用户名: 密码: 验证码:
黄土剪切破损结构演化机理的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金项目:黄土二元介质模型及其对剪切带形成的试验与数值模拟研究为依托,对黄土剪切破坏过程中宏观物理力学现象和细观结构演化过程,在水、力两种荷载作用下分别进行了应力式直接剪切增湿试验和三轴-CT固结排水剪切试验研究,为揭示黄土剪切破坏结构演化机理提供了详实的试验资料。
     应用改制的四联应力式直剪仪,进行了四个固结压力下不同剪应力水平一次性浸水饱和与剪应力水平0.3不同增湿浸水量的湿剪试验。得到了湿剪位移和竖向变形随时间的变化曲线,对比分析了剪应力水平、固结压力和增湿浸水量对湿剪位移和竖向变形演化规律的影响。同时,在湿剪位移变形稳定后,继续进行了原状黄土后湿应力式直接快剪试验,得到了不同剪应力水平和不同增湿含水量对黄土后湿抗剪强度影响的演化规律。并且根据释放结构势定义综合结构势参数的思想,基于原状黄土和扰动黄土湿剪变形量定义了黄土的水敏结构性参数m。。综合分析认为,m。具有较高的合理性、灵敏性和研究黄土水敏结构性的优越性。
     在后勤工程学院-南郑医院-CT-三轴科研站,进行了干密度和含水量相同的原状黄土与扰动黄土四个围压下三轴固结排水CT实时扫描剪切试验,得到了黄土剪切破坏过程中大量的CT图像和CT数据。从宏观物理力学特性——偏应力-轴向应变-体积应变关系曲线,结合CT扫描图像,CT数和方差,感兴趣域(ROI)等细观结构变化规律,综合分析了原状黄土和扰动黄土三轴剪切过程中,应变软化型、应变硬化型试样剪切破坏的演化机理。并通过增加试样含水量的相同三轴-CT试验,对比分析了黄土各剪切破坏型式演化规律的正确性。
     最后,在对岩土破损力学深入学习分析的基础上,基于CT数方差定义了原状黄土破损结构势参数mf,并对mf进行量化处理得破损率b。绘制破损率b与轴向应变、偏应力关系曲线,并进行代入围压σ。的归一化拟合,建立了原状黄土三轴剪切软化型结构破损演化方程。
In this paper, the National Natural Science Foundation Project:Loess binary medium model and its implications for the formation of shear bands experiment and numerical simulation study based on the loess macroscopic shear failure process of physical and mechanical phenomena and microstructural evolution, in the water, power load of two separately conducted direct shear stress-type humidifier-CT test and triaxial consolidation undrained shear test study to reveal the structure of loess shear failure mechanism of evolution provides a detailed test data.
     Application restructuring of tetralogy of stress-type direct shear device, carried out the consolidation under the pressure of the four different shear stress level of one-time water saturation and shear stress level of 0.3 different amount of humidifying water wet shear test. By the wet shear displacement and vertical deformation curve changes with time, comparative analysis of the shear stress level, consolidation pressure and the amount of humidifying water wet shear displacement and vertical deformation of the impact of evolution. At the same time, in the wet shear deformation displacement and stability, the continued stress of loess after the wet-style fast direct shear test, the shear stress of different levels and different water content of loess humidifier after wet shear strength of the effects of evolution. According to the release of the structure and potential definition of potential parameters of the integrated structure of thought, based on the disturbance of loess and loess defined shear deformation of loess water-sensitive structural parameters. Comprehensive analysis of the view that the reasonableness of high sensitivity and research loess water-sensitive structural superiority.
     College of Engineering in Logistics-Nanzheng hospital-CT-triaxial research stations, carried out the same dry density and water content of loess and loess disturbance four triaxial confining pressure drainage consolidation in real-time CT scanning shear test has been loess shear failure process of a large number of CT images and CT data. From a macro-physical and mechanical properties-deviator stress-axial strain-the relationship between volumetric strain curve, combined with CT scan images, CT number and the variance, the domain of interest (ROI) such as micro-structural changes in the law, a comprehensive analysis of the loess and the disturbance loess triaxial shear process, the strain-softening type, strain-hardening type specimen shear failure mechanism of evolution. And by increasing the water content of the same specimen triaxial-CT test, comparative analysis of the loess type of shear failure of the correctness of evolution.
     Finally, in the broken rock and soil mechanics-depth study based on the analysis, based on the CT number variance is defined loess damaged the structure of potential parameters, and to quantify the rate of treatment was broken b. Drawing breakage rate b and the axial strain, deviatoric stress curve, and on behalf of finalistsσ3 pressure normalized fitting, set up a loess-type structure of triaxial shear softening damage evolution equation.
引文
[l]徐连民,王天竹,祁德庆,等.岩土中的剪切带局部化问题研究:回顾与展望[J].力学季刊,2004,25(4):484-489.
