用户名: 密码: 验证码:
高功率超短脉冲钛宝石激光光束控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率超短脉冲激光技术自二十世纪八十年代中期以来得到了飞速地发展,世界科技大国已相继建立了数台大型的高功率超短脉冲钛宝石激光装置,提高靶面峰值功率密度始终是追求的目标之一。本论文依托于中国工程物理研究院激光聚变研究中心研制的SILEX-Ⅰ超强超短脉冲钛宝石激光装置,为解决影响靶面功率密度的两大主要因素:压缩脉冲质量和聚焦光束质量,而展开研究工作的。
     论文采用数值模拟为主要技术手段,结合实验研究,探讨光谱增益窄化补偿以及色散控制方面的若干问题,同时对高功率超短脉冲的远场描述方法以及大口径离轴抛物镜聚焦的时空耦合特性进行了研究。论文主要工作包括以下几个部分:
     1、阐述了超强超短脉冲的需求背景以及发展现状,分析了超强超短脉冲激光光束控制中的科学技术问题,如光束空间质量控制、光束时间质量控制、光谱增益窄化补偿以及色散控制等问题,同时对相应的控制方法进行了较为详细的调研分析。
     2、概括性地介绍了中国工程物理研究院激光聚变研究中心研制的SILEX-Ⅰ超强超短脉冲钛宝石激光装置,并对其中涉及的一些科学问题和关键技术,如增益窄化、光束脉冲质量、光束空间质量、啁啾脉冲的传输放大技术、大口径晶体横向ASE、光栅压缩的时空耦合、超短脉冲聚焦等进行了分析和讨论。
     3、研究分析了可编程声光色散滤波器在SILEX-Ⅰ超强超短脉冲激光装置中实现光谱整形与控制的成功应用,对其工作原理、光谱补偿调制函数的设计以及实验结果进行了阐述和讨论。设计了一种与高功率超短脉冲激光放大过程中获得的总增益、增益介质的带宽、激光带宽、脉冲中心波长等参数相关的光谱调制函数,通过将放大前的注入脉冲进行调制,可以很好地补偿放大过程中的增益窄化。并利用声光光谱可编程色散滤波器,实现了对脉冲光谱振幅和位相的主动控制,削弱了增益窄化效应对光谱的影响,并最终获得更窄的变换极限的压缩脉宽。
     4、较为系统地、详细地对展宽压缩系统的各阶色散特性进行了理论研究。在啁啾脉冲放大激光系统中,展宽器和压缩器是非常关键的单元技术,其色散的大小和匹配程度最终将决定整个系统压缩脉冲的脉宽和信噪比。通过对前人工作的不足之处进行分析和改进,重新推导了更为完善的各阶色散解析式。通过解析方法和光线追迹的方法,以实现高功率超短脉冲激光系统的优化设计为目的,更加系统、完善地对两类比较常用的展宽压缩系统的各阶色散进行了理论研究与分析,得到了一些可供参考的有价值的结论。
     5.研究分析了初始啁啾以及展宽器高阶色散对展宽脉冲的影响,并指出了展宽器压缩器在二阶色散完全补偿的情况下,要补偿高阶色散二者入射角之间需要满足的关系。研究分析了啁啾脉冲放大系统中展宽压缩系统在不同条件、不同匹配方式下的
Over the past ten years, high-power ultra-short pulse Ti: sapphire laser technologies based on chirped pulse amplification(CPA) have been rapidly developed and a number of large facilities have been built, increasing peak power density is always pursued aim for scientists. This dissertation was based on the SILEX-I (Super Intense Laser for Experiment on the Extremes) ultra-intense ultra-short pulse Ti:sapphire laser built at Research Center of Laser Fusion, CAEP. Two major factors affecting peak power density, compressed pulse quality and focused spot quality, were studied, respectively.Using numerical simulation and experimental methods, spectral properties such as spectral gain narrowing and dispersive control were mostly studied. The far-field description methods of high power ultra-short pulse lasers and the spatio-temporal characteristic of lager-aperture off-axis parabolic focusing systems were also studied. The main research topics included:1. The development, application and general status of ultra-high ultra-short pulse laser systems were summarized in this thesis, the key scientific and technological points in beam control of ultra-short pulse lasers, such as spatial quality, temporal quality, spectral gain narrowing compensation and dispersive control, et al. were analyzed, and the corresponding beam control techniques were elaborated.2. The SILEX-I ultra-intense ultra-short pulse Ti:sapphire laser was briefly depicted. Besides, the key techniques in this facility, such as gain narrowing, spatial quality, temporal quality, propagation of chirped pulse, ASE in lager-aperture crystal, spatio-temporal characteristics in grating compression and the focus of ultra-short pulse were analyzed and discussed.3. Theoretical analysis and experimental study of active spectrum control were completed. The gain of the regeneration amplifier in CPA system is higher than 106, gain-narrowing effects are generally produced when laser propagates through the gain medium in the regeneration amplifier, leading to a broadened pulse duration after compressed. With the active spectrum control, the compressed pulse of near the transform limit can be obtained. Among the controlling ways, acoustic-optic programming dispersive filter(AOPDF) can be used to fulfill the gain spectral amplitude and phase shaping, and decrease the gain-narrowing effects.4. Dispersive characteristics of stretcher and compressor were studied more systematically and detailedly. In a chirped pulse amplification system, the stretcher and the
