydrological changes associated with a perturbation of the climate system: The role of atmospheric feedbacks, their uncertainty and their validation [J]. Advances in Water Resources, 1999,23(2):121-132.
    [112] William L.G. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts [J]. Water Resources Research, 1999, 35(4):1305-1311.
    [113]施雅风.气候变化对西北华北水资源影响研究[M].济南:山东科学技术出版社,1995.
    [114]冉大川.泾河流域人类活动对地表径流量的影响分析[J].西北水资源与水工程,1998,9(1):32-36.
    [115]刘昌明.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社, 1999.
    [116]徐建华.人类活动对自然环境演变的影响及其定量评估模型[J].兰州大学学报(社会科学版),1995,23(3):144-150.
    [117]王根绪,程国栋.近50a来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3):232-238.
    [118]许炯心.流域人类活动与降水变化对黄河三角洲造陆过程的影响[J].海洋学报,2004,26(3):68-74.
    [119]张翠云,王昭.黑河流域人类活动强度的定量评价[J].地球科学进展,2004,19(增刊):386-390.
    [120]李艳,陈晓宏,王兆礼.人类活动对北江流域径流系列变化的影响初探[J].自然资源学报,2006, 21(6):910-915.
    [121]胡志斌,何兴元,李月辉,等.岷江上游地区人类活动强度及其特征[J].生态学杂志,2007, 26(4):539-543.
    [122]钱学森.论系统工程[M].长沙:湖南科技出版社,1982.
    [123]陈来安,陆军令.系统工程原理与应用[M].北京:学术期刊出版社,1988.
    [124]汪应洛.系统工程(第2版)[M].北京:机械工业出版社,2001.
    [125]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
    [126] (美)Jaw.W福雷斯特.王洪斌译.系统原理[M].北京:清华大学出版社,1986.
    [127]曹鸿兴.系统周界的一般理论—界壳论[M].北京:气象出版社,1997.
    [128]冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社,1991.
    [129]王让会,张慧芝.生态系统耦合的原理与方法[M].乌鲁木齐:新疆人民出版社,2005.
    [130]陈家琦,王浩.水资源学概论[M].北京:中国利电力出版社,1996.
    [131]邱林,谷慧林,胡中兴.水文水资源系统模糊集分析理论及应用[M].郑州:黄河水利出版社,1995.
    [132]叶守泽,夏军.水文系统识别(原理和方法)[M].北京:水利电力出版社,1989.
    [133]霍明远.资源科学的内涵与发展[J].资源科学,1998,20(2):11-16.
    [134]陈家琦.论水资源学和水文学的关系[J].水科学进展,1999,10(3):215-218.
    [135]王浩,王建华,秦大庸,等.现代水资源评价及水资源学学科体系研究[J].地球科学进展,2002,17(1):12-17.
    [136]谭跃进,陈英武,易进先.系统工程原理[M].长沙:国防科技大学出版社,1999.
    [137]许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000.
    [138]徐景航,傅国伟.环境系统工程[M].北京:中国环境科学出版社,1990.
    [139]程建权.城市系统工程[M].武汉:武汉测绘科技大学出版社,1999.
    [140] [日]渡边茂,须贺雅夫著.牛林山,等译.什么是系统工程[M].北京:机械工业出版社,1982.
    [141]冯尚友.水资源持续利用与管理导论[M].北京:科学出版社.2000.
    [142]王慧敏.流域可持续发展系统理论与方法[M].南京:河海大学出版社.2000.
    [143]胡安焱,张学真.浅论水资源学的发展[J].水文水资源,2001,22(2):1-3.
    [144]郑祖国,杨力行,张欣莉.水文水资源系统不确定性问题研究现状与展望[A].宋德敦,金懋高,张世法,等.全国水文计算紧张和展望学术讨论会论文选集[C].南京:河海大学出版社.1998.74-76.
    [145]国涓,唐焕文,孙平.投入产生弹性系数研究[J].辽宁工程技术大学学报,2006,25(5):754-757.
    [146]吴毓壮.我国各地区税收弹性系数差异的实证研究[J].财贸研究,2002,(2):73-78.
    [147]姚俐,江成顺.关于“基本弹性系数函数”的数学阐释[J].数量经济技术经济研究,2005,(5):157-161.
    [148]陈鸿雁.关于供给价格弹性系数变动的几点思考[J].经济技术协作信息,2004,(18):6-6.
    [149]郝卫平,李琼慧,赵一农.我国电力弹性系数的现实意义[J].中国电力,2003,38(5):8-10.
    [150]国家发展改革委宏观经济研究院能源研究所课题组.我国电力消费弹性系数分析[J].宏观经济研究,2004,(1):38-40.
    [151]徐建华.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社,2002.
    [152]谢季坚,邓小炎.现代数学方法选讲[J].北京:高等教育出版社,2003.
    [153]黄登仕,李后强.分形维数与经济弹性-从线性经济学到非线性经济学的一种可能途径[J].数量经济技术经济研究, 1989, (12): 54-56,73.
    [154]周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性Ⅰ.经典Renyi定义法[J].华东理工大学学报,2000,25(1): 85-389.
    [155]王祖林,周荫清.多重分形谱及其计算[J].北京航空航天大学学报, 2000, 26(3): 256-258.
    [156]张金良,李光泉,杨忠直,等.证券市场交易数据序列多重分形分析[J].地质技术经济管理,2002,24(2): 67-70.
    [157]唐依民,肖江,杨喜陶,沈洪远.矿井涌水量时间序列多重分形的局部奇异性研究[J].湘潭矿业学院学报, 2002, 17(1):13-17.
    [158]孙英君,王劲峰,柏延臣.地统计学方法进展研究[J].地球科学进展,2004,19(2):268-273.
