用户名: 密码: 验证码:
高含碳金属化球团的制备及理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先介绍了高含碳金属化球团的用途和制备方法。含碳球团在高温下可以发生自还原产生金属铁。它可以用于高炉炼铁、电弧炉炼钢、也可以用来处理工业废水。本研究中,高含碳金属化球团主要用来处理焦化废水。
     论文主要研究了三种高含碳金属化球团,即普通高含碳金属化球团、球心、球壳采用不同配比的高含碳金属化球团和硅藻土系多孔高含碳金属化球团。研究表明,高含碳金属化球团处理焦化废水的效果比铁屑和废钢要强,但是强度还有待于提高。
     普通高含碳金属化球团的原料主要有铁精粉、煤粉、添加剂1、添加剂2和添加剂3。由于添加剂3价格低廉,所以本研究主要靠增加添加剂3的配比来提高球团的强度。采用圆盘造球机造球,将添加剂3配比为5%、10%、15%和20%的生球在还原竖炉内分别以1050℃、1100℃、1150℃和1200℃四个温度水平进行焙烧,结果表明添加剂3配比为20%、焙烧温度为1200℃时球团强度最高,且处理废水的能力也较强。
     通过IM6e电化学工作站对该球团电化学性质进行研究,以唐钢焦化厂的焦化废水作为研究对象,对不同配比、烧结温度及反应时间的高含碳金属化球团的腐蚀电位和腐蚀电流密度进行了比较,通过实验得出最佳烧结温度为1200℃、最佳反应时间为90min和最佳铁碳摩尔比为1:2。
     为了进一步提高高含碳金属化球团的强度和处理废水的效果,本实验还制备了球心和球壳采用不同配比的高含碳金属化球团及硅藻土系多孔高含碳金属化球团,并对其强度性质和化学性质进行了研究。结果表明,在球壳中添加10%~20%的硅藻土时整个球团的处理废水的效果好,强度高。
     实验结果表明,使用这种改进的高含碳金属化球团处理焦化废水已取得良好的效果,它具有使用寿命长,材料的来源比较广、成本低廉、操作简单,易于实现自动化等诸多优点。为我们的研究提供了现实意义。
The usage and preparation of high carbon-bearing pellets are firstly introduced in this article. Under the condition of high temperature, iron can be reduced from the high carbon-bearing pellets. This kind of pellets can not only be used to make iron in blast furnace, make steel in the electric-arc furnace, but also treat waste water discharged by the coke-oven plant. In this research, high carbon-bearing pellets are mainly used in treating waste water.
     Three kinds of pellets are mainly studied in this research, they are common high carbon-bearing pellets, different center and cover high carbon-bearing pellets and porous diatomite high carbon-bearing pellets. The research shows that result of high carbon-bearing pellets in dealing with waste water is better than both iron and scrap. However, the strength of the pellets needs to be improved.
     The raw materials of common pellets include iron ore powder, breeze, addition1, addition2 and addition3. Because of the low price of the addition3, this experiment depends on the high content of addition3 to improve the strength. Pellets are produced in disk pelletizer and they are roasted under the temperature of 1050℃、1100℃、1150℃and 1200℃respectively. The result shows that pellets that containing 20% addition3 and roasted under the temperature of 1200℃have higher strength and treating ability than other pellets.
     The electrochemical properties are studied by IM6e electrochemical workstation, taking the waste water from Tang Steel Coke plant as subject. Corrosion potential and current of different ratio, roasting temperature and reaction time have been compared. Results show that the best roasting temperature, reaction time and iron-carbon ratio are 1200℃, 90min and 1:2 respectively.
     In order to make a further improvement of the pellets’strength and treating ability, pellets with different center and cover and porous diatomite are also been studied. Results show that porous diatomite pellets containing 10%~20% diatomite have better strength and treating ability.
     The results of experiment show that treating ability of these improved high carbon-bearing pellets is very satisfying. It possesses the advantages as follows: long life, widely achieved row material, low cost and easy automation. So it has a real significance to our study.
引文
[1]徐萌,赵志星,张建良,等.含碳球团的还原熔分行为[J].钢铁研究学报,2007,19(10):11-15.