    compressor are the key components, the dispersive of the stretcher and the compressor and the matching degree of dispersive will determinate the pulse width and the signal-to-noise ratio of the pulse after compressed. Based on the research of some scientists, dispersive formulas were deduced renewedly and detailedly, and by ray tracing methods, validity of the formula was testified. Using ray tracing method and formula method, the stretcher models with a folded telescope and Offner triplet were studied in detail to optimize the high power ultra-short pulse laser system.5. The influence of initial chirp and high order dispersive on the stretched pulses were analyzed. It indicated that the incident angle of compressor must be larger than the incident angle of the stretcher to compensate high-order dispersive in CPA systems. The influence of residual dispersive on compressed pulse under different conditions and different matching modes were studied in detail. Optimum methods and dispersive compensation techniques were studied too, it showed that mixed dispersive compensation methods could get Fourier transform limited pulses. Finally, experiments about pulse compressions in SILEX-I laser were carried out. To ensure a good alignment of the compressor gratings a diagnostic device was suggested with simultaneous monitoring both temporal and spatial behaviors.6. Using statistical method and numerical simulation, the far-field description methods of high power ultra-short pulse lasers were established. The research results point out that FWHM of focus cannot be simply used to give the peak power density. Strehl ratio or the encircled energy within FWHM are more appropriate.7. The spatio-temporal characteristics of lager aperture OAP focus in high-power ultra-short pulse laser system were studied carefully. From simulations, It concluded that OAPs not only determine the focal spot as a focal element, but also affect the temporal property. Mislignments of OAP could lead to elongated pulse durations, and thus decrease the power density.
引文
1 Tajima T, Mourou G A. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Physical Review Special Topics-Accelerators and Beams, 2002; 5(031301): 1~9.
    2 Mourou G A, Barry C P, and Perry M. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop[J]. Physics Today, 1998; 51 (1):22~28.
    3 Strickland D, Mourou G A. Compression of amplified chirped optical pulses[J]. Opt. Comm., 1985; 56:219-222.
    4 侯洵.超短脉冲激光及其应用[J].空军工程大学学报,2000;1(1):1~5.
    5 Perry M D. The amazing power of the Petwatt[J]. Science & Technology Review, 2000; 4.
    6 Heller A. JanUSP opens new world of physics research[J]. Science & Technology Review, 2000; 25.
    7 彭翰生.高功率超短脉冲激光与新奇物理现象[J].强激光与粒子束,2000;12:386~391.
    8 Kmetec J D. Ultrafast laser generation of hard x-rays[J]. IEEE, J. Quantum Electron, 1992; QE. 28: 2382~2387.
    9 Jiang Z, Kieffer J C, Matte J P, et al. X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 10~(18)-10~(19)W/cm~2[J]. Phys. Plasma, 1995; 2:1702~1711.
    10 Workman J, Maksimchuk A, Liu X, et al. Control of bright picosecond X-ray emission from intense subpicosecond laser-plasma interactions[J]. Phys. Rev. Lett., 1995; 75:2324~2327.
    11 Pellrtier J F, Chaker M, Kieffer J C. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source[J]. Opt. Lett., 1996; 21:1040~1042.
    12 Macklin J J, Kmetec J D, Gordon Ⅲ C L. Higher order harmonic generation using intense femtosecond pulses[J]. Phys. Rev. Lett., 1993; 70:766~769.