    [2]刘祖典.黄土力学与工程[M].西安:陕西科学出版社,1997.
    [3]赵锡宏,张启辉.土的剪切带试验与数值分析[M].北京:机械工业出版社,2002.9.
    [4]沈珠江.岩土本构模型研究的进展[J].岩石力学,1990,10(2):3-12.
    [5]沈珠江.结构性粘土的弹塑性模型[J].岩土工程学报,1993.
    [6]沈珠江.结构性粘土的非线性损伤模型[J].水利水运科学研究,1993(3):247-256.
    [7]沈珠江.土体变形特性的损伤力学模型[C].第五届全国岩土力学数值分析与解析方法讨论会,重庆:1994.
    [8]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996(1)
    [9]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000(1):1-4.
    [10]何开胜.结构性粘土的微观变形机理和弹粘塑性损伤模型研究[D].南京:南京水利科学研究院,2001.
    [11]赵锡宏,孙红,罗冠威.损伤土力学[M].上海:同济大学出版社,2000.
    [12]卢再花.非饱和膨胀土的弹塑性损伤本构模型及其在土坡多场耦合分析中的应用[D].重庆:后勤工程学院,2001.
    [13]J.P.Bardet,A comprehensive review of strain localization in elastoplastic soils,Computers and Geotechnics,1990(10):163-459.
    [14]J.R.F.Arthur & T.Dunstan,Rupture layers in granular media,IUTAM Conference on Deformation andFailure of Granular Materials.Delft:1982,453~459.
    [15]I.Vardoulakis,M.Goldscheider,G..Gudehus,Formation of shear bands in sand bodies as a bifurcation problem.Int.J.Num.Anal.Meth.Geomech,1978(2):99-128.
    [16]李国琛,耶那.塑性大应变微结构力学[M].北京:科学出版社,1993.
    [17]王自强,段祝平.塑性细观力学[M].北京:科学出版社.
    [18]孙红,赵锡宏.软土的损伤对剪切带形成的影响[J].同济大学学报,2000.
    [19]J.W.Rudnicki & J.R.Rice,Comditions for the localization of deformation in pressure-sensitive dilatant materials.J.Mech.Phy.Solids,1975,23:371-394.
    [20]Chikayoshi Yatomi,Atsushi Yashima,Atsushi Iizuka and Ikuo Sano,General Theory of shear Bands Formation by a Non-coaxial Cam-Clay Model,Soils and Foundation,1989,29(3):41~53.
    [21]R.De. Borst,H.B.Muhlaus,Gradient-dependent plasticity:Formulation and algorithmic aspects.Int J.Num.Mech.in Engng,1992,35:521-539.
    [22]S.Pietruszczak & D.F.E.Stolle,Deformation of strain softening materials,Part Ⅱ: Modeling of strain softening response.Computers and Geotechanica,1987(4):109-123.
    [23]S.Pietruszczak & Niu,X. On the description of localized deformation.Int.J.Num.Anal Methods
    Geo,1993,17:791~805;
    [24]沈珠江.应变软化材料的广义空隙压力模型[J].岩土工程学报,1997,19(3):14-21.
    [25]蔡正银,李相菘.取决于材料状态的变形局部化现象[J].岩石力学与工程学报,2004,23(4):533-538.
    [26]蔡正银,李相菘.无黏性土中剪切带的形成过程[J].岩土工程学报,2003,25(2):129-134.
    [27]Han C, Vardoulakis I G.Plane-strain compression experiments onwater saturated fine-grained sand[J].Geotechnique,1991,41(1).
    [28]王学滨,姚再兴,马剑,等.多孔介质岩土材料剪切带孔隙特征研究[J].岩石力学与工程学报,2004,23(15):2519~2522.
    [29]Finno R J, Harris W W, Mooney M A,Viiggiani G. Shearbands in plane strain compression of loose sand[J].Geotech-nique,1997,47(1):149~165.
    [30]董建国,李蓓,袁聚云,等.上海浅层褐黄色粉质粘土剪切带形成的试验研究[J].岩土工程学报,2001,23(1):23-27.
    [31]董建国,李蓓.黏性土剪切带的形成与其屈服的内在联系的探索[J].岩土力学,2007,28(5):851-854.
    [32]沈珠江,胡再强.黄土的二元介质模型[J].水力学报,2003,第七期:1-6.
    [33]陈铁林,周成,沈珠江.结构性黏土压缩和剪切特性试验研究[J].岩土工程学报,2004,26(1):31-35.
    [34]刘恩龙,沈珠江.岩土材料破损过程的细观数值模拟[J].岩石力学与工程学报,2006,25(9):1790-1794.
    [35]李建红,沈珠江.结构性土的微观破损机理研究[J].岩土力学,2007,28(8):1525-1533.
