用户名: 密码: 验证码:
单驱动变曲率反射镜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决高能激光器输出光束的光束质量由于受热透镜效应影响而引起的随时间蜕变问题,研究了一种主动光学元件的结构,只使用一个驱动器使反射镜的曲率产生可控制的改变,用以补偿高能激光器中增益介质或光学元件因热效应而产生的球差。通过理论计算和有限元分析的方法对该结构进行数值分析,按照真实机械结构建立三维模型,针对不同参数的光学元件和机械结构进行有限元分析,并把有限元分析结果与理论计算结果进行对比。按照模型参数加工制造了实验装置,使用干涉仪对实验装置在不同力作用下的变形情况进行测量,把实验测量数据与有限元分析结果进行对比。通过理论计算、有限元分析和实验研究验证,三者结果能很好的吻合,通过实验也证明这种结构能够使反射镜产生微小变形,通过精确控制驱动器,可以使反射镜产生所需要的曲率变化。通过使用光学理论推导出使用该结构补偿热透镜效应引起的输出光束球差项的补偿公式,结果表明,这种主动光学元件可以用于谐振腔内补偿高能激光器中热效应产生的球差项的影响。
In order to resolve the output beam of high energy laser beam quality due to thermal lensing effect transformation problems arising over time, studied the structure of an active optical components, use only one drive change in curvature of the mirror can be controlled, or compensation in high energy laser gain media resulting from thermal effects of spherical aberration optical components. Through theoretical calculations and finite element analysis method for numerical analysis of the structure, in accordance with the establishment of three dimensional model real-world mechanical structure for different parameters of optical elements and mechanical structures for finite element analysis and theoretical calculation of finite element analysis with the results for comparison. In accordance with the model parameters experimental equipment for processing and manufacturing, using Interferometer experimental apparatus to measure the deformation under different force, finite element analysis of measurement data and the results compared. Through calculation, finite element analysis and experimental study on verification, three results are very good anastomosis, by experiments prove the structure to make mirror micro-deformation, by precisely controlling the drive, can make mirrors of curvature required changes. Inferred by using the theory of optical structure using compensating thermal lens effect caused by the output beam of spherical aberration compensation formula, results show that this active optical element can be used for high energy laser resonant cavity compensation of thermal effect in spherical aberration effects.
引文
[1]彭玉峰,程祖海强激光反射镜基体材料的热畸变特性有限元分析.强激光与粒子束,2005,17(1):5-8.
    [2]余亮英,朱海红,程祖海,等强激光反射镜体结构对镜面热变形的影响.华中科技大学学报(自然科学版),2007,(6):108-110.
    [3]余亮英,程祖海,朱海红等,热补偿腔镜热变形的研究.光学与光电技术,2007 5(2):12-15.
    [4]Michel, David G.Silicon carbide mirror cryogenicdistortion testing.1994. 2227:7-14.
    [5]Claude A klein thermally induced optical distortionin high encrgy laser systems. Optical Engineering,1979.18(6):501-601.
    [6]张耀宁,程祖海,库耕.硅镜热畸变研究.中国激光,1997,24(8):688-692.
    [7]ZHU Li-hua, NIE Yi-you, LU Bai-da. A comparative study of the M2 factor of truncated flattened Gaussian Beams. Acta Photonica Sinica,2007,36(3):536-538.
    [8]GAO Wei, HUANG Hui-ming. Characterization of beam quality of high energy laser SPIE,2003,4948:730-733.
    [9]BOLEY B, WEINER J. Theory of Thermal stress. Pergamon, Oxford,1975.
    [10]YIN Ke-xin, JIANG Hui-lin, TONG Shou-feng. Computational simulation on aero-optic effects of compressible turbulent shear-layer cavity flow. Acta Photonics Sinica,2008,37 (4):780-784.
    [11]LI Feng, FAN Tin, BAI Jin-tao, et al. Investigation on temperature and thermal lens effects of laser diode end pumped quadrate composite YAG crystal. Acta Photonics Sinica,2008,37(3):425-429.
    [12]BAHK S W, ROUSSEAU P, PLANCHON T A, et al. Generation and characterization of the highest laser intensities(1022 W/cm2). Optics Letters,2004,29(24):2837-2839.
    [13]SARKIES P H. A stable yag resonator yielding a beam of very low divergence and high output energy[J]. Optics Communications,1979,31(2):189-192.
    [14]GRAF T, WYSS E, ROTH M, et al. Laser resonator with balanced thermal lenses. Optics Communications,2001,190(1/6):327-331.
    [15]WYSS E, ROTH M, GRAF T, et al. Thermooptical compensation methods for high-power lasers[J]. IEEE Journal of Quantum Electronics,2002,38(12):1620-1628.
    [16]VDOVIN G V, CHETKIN S A. Active correction of thermal lensing in solid-state lasers. II. Use of a resonator with a controllable configuration[J]. Quantum Electronics,1993,23(2):167-171.
    [17]GREINER U J, KLINGENBERG HH. Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror [J]. Optics Letters,1994, 19(16):1207-1209.