    13 Sekikawa T, Ohno T, Yamazaki, et al. Pulse compression of a high-order harmonic by compensating the atomic dipole phase[J]. Phys. Rev. Lett., 1999; 83:2564~2567.
    14 D. Von der Linde. Generation of high order optical harmonics from solid surfaces[J]. Appl. Phys. B, 1999; 68:315~319.
    15 Nakajima K, Fisher D, Kawakubo T, et al. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse[J]. Phys. Rev. Lett., 1995; 74:4428~4431.
    16 Modena A, Najmudin Z, Dangor A E, et al. Electron acceleration from the breaking of relativistic plasma waves[J]. Nature, 1995; 377:606~608.
    17 Wagner R, Chen S-Y, Maksimchuk A, et al. Electron acceleration by a laser wakefield in a relativistically self-guided channel[J]. Phys. Rev. Lett., 1997; 78:3125~3128.
    18 夏勇,刘建胜,倪国权等.飞秒强激光脉冲与H原子团簇相互作用的库仑爆炸过程模拟[J].中国激光,2004;31(8):92-926
    19 http://www.sc.doe.gov/production/henp/np/program/docs/HEDP_Report.pdf.
    20 Takable H. Laboratory astrophysics with intense and ultra-intense lasers[A]. AIP Conference Proceedings of the international Conference on Superstrong Fields in Plasmas[C]. 1996; 3:560~570.
    21 Max T, James H, Micheal E G, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys. Plasmas, May 1994; 1:1626~1634.
    22 Deutsch C, Furukawa H, Mima K, et al. Interaction physics of the fast ignitor concept[J.]. Phys. Rev. Lett., 1996; 77:2483~2486.
    23 Gordon Ⅲ G L, Yin G Y. Opt. Lett, 1995; 20(10):1056~1058.
    24 魏晓峰,超高峰值功率激光脉冲产生及控制技术研究[D].博士学位论文.黑龙江:哈尔滨工业大学,2004.
    25 Pennington D M, Perry M D. The Petawatt Laser System[R], UCRL-JC-124492, March, 1997.
    26 Perry M D, Stuart B C, Pennington D, et al. The Production of Petawatt Laser Pulses[R]. UCRL-JC-129760, February, 1998.
    27 Aoyama M, Yamakawa K, Akahane Y, et al. 0.85-PW, 33-fs Ti:sapphire laser[J]. Opt. Lett. 2003; 28: 1594~1596.
    28 W.Koechner著,孙文等译,固体激光工程[M].第五版,北京:科学出版社,2002.
    29 Perry M D. Crossing the petawatt threshold[J]. Science & Technology Review, 1996, 4.
    30 Kitagawa Y, et at. GEKKO Ⅻ petawatt module project[J]. Annual Progress Report, 1998, 17.
    31 Yamanaka T, et al. Current status of direct drive laser fusion research at ILE Osaka University[A]. ⅩⅩⅥ European conference on laser International with Matter[C], 2000; 12~16.
    32 Kitagawa Y, Sentoku Y, Akamatsu S, et al. Progress of fast ignitor studies and Petawatt laser construction at Osaka University[J]. Phys. Plasmas, 2002; 9(5): 2202.
    33 http://www.iop.org/EJ/article/0029-5515/44/12/S02/nf4_12_S02.pdf.
    34 Danson C N, Needy N, Wyborn B E. Focused intensities of 10~(20)W/cm~2 with the upgraded Vulcan CPA interaction facility[A]. Proceedings of SPIE[C]. 1998; 3492:82.
    35 Danson C N, Needy N, Wyborn B E. Vulcan Petawatt Upgrade Overview[J], Laser Science and Development-Vulcan Petawatt, Central Laser Facility Annual Report, 2002/2003:167.
    36 Hawkes S, Brummitt PA, Clark R J, et at. Vulcan Petawatt design and operation[J], Laser Science and Development-Vulcan Petawatt, Central Laser Facility Annual Report, 2002/2003,1.
    37 Zhou J P, et al. The LULI 100-TW Ti:Sapphire/Nd:glass laser: a first step towards a high performance petwatt facility[A], Proceedings of SPIE[C], 1998,3492:94~97.
    38 Blanchot N, et al. Sub-100TW Pulses generation with optical intensities in excess of 10~(19)W/cm~2[A], Proceedings of SPIE[C], 1995,2633:310~315.
    39 http://omegaep.lle.rochester.edu/110_overview/111_description/index.html.