    [2]储满生,艾名星,沈峰满,等.高炉使用热压含碳球团操作的数学模拟研究[J].钢铁研究,2007,35(1):12~17.
    [3]汪琦.铁矿含碳球团技术[M].北京:冶金工业出版社,2005:1-2.
    [4]王东彦,陈伟庆,周荣章,等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J].北京科技大学学报,1997,19(2):130-133
    [5]郭兴忠.锌铅分离的理论及应用研究[D].重庆:重庆大学,2002:35-36.
    [6] LEPMSKT J A, GRISCON F N. Producing direct reduced iron utilizing rotary hearth furnace[J]. Industrial Heating, 1994(1)28-31.
    [7] JOHN O E, JOACHIM V S. Sponge iron and iron carbide: competitive raw materials for high-quality steelmaking[J]. Scandiavian Journal of Metallurgical, 1997,26(2):196-205.
    [8] MONTANA R, JORAN D, FANTOZZI G. Ceramin foams by powder processing[J]. Journal of The European Ceramic Society, 1998(18):1339-1350.
    [9] B SARMA, R J FRUEHAN. A review of coal-based direct ironmaking process[C]. Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998: 1537-1548.
    [10] HIRSCHFEL D A, LITK, LIUDM. Processing of porous oxide ceramic[J]. Key Engineering Materials, 1996(10):64-82.
    [11]杨军太.柱塞式压块压块成型理论分析与试验研究[J].农机学报,1995,26(3):51-56.
    [12]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990:10-15.
    [13]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1985:48-54.
    [14]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,1994:42-46.
    [15]张亚平.光Fenton反应的Ce-Fe/Al2O3催化剂制备及性能表征[J].中国环境科学,2006,26(3):320-323.
    [16]宋蔚,王艳.焦化废水处理技术研究进展[J].天津理工学院学报,2001,17(4):97-99.
    [17]王景,张志杰,孙先铎,等.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态,2000,13(6):42-44.
    [18]肖羽堂.铁屑强化传统工艺难降解印染废水实践[J].给水排水,1998,24(4):37-39.
    [19]罗凡,叶南圣,吴峰,等.还原铁粉/紫外光体系对活性艳红X-3B溶液的脱色[J].环境污染与防治,1999,21(5):1-4.
    [20]张一敏.球团理论与工艺[M].北京:冶金工业出版社,2004:207-210.
    [21]姜钧谱,崔萍.国内外废钢供求分析与对策[J].冶金工业信息标准,2004(1):12-13.
    [22]王建明.电弧炉使用海绵铁炼钢的实践[J].四川冶金,2003(2):21-23.
    [23]王芳.铁碳内电解法对焦化废水的处理研究[D].太原:太原理工大学,2005:2-3.
    [24]张景来.冶金工业污水处理技术及工程实例[M].北京:化学工业出版社,2003:55-56.
    [25]曾德芳,袁继祖.一种新型环保性污泥脱水絮凝剂的研制与应用[J].工业水处理,2007,27(1):17-20.
    [26]陈敏,许韵华,晋丽叶,等.非均相类fenton试剂处理焦化废水的研究[J].现代化工,2006,26(2):15-16.
    [27] PHILIPP C. Homogeneous of phenols in aqueous so; ution with hydrogen peroxide and ferric ions[J]. Wat Sci Tech.1997,36(3):151-154.
    [28] QIAN Y. Efficency of pre-treatment methods in the activated sludge removal of refractory[J]. Compounds in Coke-Plant Wastewater Wat Res, 1994, 28(3):701-707.
    [29] SZAFRAN M, WISNIEWSKI P. Effect of the bonding ceramic material on the size of pores in porous ceramic material[J]. Colloids and Surfaces, 2001(17):201-208.
    [30] CHARLES J, LSBEE. Update on electric arc furance dust tteatment[J]. Iron and Steel Engineer, 1992, 69(5):48-50.
    [31] DARLENE, M. Electric arc furance dust treatment symposium[J]. Iron and Steel Engineer, 1994,7(3):52.
    [32] SHCHUKIN Y P, SEDINKIN, POLUSHKIN M E. Removal of blast furnace sludge with high zinc content from recycing[J]. Steel in Translation, 1999,29(11):6-8.
