用户名: 密码: 验证码:
基于磁流变液的光电传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液(MRF)是一种优秀的智能流体材料,由磁性粒子、基液以及添加剂组成。在无外磁场状态下,磁流变液呈现良好流动性的液体状态;在外加磁场作用下可在短时间(毫秒级)呈现类似固体的状态。磁流变液的这种特性已被广泛应用于航空、汽车、桥梁工程的阻尼控制。作为智能材料的一种,磁流变液的这种特性在智能传感技术中有着广泛的发展前景。目前,磁流变液流体特性、阻尼特性已被广泛研究,但其电磁学特性相对来说研究进展缓慢,本文将研究磁流变液电感特性以及磁流变液磁致伸缩效应。鉴于磁流变液的优良特性,本文还将研究基于磁流变液的智能传感技术。
     本研究报告主要由两大部分构成:一是磁流变电感以及磁流变液磁致伸缩效应研究;二是磁流变液传感技术研究。主要研究内容包括:
     1)、研究磁流变液电感特性,本文用磁流变液和电感线圈构成磁流变电感,推导了磁流变电感的计算公式,设计实验测试了磁流变电感随外磁场以及温度的变化规律,并从理论上对实验现象进行了分析。为磁流变电感在电子测量以及传感技术中的智能控制提供了一种依据。
     2)、研究磁流变液磁致伸缩效应,设计了磁流变液磁致伸缩效应检测装置,运用光学干涉测量方法高精度的测量了磁流变液的磁致伸缩效应,为磁流变液磁致伸缩效应在智能传感技术中的应用提供了重要依据。
     3)、研究基于磁流变液的加速度传感器,设计了基于磁流变液的加速度传感器,对该传感器进行了仿真分析,结果表明该传感器可实现不同量程的加速度的高精度检测。
     4)、研究基于磁流变液的自适应光学平台,利用磁流变液的逆磁致伸缩效应对光学平台是否平衡作出判断,原理简单,可以迅速、准确的对平台是否平衡做出判断。如果平台不平衡,通过运算即可得到光学平台倾斜的角度。
     5)、研究基于磁流变液的抗振模型,提出了基于压电陶瓷与磁流变液的双层隔振模型。通过对该模型进行理论建模分析和仿真,得到该模型不但对高频振动具有隔振效果,而且对低频、超低频微振幅干扰有很好的隔振效果。
Magnetorheological fluid is a kind of excellent intelligent fluid materials which ismade of the magnetic particles, the liquid and additives composition. Without externalmagnetic field, magnetorheological fluid presents good liquidity of the liquid state; Inthe state of magnetic field,it will presents solid state in a short time (millisecondtimescale).The character of Magnetorheological fluid has been widely used in aviation,automotive, bridge engineering and damping control. As a kind of intelligent materials,the character of MRF has broad development prospects in intelligent sensingtechnology. At present, the magnetorheological fluid's flow character and dampingcharacter have been widely studied, but the electromagnetism characteristics of MRFare relatively researched slowly. In this paper, we will study the inductance characterof magnetorheological fluid and its magnetostrictive effect. In view of MRF’s goodcharacteristic, this paper will also study the sensing technology and control technologybased on the intelligence of MRF.
     This paper is made of two components: one is the research of magnetorheologicalinductance and MRF's magnetostrictive effect, the other is the research ofmagnetorheological fluid sensing technology. The main research contents is as follows:
     One, we will research magnetorheological fluid inductance character. In thisarticle, we devised magnetorheological inductance with the magnetorheological fluidand inductance coil, deduced the magnetorheological inductance formula, designedexperiments testing the changing of magnetorheological inductance in the externalmagnetic field and the temperature, and analyzed the phenomenon of the experiment intheory. We provided a basis for the magnetic fluid inductance's application inelectronic measurement and sensing technology.
     Two, we will research the magnetostrictive effect of magnetorheological fluid. Wedesigned detection device of MRF's magnetostrictive effect, measured MRFmagnetostrictive effect using optical interference measuring method with highprecision, and provided a basis for the magnetic fluid inductance's application for MRFmagnetostrictive effect in intelligent sensing technology.
     Three, we will research MRF acceleration sensor based on magnetorheological fluid. We designed MRF acceleration sensor and the simulation analysis showed thatthe sensor can realize high precision testing of the different range of the acceleration.
     Four, we will study on adaptive optics platform based on MRF,by using MRFinverse magnetostrictive effect on optical platform we can judge whether the platformisfastigiate simplely and quickly.If platform is not balanced, we can get opticalplatform declining Angle through the operation.
     Five, we will research ant-vibration model based MRF. In this paper we used thecontrollable character of magnetorheological fluid shear strength, using piezoelectricceramics as actuator, put forward double isolation model based on the piezoelectricceramics and magnetorheological fluid. Through the theoretical analysis we arrival ata conclusion that the model has a good Isolation effect on both high frequencyvibration and low frequency vibration especially ultralow frequency vibration.