    40 Roth M, et al. PHELIX-a petawatt high-energy laser for heavy-ion experiments[A]. ⅩⅩⅥ European Conference on Laser Interaction with Matter[C], 2000, 12~16.
    41 Gachter B F, Koningstein J A. Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+[J]. The Journal of Chemical Physics, 1974; 60(5):2003~2006.
    42 Barty C P J, Gordon Ⅲ G L, Lemoff B E. Multiterawatt 30-fs Ti:sapphire laser system[J]. Opt.Lett, 1994; 19(18):1442~1444.
    43 Zhou J, Huang C P, Murnane M M, et al.[J]. Opt.Lett, 1995; 20(1):64~66.
    44 Batty C P J, Guo T, Blanc c L, et al. Generation of 18-fs, multiterwatt pulses by regenerative pulse shaping and chirped-pulse amplification[J]. Opt.Lett, 1996; 21(8):668~670.
    45 Bonlie J D, Patterson, Price D, et al. Production of>10~(21)W/cm~2 from a large-aperture Ti:sapphore laser system[J]. App.Phy.B, 2000; S155~159
    46 Yamakawa K, Aoyama M, Barty C P J, et al. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rato with efficient Ti:sapphire amplifiers[J]. Opt. Lett., 1998; 23(7):525~527.
    47 Yamakawa K, Aoyama M, S.Matsuoka, etal. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate[J]. Opt. Lett.. 1998, 23:1468-1470.
    48 Yamakawa K, Aoyama M, Akahane Y, Ma J L. Generation of 0.55-PW, 33-fs Laser pulse from a Ti:sapphire Laser system[J]. The Rewiew of Laser engineering, 2002; 30(12):747~748.
    49 徐冰,周建平,王益民等.自启动、长时间稳定、低功率泵浦的超短脉冲掺钛蓝宝石激光器[J].光学学报,1996;16(7):1023~1024
    50 徐至展,杨晓东,Vigroux L,et al.5.4TW/46fs级台式钛宝石超短超强激光系统[J].中国科学(A),2000;30(1):63~69.
    51 Yang, Xiaodong; Xu, Zhi-Zhan; Leng, Yu-Xin, et al. Multiterawatt laser system based on optical parametric chirped pulse amplification[J]. Opt.Lett., 2002; 27(13):1135~1137
    52 魏志义,张杰,夏江帆等,高效率掺钛蓝宝石激光装置(极光Ⅰ号)[J].物理,2000;29(6):321~322.
    53 王勇.自启动飞秒太瓦级激光放大系统的研究.博士学位论文.天津:天津大学,2000.
    54 黄小军,彭翰生,魏晓峰等.20TW超短脉冲激光装置研制[J].强激光与粒子束,2003;15:1191~1194.
    55 黄小军,彭翰生,魏晓峰等.百太瓦级钛宝石超短脉冲激光装置[A].激光聚变研究中心第二届青年科技学术交流会论文集[C],2004,150~154.
    56 文国军,钱列加,丘悦等,利用波纹光阑和空间滤波器改善光束近场分布[J].中国激光,1995:22(6):435~438.
    57 姚裕贵,徐世祥,孟绍贤等,利用锯齿光阑获得超高斯型光束[J].光学学报,1995;5(7):931~934.
    58 陈怀新,隋展,陈祯培等,采用液晶空间光调制器进行激光光束的空间整形[J].光学学报,2001; 21(9):1107~1111.
    59 阎吉祥,液晶空间光调制器在自适应光学中的应用[J].光学技术,1999;2:3~5.
    60 Baumhacker H, Pretzler G, Witte K J, et al. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser[J]. Opt. Lett. 2002; 27(17): 1570~1572.
    61 赵尚弘,王屹山,陈国夫等.钛宝石超短脉冲放大过程中的增益窄化效应,光子学报,1997,26:197~200.
    62 李传东,张正泉,徐至展,增益饱和在啁啾脉冲放大中的影响[J].光学学报,1996;16(3):299~304.
    63 卢兴强,范滇元.增益饱和在整形放大啁啾脉冲中的作用[J].光学学报,2002;22(12):1433-1437
    64 Backus S, Durfee Ⅲ C.G., Mumane M M, et al, High power ultrafast lasers[J], Review of scientific instruments, 1998; 69(3): 1207~1223.
    65 Perry M D and Shore B W. Petawatt Laser Report[J],1996; UCRL-ID-124933.
    66 曹东茂,魏志义,腾浩,等.整形种子脉冲克服放大过程中增益窄化效应的研究[J].物理学报,2000;49(6):1202~1205.
