用户名: 密码: 验证码:
机器人复合热源自动螺柱焊工艺研究及设备研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对高强高硬中碳调质钢与大直径螺柱焊接的应用需要,研究采用感应加热/电弧螺柱焊这一焊接方法,开展了复合热源焊接方法、焊接工艺参数、焊接接头力学性能、微观组织等研究工作,充分优化焊接方法,获得实际焊接条件下的最佳工艺参数规范窗口,保证接头强度系数大于0.95。同时为满足现代工业生产高效化、自动化、智能化的发展趋势,研究开发全位置、各种焊接条件下自动送料、焊枪更换、陶瓷环夹持等相应焊接设备,编制程序,实现复合热源螺柱焊高效自动焊接。
     针对大直径实心螺柱焊接传统手工电弧焊、半自动气体保护焊等方法对焊接过程的严格要求以及焊接效率的低下,为满足现代工业高效智能自动焊接发展趋势,开展机器人自动焊接设备、控制接口、操作程序等研究,实现复合热源螺柱焊自动送料、焊枪更换、陶瓷环夹持等自动化,有效提升焊接效率。
     针对传统车体炮塔等内表面大量实心螺柱因采用手工电弧焊、半自动气体保护焊等落后焊接方法而伴随出现未熔合、气孔、夹杂等焊接缺陷,采用感应加热与电弧螺柱焊相复合的焊接方法,开展(?)16、22、27mm直径螺柱与30、45、80mm厚度高强高硬中碳调质钢焊接工艺研究,试验表明:在合适的焊接工艺规范窗口下,焊接过程稳定,焊后形成完美的具有外部强化作用的环形凸台,焊接接头强度系数大于0.95;接头微观组织研究表明,螺柱前端与母材表面加热熔化均匀,焊缝没有气孔、夹杂、未熔合、裂纹等缺陷,焊缝组织为马氏体与贝氏体,高强高硬中碳调质钢母材侧焊接热影响区组织为板条马氏体,未出现裂纹。
     针对实际焊接条件下存在的非对称结构以及高拘束状态条件下大直径螺柱与高强高硬中碳调质钢的焊接接头易出现延迟裂纹的现象,开展厚大构件冷裂模拟试验、焊接工艺试验、焊接接头残余应力分析、焊接接头焊缝组织含氢量分析等研究工作,分析表明高强高硬中碳调质钢自身高碳当量、高淬硬倾向、焊接接头含氢量以及焊接接头所处的拘束状态是高强高硬中碳调质钢焊接过程中出现延迟裂纹的主要原因,试验采用感应加热与螺柱电弧相复合的方式,能有效降低焊接接头残余应力、焊接接头含氢量,试验中试样为出现延迟裂纹。
In this paper, in the view of the middle carbon steels in high strength and high hard conditioning with large diameter studs welding application, research use induction heating/arc stud welding this kind of method, and carried out the research work of the compound heat sources welding technology, welding parameters, the mechanical prorerty of the welding joints, microstructure of welding bead, sufficient optimize this welding method, gave out the optimum parameters of standard window in the actual welding conditions, and ensure the strength of welding joints is more than 0.95.As the same time to meet modern industrial production efficiency, automation, intelligent development trend, research and design the equipment of automatic feed, welding torch change, ceramic ring clamping no matter what kinds of diameters of the studs and the welding positons, program and realize the composite heat sources studs welding efficient automatic welding.
     For large diameter studs welding, traditional methods are manual arc welding or semi-automatic gas shielded welding, such kinds of methods are strict to welding request and the efficiency is low, to meet modern industrial production efficiency, automation, intelligent development trend, research and design the equipment of automatic feed, welding torch change, ceramic ring clamping no matter what kinds of diameters of the studs and the welding positons, program and realize the composite heat sources studs welding efficient automatic welding.
     In traditional body interior surface of tanks, there are a lot of large diameter studs welding by manual arc welding or semi-automatic gas shielded welding methods, appear incomplete fusion, porosity, mingled, etc welding defects. Research using induction heating/arc stud welding methods, and carry out the welding research of the 16,22,27mm diameter studs and 30,45,80mm thickness of high carbon steel, tests show that:in proper welding process specification window, the welding process stability, form perfect external circular convex platform that can strength the welding joints, the strength coefficient of welding joints is more than 0.95. The microstructure of welding bead shows that the front of the stud and the surface of the high carbon steel are heated and melt even, and do not find incomplete, porosity, crack,etc welding defects, the microstructure of welding bead is martensite and bainite, welding heat affected zone of high carbon steel side do not find crack.
     In the view of the actual welding conditions of existence asymmetric structure and high restrain of large diameter studs welding with high carbon steels, the welding bead always appears the phenomenon of delay crack. Research carried out the work of delay crack simulation test, welding process test, welding joint residual stress analysis, welding bead organization of hydrogen amount, etc, the analysis shows that the high carbon steel in hard condition, the high carbon equivalent, high hardened tendency, the hydrogen quantity of welding bead, the restrain of the welding joint are the most important elements of the phenomenon of delay crack.Using the method of induction heating/arc sutd welding can effectively reduce the residual stress of welding joint, the amount of hydrogen of welding bead, and test sample do not appear the phenomenon of delay crack.