引文
[1]Rabinow J.The magnetic fluid clutch [J].AIEE Transactions,1948,67:1308-1315.
    [2]Ginder JM.Behavior of magnetodteological fluids[[J].MRS Bulletin,1998,23(8):26-29.
    [3]贾永枢,周孔亢.车用磁流变液流变特性分析及试验[J].机械工程学报,2009,45(6):246-250.
    [4]唐龙,刘奇等.磁流变液动密封实验研究[J].功能材料,2008,11(39):1793-1798.
    [5]Ginder, et al.Shear Stress in Magnetorheological Fluids[J]. Applied PhysicsLetters,1994,65:3410—3418.
    [6] Winslow W M.Method and Means for Translating Electrical Impulse into M echanicalForce.U.S.Patent No.2,117850.197.
    [7]朱应顺,龚兴隆等.磁流变液剪切屈服应力的数值分析[J].中国矿业大学学报,2006,35(4):498-503.
    [8]黄金,李慰立等.磁流变液无极变速器的原理[J].西南师范大学学报,2001,26(3):284-287.
    [9] Coulter, et al.Application of Electrorheological Materials in VibrationControl[C]. Proc.2nd Int. Conf. On ER Fluid,(Raleigh, Nc),1989.
    [10] Shulman, et al. Structure Physical Properties and Dynamics of MagnetorheologicalSuspensions[J]. Int. J. Mutiphase Flow,1986,12(6):935-955.
    [11] Kordonsky. Elements and Devices Based on Magnetorheological Effect[J]. J. ofIntel. Meter. Stru.1993,4:65-69.
    [12] Jolly, M. R., et al.AModel of the Behavior of Magnetorheological Materials[J]. Smart Mater.Strut.1996,3(5):607—614.
    [13] Ralf Bolter, et al. Design Rules for MR Fluid Actuators in Different WorkingModes[C]. SPIE,1997, Vol.3045:148-159.
    [14] Ashour, et al. Manufacturing and Characterization of MagnetorheologicalFluids[C]. SPIE,1997, Vol.3040:174—184.
    [15]李发胜,张平.抛光用磁流变液的研究[J].功能材料,2006,8(37):1187-1190.
    [16]田玲,王炎玉等.新型磁流变液体阻尼器的设计[J].桂林工学院学报,2007,27(2):270-273.
    [17]Carlson JD,Weiss K D.A Growing Attraction to Magnetic Fluids[J].MachineDesign,1994,8:61-65.
    [18]M.Laun, Kormann, Willenbacher.Rheometry on Magnetorheological Fluids[J].Rheologica Acta,1996,35:417-423.
    [19]Bossis G,Khuzir P, Lacis S. Yield behavior of magnetodteological suspensions[J].Magnetism and Magnetic Materials.2003,258-259.
    [20]Kormarnn, Laun, Richter. MR fluids with nano-sized magnetic parti-cles[J].International Journal of Modern Physics B,1996,10:3167-3172.
    [21]Jolly MR,Carlson JD,Munoz BC,et a1.The magnetoviscoelastic response of elastomercomp-osites consisting of ferrous particles embedded in a polymer matrix[J].Journalof intelligent material systems and structures,1996,7:613-622.
    [22]Lokander,Stenberg. Improving the magnetorheological effect in isotropicmagnetorheo-logical rubber materials[J].Polymer testing,2003,22:677-680.
    [23]Gong XL,Zhang XZ,Zhang PQ.Fabrication and characterization of isotropicmagnetorheologi-cal elastomers[J].Polymer testing,2005,24:669-676.
    [24]周刚毅.一种测量磁流变液流变特性的系统研制[J].机械科学与技术.1998,17:101—102.
    [25]刘奇,张平,王东亚,黄元龙.磁流变体(MRF)材料的制备与性能研究[J].功能材料2001,32(3):257—259.
    [26]邓华夏.磁流变弹性体半主动吸振技术的研究.中国科学技术大学硕士学位论文,2007.
    [27]吕建强.纳米磁性液体制备及特性研究[D].北京:北京交通大学学位论文,2006.
    [28]师昌绪.材料大辞典[M].北京:化学工业出版社,1999.408,1161-1162.
    [29]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997.1-21,415-428.
    [30]段波,赵兴中,李星国等.超微粉制备技术的现状与展望[J].材料工程,1994(6):5-8.
    [31]Chiu W.S.,Radiman S.,Abdullah M.H. et al.One pot synthesis of monodisperse Fe3o4nanocrystals by pyrolysis reaction of organometallic compound,Mater.[J]Chem.phys.,2007,106:231-236.