    67 贺晓旭,白晋涛,侯洵.高斯型光谱设计在飞秒激光放大器中消除增益窄化效应的研究[J].光子学报,2003;30(8):958~960.
    68 Verluise F, Laude V, Cheng Z, et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping[J]. Opt.Lett., 2000; 25(8):575~577.
    69 http://www.nsu.ru/srd/lls/english/amet-bft.htm.
    70 Chambaret J P, Blanc C L, Cheriaux G, et al. Generation of 25-TW, 32-fs pulses at 10 Hz[J]. Opt. Lett., 1996; 21:1921~1923.
    71 蓝信钜,激光技术,科学出版社,2001.
    72 郁道银,谈恒英,工程光学,机械工业出版社,1999.
    73 Tournois P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Opt. Comm., 1997; 140: 245~247.
    74 Verluise F, Laude V, Huignard J, et al. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves[J]. J. Opt. Soc. Am. B, 2000; 17:138.
    75 Verluise F, Laude V, Cheng Z, et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping[J]. Opt. Lett., 2000; 25:575-577.
    76 R.L. Fork, O.E.Martinez, and J. P. Gordon. Negative dispersion using pairs of prisms. Opt. Lett., 1984, 9:150-153
    77 E.B. Treaty. Optical pulse compression with diffraction grating[J]. IEEE J. Quantum Electron., 1969; qE5(9):454~458
    78 Steinmeyer G, Sutter D H, Gallmann L, et al. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics[J]. Science, 1999; 286:1507-1512
    79 张志刚,徐敏。啁啾反射镜及其在fs脉冲固体激光器中的应用[J].光电子·激光,1999;10(3):287~290
    80 David Miller, Jim Harris, David Miller, Jim Harris, Olav Solgaard Olav Solgaard, Optical Interconnect: The Next Generation ptical Interconnect: The Next Generation-Devices Devices
    81 Solgaard.O, Yu k. Varlable Bandwidth Optical Filter and Tunable Optical CDMA Encoder/Decoder based on MEMS Gires-Tournois Interferometer[A].SPRC annual meeting[C], 2003
    82 Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of scientific instruments, 2000; 71(5): 1929-1960
    83 Witte T, Zeidler D, Proch D, et al. Programmable amplitude-and phase-modulated femtosecond laser pulses in the mid-infrared[J]. Opt. Lett., 2002; 27(2): 131~133
    84 Efimovl A, Mooresl M D, Meil B, et al. Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning[J]. Appl.Phys.B., 2000; s133~s134
    85 Nabekawa Y, Shimizu Y, and Midorikawa K. Development of an ultrabroad-band regenerative amplifyier with a mirrorless cavity and generation of sub-20fs pilses in tetawatt regime with an adaptive phase controller[J]. Riken Rev., 2002; 49:3~6
    86 Zeek E, Maginnis K, S.Backus, etal. Pulse compression using deformable mirrors[J]. Opt.Lett.,1999; 24:493~495.
    87 Weiner A M, Leaird D E,Reitze D H, et al. Optical pulse shaping using a Fourier transform hologram[J]. Jpn. J. Appl. Phys., 1990; 2:631~634
    88 Ferman M E, Silvp V.da, Smith D A, et al. Shaping of ultrashort optical pulses by using an intergrated acoustic-optic tunable filter[J]. Opt.Lett., 1993; 18:1505~1507
    89 Cheriaux G, Rousseau P, Salin F. Aberration-free stretcher design for ultrashort-pulse amplification[J]. Opt. lett., 1996; 21:414-416
    90 http://www.fastlite.com/public/Dazzler
    91 Oksenhendler T, Monmayrant A, Herzog R, et al. Time-domain interferometry for direct electric-field reconstrunction by use of an acousto-optic programmable dispersive filter[C]. ⅩⅢ conference on ultrafast phenomena[A].2002
    92 Ptiiman M, Ferre S, Rousseau J P, et al. Desigh and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system[J]. Appl.Phys.B., 2002; 74:529~535