    [33] FRUEHAN R J. Slag foaming in electric furnace steelmaking[J]. Iron and Steel Maker, 1989,16(8):55-60.
    [34] ITOK, FRUEHAN R J. Foaming of molten silicates[J]. Metall Trans, 1989,20(4):509-514.
    [35]周渝生.非高炉炼铁工艺的现状和发展方向[J].世界钢铁,1997(2):1-11.
    [36]杜挺,邓开文.钢铁冶炼新工艺[M].北京:北京大学出版社,1994:52-57.
    [37]牟慧妍.周渝生.洁净钢生产工艺的现状[J].钢铁,1997,32(6):70-74.
    [38]欧阳玉祝,王继微.铁屑床处理工业废水的研究动态和应用前景[J].吉首大学学报,2001,22(2):67-70.
    [39] JOHN O E, JOACHIM V S. Sponge iron and iron carbide: competitive raw materials for high-quality steelmaking[J].Scandiavian Journal of Metallurgical, 1997,26(2):196-205.
    [40] SARMA B, FRUEHAN R J. A review of coal-based direct ironmaking processes[C]. Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998(57): 1537-1548.
    [41] HOFFMAN G E, HAUADA T. A status report on the Fastmet process from the Kakogowa demonstration plant[J]. Ironmaking and Steelmaking, 1997(5):51-53.
    [42] BORLEE J, DIDIER S, MUNNIX R. Scale-up of the Comet direct reduction process[J]. Iron and Steel Society Technical Paper, 1997(9):24-28.
    [43] LEHTIINEN L. Iron dynamics process: a new way to make iron[J]. Iron and Steel Technology, 1999(12):37-39.
    [44]杨天钧,刘述临.熔融还原技术[M].北京:冶金工业出版社,1991:26-32.
    [45]杨天均.熔融还原[M].北京:冶金工业出版社,1998:147-150.
    [46]汪琦.铁矿含碳球团技术[M].北京:冶金工业出版社,2005:45-58.
    [47]丁惠芳.饮用水处理技术发展[J].环境保护,1999(5):13-15.
    [48]宋秀杰.北京市地下水污染的现状及对策[J].环境保护,1999(11):44-47.
    [49]周本省.工业水处理技术[M].北京:化学工业出版社,1996:101-105.
    [50]李咏梅.多环芳烃在天然水体中的自净机理研究[J].中国环境科学,1997,17(3):208-211.
    [51] SIANTER D P. Interaction between Organic and Inorganic Pollutants in the Clay Interlayer[J]. Clays and Clay Minerals, 1994,42(2):187.
    [52] SEYFETTINOGLU M A. Treatment of Industrial Waste Water Containing Various Chemical Matters[J]. Waste Manage Energy Minerals, 1998,(5):679-682.
    [53]吴铿,齐渊洪.含碳球团的还原性和还原冷却后的强度[J].北京科技大学学报,2000,22(2):101-104.
    [54]陈津,刘浏.竖炉型含碳球团有机粘结剂的选择与应用[J].烧结球团,2000,25(6):29.
    [55]段东平,万天骥,任大宁.利用普通品位铁矿的煤基直接还原新工艺研究[J].钢铁,2001,36(8):7-11.
    [56] ZHANG Y, FRUEHAN R J. Effect of the Bubble Size and Chemical Reactions on Slag Foaming[J]. Metall Trans, 1995,26(B):803-812.
    [57] WU K, QIAN W. Behavior of Slag Foaming Caused by Blowing Gas in Molten Slags[J]. ISIJ International, 2000,40(10):954-957.
    [58] TINA D B, LENA S. One way of treating by-products at SSAB[C] Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998(5):1263-1273.
    [59] LANDOW M P, TOROK J F, BARNET T P, et al. An overview of steel mill waste oxide recycling by cold bonded roll briquetting[J]. Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998,1237-1243.
    [60] SHCHUKIN Y P, SEDINKIN V I, POLUSHKIN M E. Removal of blast furnace sludge with high Zinc content from recycling[J]. Steel in Translation ,1999,29(11):6-8.
    [61]罗世永,张家芸.固/固反应动力学预测系统[J].中国稀土学报,2000(3):198-201.
    [62]马兴亚.含碳球团还原技术研究现状[J].烧结球团,1999,5(24):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700