引文
[1]Chambers H A.Principles and practices of stud welding[J].PCI Journal,2001,46(5): 46-58
    [2]Singleton Robert C. The growth of study welding[J].Welding Engineering,1963,48 (7):27-31
    [3]齐绍荣,叶振荣,王芸.影响电弧螺柱焊焊接质量的几个问题[J].焊接技术,2002,31(4): 27-28
    [4]金.螺柱焊的应用技术.沪东中华技术情报[J].2002:18-20
    [5]龚胜峰.螺柱焊接技术及工艺.电焊机.2006,36(1):11-12
    [6]方业.基于PMAC运动控制器的焊接机器人数控系统开发.电脑开发及应用[J].2008,28(5): 28-30
    [7]张瑞昌.中国螺柱焊技术现状及发展趋势.电焊机.2003:13-14
    [8]王克鸿,张德库,薛鹏飞,顾民乐.复合热源螺柱焊方法.焊接学报.2008,29(11):45-48
    [9]马福临.电弧螺柱焊理论基础与应用.北京理工大学出版社.2002,11:37-40
    [10]张义.汽车制造用螺柱焊机的选择与应用(一)[J].电焊,2001,(8):12-15
    [11]WNISHIKAWA.Welding International[J].2003,17(9):699-705
    [12]北京实耐固技术开发有限公司.德国HBS螺柱焊机及技术.2000,4:44
    [13]刘咏枝.螺柱焊接工艺[J].焊接技术,2002,31(4):20-21
    [14]U.Klansek,S.Kravanja.Cost Estimation Optimization and competiveness of different composite floor systems.2006,62:434-448
    [15]S.RAMASAMY.Design of experments study to exarmine the effect of polarity on study welding[J]. Welding research,2002,2:19-26
    [16]袁建国,蒋华山.电容螺柱焊放电过程对焊接质量的影响[J].电焊机,2006,36(1):31-32
    [17]池强,张建勋,付继飞.步进式电弧螺柱焊枪及控制系统的研究[J].西安交通大学学报,2004,38(5):461-464
    [18]孙松岭,黄贤聪.单片机控制的电弧螺柱焊机[J].电焊机,2006,36(1):33-35
    [19]徐新春,李红珍.v型锚固件的螺柱焊焊接.机械工程与自动化[J],2004,3:81-82.
    [20]孙灿彬,芦广平,李海斌.国家体育场钢结构埋设件压力埋弧焊新工艺的开发与应用[J].钢结构论坛,2006:173-175.
    [21]杨文杰,廖平,王伟.螺柱电渣压力焊的研究与现状[J].基姆斯工学院学报,1998,16(2):183-185.
    [22]黄贤聪,张瑞昌,孙松岭.埋弧螺柱焊机及其在预埋件焊接中的应用[J].电焊机,2006,6(36):1-5.
    [23]王敬和,曲伸,祝文卉.现代摩擦焊技术在航空制造业中的应用和发展[J].焊接学报,1998:21-23.
    [24]张义,李洪文.国内外螺柱焊接技术的发展趋势[J].焊接(专题综述),1999,(11):8-12.
    [25]白平.超高频感应加热电源的研究:[D].四川:四川大学,2005
    [26]葛红明,吴圣杰,唐兵传.螺柱穿透焊新工艺的开发和应用[J].现代焊接,2005,4:44-46
    [27]Ramasamy Siva.Drawn arc stud welding crossing over from steel to aluminum [J].Welding Journal,2003,79(1):64-70
    [28]杨金.汽车业中应用的螺柱焊[J].焊接技术,1997,26(4):40-41
    [29]殷浩澎.螺柱焊在船厂的应用[J].电焊机,1998,36(1):19-22
    [30]张兴国,刘明.工业机器人组合式模块化结构设计研究[J].制造业自动化,2008,(7):30-32
    [31]祝荣.螺柱焊接机器人控制系统[D],上海:上海交通大学,2008
    [32]郑永强.经济型弧焊机器人系统集成系统的应用[J],电焊机,2005,1
    [33]张兴国,刘明.工业机器人组合式模块化结构设计研究[J].制造业自动化,2008,(7):30-32、74
    [34]陈航,殷国富,赵伟,周晓军.工业机器人模块化设计研究[J].机器人技术,2009,36(3):56-58
    [35]贾庆轩,杨磊,孙汉旭,马国伟,郐永涛.机器人模块化关节的设计与实现[J].机电产品开发与创新,2005,(6):1-3
    [36]汤双清,高虹亮,李力.工业机器人的计算机控制[J].计算机自动测量与控制.2010,9(2):37-39.
    [37]钱新恩,夏朝猛.计算机视觉在工业机器人上的应用[J].计算机技术与自动化.2006,25(1):114-116.