    93 D.Kaplan & P.Tournois. Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping[J]., J. Phys. Ⅳ France 2002, 12, Pr5~69/75
    94 Chuang Y.-H., Zheng L., and Meyerhofer D.D., Propagation of light pulses in a chirped-pulse amplification laser[J]. IEEE J. Quantum. Electron. 1993, 29(1): 270~280
    95 Matsuoka S and Yamakawa K., Development of a model for chirped-pulse amplification of sub-20fs laser pulses[J]. Jpn. J. App. Phys. 1998, 37:5997~6000
    96 Gogoleva N. G. and Gorbunov V. A.. Modelling of chirped pulse amplification laser[J]. SPIE, 1996, 2770:23~30
    97 卢兴强,范滇元,钱列加.高功率钛宝石激光放大器理论研究[J].光学学报,2002,22(9):1059~1062
    98 卢兴强,钱列加,范滇元.啁啾脉冲激光放大器输出光束时间特性的理论和数值模拟[J].中国激光,2002,29(10):882~884
    99 楚晓亮,张彬.超短脉冲在放大介质中传输特性研究[J].光子学报,2004;33(6):641~644
    100 杨建军,侯洵.啁啾脉冲激光放大的数值分析[J].强激光与粒子束,1999;11(2):165~171
    101 赵尚弘,王屹山,陈国夫等.钛宝石超短脉冲放大过程中的增益窄化效应[J].光子学报,1997;26:107~200
    102 Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. Appl. Phys., 1963; 34: 2346~2349
    103 杨建军,孙艳玲,阮双琛等。啁啾脉冲放大系统中光栅展宽器的性能与实验研究[J].光学学报,1998;18:457~461
    104 王勇,自启动飞秒太瓦激光放大系统的研究[D].博士学位论文,天津:天津大学精密仪器与光电子工程学院,2000
    105 Z.Zhang, T.Yagi, and T.Arisawa. Ray-tracing model for stretcher dispersion calculation[J]. Appl.Opt., 1997; 36:3393~3399
    106 张志刚,孙虹.飞秒脉冲放大器中色散的计算和评价方法[J].物理学报,2001;50:1080~1086
    107 J.Jiang, Z.Zhang and T.Hasama. Evaluation of Chirped-Pulse-Amplification Systems with Offner Triplet Telescope Stretchers[J]. J.Opt.Soc.Am.B, 2002; 19:678~683
    108 Martinez O E, Gordon J P, Fork R L. Negative group-velocity dispersion using refraction[J]. Opt.Soc.AM.A., 1984; 1:1003~1008
    109 Lemoff B E, Barty C P J. Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses[J]. Opt.Lett., 1993; 18:1651~1653
    110 Martinez O E. 3000 times grating compressor with positie group velocity dispersion: application to fiber compensation in 1.3-1.6μm region[J]. IEEE J. Quantum Electron, 1987; 23:59~62
    111 黄圣鸿,掺钛蓝宝石飞秒激光放大系统的理论与实验研究[D].硕士学位论文,西安:西北大学,2002
    112 孙振红,柴路,张志刚等。马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿[J].物理学报,2005;54(2):777~781
    113 Bahk S, Rousseau P, Planchon T., et al. Generation and characterization of the highest laser intensities (10~(22)W/cm~2). http://www.eecs.umich.edu/CUOS/research/index.html
    114 Baumhacker H, Pretzler G, Witte KJ, et al. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser[J]. Opt.Lett., 2002; 27:1570-1573
    115 苏毅,万敏。高能激光系统[M].北京:国防工业出版社,2004.
    116 吕百达。激光光学—激光束的传输变换和光束质量控制[M].成都:四川大学出版社,1992
    117 Noll R J. Zernike polynomials and atmospheric tubulence[J]. J.O.S.A, 1976; 66(3):207~211
    118 J.K.Lawson, J.M.Auerbach, etc, NIF Optical Specifications-The Importance of the RMS Gradient[J]. UCRL-JC-130032, July 6, 1998
    119 W.Williams, Simulations of a Phase Corrector Plate for the National Ignition Facility[J]. UCRL-JC-130033, July 1998
    120 饶瑞中。湍流大气中准直光束的Strehl比与锐度[J].中国激光,2005;32(1):53~58
    121 潘君骅。光学非球面的设计、加工与检验[M].北京:科学出版社,1986
    122 数学手册编写组,数学手册[M].北京:高等教育出版社,1979
    123 Peng H, Huang X, Zhu Q, et al. 286-TW Ti:sapphire laserat CAEP[C]. SPIE[A],2004
    124 Huang X, Wei X, Peng H, et al. Preliminary results of Ti:sapphire Ultrahigh-power laser facility[C]. SPIE[A], 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700