    [18]KLEIN C. Optical distortion coefficients of high-power laser windows. Opt Eng, 1990,29:343.
    [19]Klein, Claude A, Calcium fluoride windows for high-energy chemical lasers. Appl Phys.2006,100(08):3101-3114.
    [20]CAMPBELL J, RAINNER F. Optical glasses for high-peak-power laser applications. SPIE,1992,1761:246-255.
    [21]KLEIN C. Analytical stress modeling of high-energy laser windows:Application to fusion-cast calcium fluoride windows. J Appl Phys,2005,98,04:3103.
    [22]BILLMAN K, TRAN D, LEVIN K, et al. Progress toward an athermal HEL optical window. SPIE,2005,5647:207-223.
    [23]KLEIN C. Toward an athermal HEL optical window:Is Oxyfluoride Glass the Way to Go. SPIE,2005,5991:5991.
    [24]KLEIN C. Oxyfluoride glass for high-energy laser windows:Thermal lensing issue. APL,2005,87:2311-2328.
    [25]刘磊,彭波.大尺寸无热激光窗口材料及其评价方法.光子学报.2008,37增刊:219-223.
    [26]唐武彪,卢安贤,朱立刚.氧氟玻璃及其微晶玻璃的研究进展.材料导报,2009,9:47-52.
    [27]James A. Harrington, Don A. Gregory, William F. Otto Jr. Infrared absorbtion in chemical laser window material. Applied optics,1976,15(8):1953-1958.
    [28]Claude A. Klein. Analytical stress modeling of high-energy laser windows;Application to fusion-cast calcium fluoride windows. J Appl phys,1998,4:3103-3117.
    [29]C. A. Klein. Figures of merit for high-energy laser-windows material:themal lensing and thermal stresses. SPIE,2007,108:6403-6419.
    [30]YANG Zh G, CHEN H Q, WANG L, et al. Investigation of laser aberration compensation using an intra-cavity deformable mirror. Laser Technology,2007,31(5):449-449.
    [31]周仁忠,阎吉祥,赵达尊等,自适应光学,北京:国防工业出版社1996.
    [32]韩杏子.微变形镜在自适应光学中的应用与发展.光学技术.2008,6:836-840.
    [33]饶伏波.自适应光学系统MEMS微变形镜的研究.纳米技术与精密工程.2004,4:288-293.
    [34]乔大勇.基于MEMS技术的自适应光学微变形镜的设计与分析:硕士论文.西安:西北工业大学,2003.
    [35]李恩德,段海峰,戴云等.微加工薄膜变形镜特性分析.强激光与粒子束.2006,18(7):1009-1103.
    [36]阎庆祥.液晶空间光调制器在自适应光学中的应用.光学技术,1999,2,3.
    [37]王治华,俞信.液晶空间光调制器相位调制测量及波前校正.光学技术.2005,31(2):196-201.
    [38]关秀丽.基于液晶的波前校正器.机电产品开发与创新.2006,19(6):54-55.
    [39]蔡冬梅,薛丽霞,凌宁等.液晶空间调制器相位调制特性研究.光电工程.2007,34(11)19-23.
    [40]刘丽丽,刘凤山,李慧玲等.液晶自适应校正在眼底成像中的应用.沈阳师范大学学报(自然科学版).2010,28(3):374-378.
    [41]Mark A Ealey. Correct wave-front by using DM. Laser Focus World 1996(12):93-97.
    [42]乔瑞杰,陈名松.自适应光学中变形镜的研究.2010,18(3):74-78.
    [43]姜文汉.自适应光学技术.自然杂志.2006,28(1):7-13.
    [44]陈欣扬.四棱锥传感器在天文光学综合孔径望远镜中的波前检测仿真研究.电子测量与仪器学报.2006增刊,1502-1507.
    [45]宁禹,余浩,周虹.20单元双压电片变形镜的性能测试与闭环校正实验研究.物理学报,2009,58(7):4717-4723.
    [46]凌宁,官春林.变形反射镜的发展.光电工程,1995,22(1):17-22.
    [47]凌宁,官春林,王岚等.61单元分立压电变形反射镜的研制.量子学报,1998,4(2)200-205.
    [48]韩平静.变形反射镜镜面强度的分析研究:硕士论文.成都:中国科学院,2006.
    [49]凌宁,多元整体压电变形镜.光学工程,1982,9(6)
    [50]SCHWARZ J, RAMSEY M, HEADLEY D, et al. Thermal lens compensation by convex Deformation of a flat mirror with variable annular force. Applied Physics,2006, B82 (2): 275-281.
    [51]SCHWARZ J, RAMSEY M, SMITH I, et al. Low order adaptive optics on Z-Beamlet using a single actuator deformable mirror. Optics Commumications,2006,264(1):203-212.
    [52]SCHWARZ J, GEISSEL M, RAMBO P, et al. Development of a variable focal length Concave mirror for on-shot thermal lens correction in rod amplifiers [J]. Optics Express, 2006,14(23):10957-10969.
    [53]WARREN Y C, RICHARD B G. Roark's Formulas for Stress and Strain[M].7th edition. New York:McGraw-Hill,2002:492-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700