    [32]赵朝辉,姚素薇,张卫国.纳米Fe3o4磁性颗粒的制备及应用现状[J].化工进展.2005,24(8):865-868.
    [33]王鸿云,郑惠强,李泳鲜.磁流变液的研究与应用[J].机械设计,2008,25(5):1-5.
    [34]张平,刘奇,唐龙等.高特性磁流变液的稳定性及应用[M].第五届全国电磁流变液及其应用学术会议(大连),2008.
    [35]姚金光,晏华.高特性磁流变液研究的进展[J].材料开发与应用,2009,24(2):62-67.
    [36]廖昌荣,张红辉,余淼,陈伟民.磁流变液的流变学特性检测方法与仪器研究[J].仪器仪表学报,2008,29(12):2475-2479.
    [37]蒙延佩.磁流变液流变学特性检测仪器研究[D].重庆大学学位论文,2007.
    [38]李海涛,彭向和,何国田.磁流变液机理及行为描述的理论研究现状[J].材料导报.2010,24(2):121-125
    [39]Thapa,Palkar,Kurup.Properties of magnetite nanoparticles synthesized through anovel chemical route[J].Mater. Lett.,2004,58:2692-2699.
    [40]Goya,Cerardo.Handling.The parficle size and distribution of Fe3o4naoparticlesthrough ball milling[J].Solid State Commun,2004,130(12):783-789.
    [41]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-596.
    [42]方生,张培强.旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J].化学物理学报,2001,14(5):562-566.
    [43]吴旻,张秋禹,罗正平等.轻质磁性材料的制备及在磁流变液中的应用[J].化学物理学报,2001,14(5):597-600.
    [44]赵雯,张秋禹,王结良等.磁流变液及其应用[J].材料导报,2004,18(5):68-71.
    [45] Wojciech Szelag. Finite element analysis of the magnetorheological fuid braketransients[J].COMPEL.Ei.,2004,23(3):758-766.
    [46]龚荣洲,官建国,袁润章.酞菁钴/铁纳米填充母粒组成的磁流变液性能[J].化学物理学报,2000,13(4):508-512.
    [47] Shtarkman. Fluid response to magnetic field[P]. US Patent:5167850,1992.
    [48] Dyke S J, Spencer Jr B F, Sain M K, et al. Modeling and control of MR dampersfor seismic response reduction[J]. Smart Materials and Structrures.1996,5(5):565-575.
    [49] C. Gabriel· H. M. Laun. Combined slit and plate–plate magnetorheometry ofa magnetorheological f uid (MRF) and parameterizationusing the Casson model[J].Rheol Acta.Sci.,2009,48:755-768.
    [50]梁灿彬,秦光戎,梁竹健.电磁学[M].北京:高等教育出版社,2004:244.
    [51]吴迪顺.螺管线圈电感的计算公式[J].变压器,1991,28(8):2-5.
    [52]张德胜,何国田等.基于磁流变液的智能电感研究[J].功能材料,2011,(442):749-752.
    [53]卡兰塔罗夫,采伊特林.电感计算手册[M].北京:机械工业出版社,1992:1.
    [54]冉迎春,何国田等.磁流变液导电特性研究[J].功能材料,2011,8(42):1357-1359.
    [55]王松,何国田,王平等.磁流变液电容特性研究[J].功能材料,2011,8(42):1386-1389.
    [56]陈善飞,王遵义等.基于磁性液体磁致伸缩的微位移驱动实验研究[J],兵工学报,2010,31(3):350-354.
    [57] Zhong L.S.,Hu J.S.,Liang H.P, et al.Self-assembled3D flowerlike iron oxide nanostructuresand their application in water treatment[J].Adv.Mater.2006,l8(18):2426-2431.
    [58] Thomas H. Meedel, Patrick Chang, et al.[J]. Developmental Biology,2007,312:644–645.
    [59] Alexandre L.M. Levada, Nelson D.A. Mascarenhas,et al.[J]. Pattern Recognitionetters,2010,31:1795–1808.
    [60] Min Hyeok Bae, Rong Pan,et al [J]. NeuroImage,2009,46:717–725.
    [61] Naoki Kaya, Shuuitsu Tanaka,et al.[J]. Brain Research,2002,952:86–97.
    [62]陶帅,白鸿柏,何建设,等.压电作动器位移输出特性分析[J].压电与声光,2010,32(5):807-810.
    [63]刘勺斌,杨洪波,刘洋,等.基于Stewart平台的空间光学仪器主动隔振系统研究[J].噪声与振动控制,2008,2:10-14.
    [64]欧进萍.结构振动控制[M].北京:科学出版社,2003,303-316.
    [65]李惠彬.振动理论与工程应用[M].北京:北京理工大学出版社,2006,212-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700