    [38]章毓晋.图像工程-图像处理与分析[M].北京:清华大学出版社,2000.
    [39]陈胜军.工业机器人系统可靠性预测方法研究[J].南京师范大学学报,2008,8(2):6-9.
    [40]Walker JR. Failuremode analysis for a hazardouswaste clean-upmanipulator[J]. Reliab Engng Syetem Safety,2001,58(3):277-290.
    [41]朱仕学,陈伟,谢永宏.基于PLC的工业机器人关节直流伺服系统[J],深圳职业技术学院学报,2002,18(4):23-26.
    [42]邓星钟,周祖德,邓坚.机电传动控制[M],武汉:华中理工大学出版社,2001.
    [43]肖继忠,黄亚楼,曾向秋,卢桂章.工业机器人自适应力控制的新方法[J],机器人,1996,18(4):193-200.
    [44]Carelli Ret al. Adaptive Force Control of Robot Manipulators. Int J of Control,1990, 52(1):37-54.
    [45]Tsujimura T,Yabuta T. Adaptive Force Control of Screwdriving with a Positioning-controlled Manipulator. Roboticsand Autonomous System,1991,7: 57-65.
    [46]李东君.基于绿色制造技术的开放式机器人的研发[J],机械研究及应用,2003,24(3):256-261.
    [47]小山俊彦. Distributed Open Robot Controller NetwoRC[J], Robot,1998, (121).
    [48]Lynne E. Parker, George Bekey, Jacob Barhen. Distributed Autonomous Robotic Systems 4[J], Springer-Vorslag,2000.
    [49]Han K H, Shim Kim, etc. Implementation of Internet-Based Personal Robot with Internet Control Architecture [J]. Proc. IEEE on ICRA.2001,217-222.
    [50]汤双清,付建科,施仲光,廖道训.基于Internet的工业机器人的远程控制[J],计算机应用研究,2002,6:151-153.
    [51]汤双清,Michel Dupas串行通信在工业机器人控制中的应用[J],计算机应用研究,2000,17(11):79-81.
    [52]李小海,王旭永.基于WWW的机器人远程控制的关键技术及典型实现[J],工业控制计算机,2000,13(2):51-53.
    [53]王一,任永杰,刘常杰,叶声华.工业机器人视觉检测系统的现场标定技术[J],传感器与微系统,2010,29(2):83-87.
    [54]Gong C H, Yuan J X, Ni J.Nongeometric error identification and compensation for robotic system by inverse calibration[J], International Journal ofMachine Tools& Manufacture,2000, (40):2119-2137.
    [55]崔光浩等.绝压传感器中陶瓷/钛合金焊接技术研究[J],传感器与微系统,2010
    [56]GuAlic, i Bijan Shirinzadeh. A systematic technique to estimate positioning errors for robotaccuracy improvementusing laser interferometry based sensing[J]. Mechanism and Machine Theory,2005 (40):879-906.
    [57]任永杰,邾继贵,杨学友等.基于距离精度的测量机器人标定模型及算法[J],计量学报,2008,29(3):198-202.
    [58]王健强,王长润,孙纯哲,蔡伟.多层次、多总线控制系统的多工业机器人焊装线的设计与实现[J],机电工程技术,2009,38(5):17-19.
    [59]Caccavale F, Natale C, Siciliano B, et al. Embedding force control into industrial robot [J]. IEEE Robotics & Automation Magazine,2005,9 (1):53-64.
    [60]R. A. Brooks. A robust layered control system for a mobile robot [A]. IEEE J.Robotics and Automation [C],1986(RA-2):14-23.
    [61]Suh I H, Yeo HJ, Kim H. Design of a supervisory control system for multiple robotic systems [J]. IEEE IROS96,1996 (1):332-339.
    [62]李鑫,王亚雄,徐朝洪.基于神经网络的车辆制造焊接流水线工业机器人控制模型[J],重庆工学院学报,2009,23(5):23-31.
    [63]张中英.基于遗传算法的机器人神经网络控制系统[D],太原:太原理工大学,2005.
    [64]罗生斌.白车身焊接机器人焊接路径规划及其仿真[D],上海:同济大学,2006.
    [65]王磊,朱清智,阎保定,孙立功.基于μC/OS-Ⅱ的工业机器人控制器[J],工业控制计算机,2007,20(12):13-14.
    [66]宋延昭.嵌入式操作系统介绍及选型原则[J],工业控制计算机,2005,18(7):41-42.
    [67]李吉平,施殿波,耿梦,朱华伟.CRT工业机器人控制系统的开发[J],大连工业大学学报,2008,27(4):336-340.
    [68]杨征瑞等.电液伺服与比例控制工业机器人的研制[J],制造技术与机床,2003
    [69]于慧亮.基于CAN的工业机器人内部通信总线设计[J],计算机工程,2005
    [70]马福临.电弧螺柱焊理论基础与应用[M],北京理工大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700