    [159]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [160]温广玉,侯锡铭,陈华豪.用地统计学方法内插气象台站资料预报林火发生[J].东北林业大学学报,2002,30(4):19-21.
    [161]林振山.地学建模[M].北京:气象出版社,2003.
    [162]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [163]郝建秀.张掖绿洲及绿洲荒漠过渡带土壤水盐空间异质性研究[D].兰州:西北师范大学,2005.
    [164] Trangmer B.B., Yost R.S., Uehara G. Application of geostatistics to spatial studies of soil properties[J]. Advanced Agronomy, 1985,38:44-94.
    [165]张成才,秦昆,卢艳,等.GIS空间分析理论与方法[M]武汉:武汉大学出版社,2004.
    [166]郭镇维,李建堂.翡翠水库上游集水区水质趋势分析[J].地理学报,2004, (38):111-128.
    [167] Yue S.,et al. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, (259):254-271.
    [168] Douglas E. M. The behavior of floods and low flows in the united states[D]. Tufts University,2002.
    [169]丁晶,刘权授.随机水文学[M].成都科技大学出版社,1997.
    [170]周芬.Kendall检验在水文序列趋势分析中的比较研究[J].人民珠江,2005,(Sup):35-37.
    [171]王建生.水资源可利用量、开发利用潜力与承载能力[A].水资源及水环境承载能力学术研讨会论文集[C].北京:中国水利水电出版社,2002.
    [172]钟华平,王建生,徐澎波,等.地表水资源可利用量计算原则[J].水利水电技术,2004,35(2):9-11.
    [173]储德义.对地表水资源可利用量的几点认识[J].治淮,2007,(7):25-26.
    [174]刘永峰,孙照东,徐志修,等.湟水干流地表水资源可利用量估算方法研究[J].人民黄河,2007,29(5):41-42.
    [175]王建生,钟华平,耿雷华,等.水资源可利用量计算[J].水科学进展,2006,17(4):549-553.
    [176]姚水萍,郭宗楼,任佶,等.地表水资源可利用量计算探讨[J].浙江大学学报(农业与生命科学版),2005,31(4):479-482.
    [177]黄委会黄河上中游管理局.泾河流域水土保持措施减水减沙作用分析[R].甘肃西峰:黄委会西峰水土保持科学试验站,2000,11.
    [178]冉大川.黄河中游水土保持是实现“河床不抬高”的治本之举[EB/OL].水信息网, http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=24360:2001-11-28.
    [179]郑自宽.泾河流域暴雨洪水特性[J].水文,2003,23(5):57-60.
    [180]范立民,岳明,冉广庆.泾河南岸崩岸型滑坡的发育规律[J].中国煤田地质,2004, 16(5):33-35,42.
    [181]索安宁,于波,王天明,等.泾河流域植被景观格局对流域径流的调节作用[J].水土保持学报,2005,19(4):40-43.
    [182]徐建华,牛玉国.水利水保工程对黄河中游多沙粗沙区径流泥沙影响研究[M].郑州:黄河水利出版社,2000.
    [183]谢高地,甄霖,杨丽,等.泾河流域景观稳定性与类型转换机制[J].应用生态学报,2005,16(9):1693-1698.
    [184]郭广猛,杨丽,谢高地.泾河流域近五年来植被变化分析[J].资源科学,2005, 27(4):22-25.
    [185]杨丽,谢高地,甄霖,等.泾河流域土地利用格局的时空变化分析[J].资源科学,2005, 27(4):26-32.
    [186]北京师范大学生态学研究所景观生态与可持续性科学研究中心.泾河流域数据中心[EB/OL]. http://ecology.bnu.edu.cn/gejp/Datacenter/welcome.do.
    [187]王一中.泾河灌区带状种植增产原因分析[J].甘肃农业科技,1990,(7):14-17.
    [188]宋永峰.泾河流域水资源可持续开发利用探讨[J].甘肃水利水电技术,2001,37(2):92-93.
    [189]毛泽泰.平凉地区泾河流域水资源可持续开发探讨[J].西北水资源与水工程,2001, 12(3):63-64.
    [190]梁琴.泾河污染的原因及其治理与管理[J].陕西农业科学,2006,(1):114-116.
    [191]水利部黄河水利委员会.2003年黄河水资源公报[EB/OL]. http://www.cws.net.cn/cwsnet/gazette/huanghe/2003/index.html.
    [192]水利部黄河水利委员会.2004年黄河水资源公报[EB/OL]. http://www.cws.net.cn/cwsnet/gazette/huanghe/2004/index.html.
    [193]毕晓丽.泾河流域生态系统主要问题分析及其退耕还林(草)时空规划[D].北京:北京师范大学,2005.
    [194]王梅,那景坤,王建波.小型蒸发器(E20)代表性和折算系数的分析[J].黑龙江水专学报,2004, 31(2):17-19.
    [195]王永长.E-601B与E-601型蒸发器及20cm2蒸发池观测资料对比分析[J].水文,2005, 25(2):54-55,23.
    [196]任芝花,黎明琴,张纬敏.小型蒸发器对E-601B蒸发器的折算系数[J].应用气象学报,2002, 14(4):508-512.
    [197]曾茂林,孙赞盈.泾河流域水沙变化分析研究[A].汪岗,范昭.黄河水沙变化研究(第一卷下册)[C].郑州:黄河水利出版社,2002:824-838.
    [198]于一鸣.黄河中游多沙粗沙区水土保持减水减沙效益及水沙变化趋势研究报告[R].黄河流域水土保持科研基金第四攻关课题组,1993.
    [199]张建云,王国庆.气候变化对水文水资源的影响研究[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700