    [36]李蓓.上海粘性土剪切带倾角的试验研究[J].岩土力学,2002,23(4):423~427.
    [37]邵龙潭,孙益振,王助贫,等.数字图像测量技术在土工三轴试验中的应用研究[J].岩土力学,2006,27(1):29~34.
    [38]李保雄,苗天德.黄土抗剪强度的水敏感性特征研究[J].2006,岩石力学与工程学报,25[5):1003-1008.
    [39]李元海,朱合华,靖洪文,等.基于数字照相的砂土剪切变形模式的试验研究[J].同济大学学报(自然科学版),2007,35(5):685-689.
    [40]徐连民,朱合华,中井照夫,等.超固结粘土的剪切带数值模拟[J].岩土力学,2007,27(1):61-66.
    [41]李凡.岩土材料破损特性的颗粒流研究[J].土木工程学报,2007,40(9):78~81.
    [42]陈正汉,许镇鸿,刘祖典.关于黄土湿陷的若干问题[J].土木工程学报,1986,19(3):86-94.
    [43]陈正汉,刘祖典.黄土的湿陷变形机理[J].岩土工程学报,1986,8(2):1-12.
    [44]张苏民,张炜.减湿和增湿时黄土的湿陷性[J].岩土工程学报,1992,14(1):57~61.
    [45]张原丁.论黄土的湿陷敏感性[J].岩土工程学报,1996,18(5):79-83.
    [46]胡再强.黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安:西安理工大学,2000,11.
    [47]刑义川.非饱和土的有效应力与应变—强度特性规律的研究[D].西安:西安理工大学,2001.
    [48]唐文栋.湿陷性黄土静力特性及三轴试验过程的CT扫描研究[D].西安:长安大学,2003.
    [49]张继文.水敏性黄土增湿的应力等效特性研究[D].西安:西安理工大学,2004.
    [50]郭敏霞,张少宏,邢义川.非饱和原状黄土湿陷变形及孔隙压力特性[J].岩石力学与工程学报,2000,19(6):785-788.
    [51]邢义川,谢定义,李永红.非饱和黄土湿陷过程中有效应力变化规律[J].岩石力学与工程学报,2004,23(7):1100~1103.
    [52]杨玉生.压实黄土的增湿变形性质与地基增湿变形计算[D].杨凌:西北农林科技大学,2006.
    [53]黄雪峰,陈正汉,哈双,等.大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J].岩土工程学报,2006,28(3):382-389.
    [54]张茂花,谢永利,刘保健.增湿时黄土的抗剪强度特性分析[J].岩土力学,2006,27(7):1195-1200.
    [55]Kato Shoji & Kawai Katsuyuki,Deformation characteristics of a compacted clay in collapse under isotropic and triaxial stress state,Soils and foundations,2000,40(5):75-90.
    [56]Trivedi.A,Sud.V.K,Collapse behavior of coal ash,J.Geotech and Geoenvir.Eng,2004,130(4):403-415.
    [57]Meilani.I,Rahardjo.H & Leong.E,Pore-water pressure and water volume of an unsaturated soil under infiltration condition,Can.Geotech. J,2005,42,1509~1531.
    [58]谢定义.21世纪土力学思考[J].岩土工程学报,1997.,7(4):111-114.
    [59]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径.岩土工程学报[J],1999,21(6):651-656.
    [60]骆亚生.非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究[D].西安:西安理工大学,2003.
    [61]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536.
    [62]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891-1896.
    [63]胡再强,沈珠江,谢定义..非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779.
    [64]沈珠江.关于黄土力学的研究途径[C].中加非饱和土学术研讨会论文集,武汉,1994,153-159.
    [65]Shen Z J.Advances in numerical modeling of deformation behaviors of un saturated soil,Proc.2nd Int.Conf.Unsaturated Soil,Beijing,1998,Ⅱ,180~193.
    [66]沈珠江.黄土的损伤力学模型[C].第七届土力学及基础工程学术会议论文.北京:中国建筑工业出版社,1994,145-149.
    [67]Shen Z J,Hu Z Q,Damage function and a masonry model for less,Asian Conf,Unsaturated Soils,Singapore,2000,245-249.
    [68]沈珠江,陈铁林.岩土破损力学:基本概念,目标和任务[J].中国岩石力学与工程学会第七次学术大会论文集,北京:中国科学技术出版社,2002,14-19.
    [69]谢定义,齐吉琳,张振中.考虑土的结构性的本构模型[J].土木工程学报,2000:33(4):35-41.
    [70]胡再强,沈珠江,谢定义.结构性黄土的本构模型[J].岩石力学与工程学报,2005,24(4):565-569.
    [71]邵生俊,龙吉勇,于清高,等.湿陷性黄土的结构性参数本构模型[J].水利学报,2006,37(11):1315-1322.
    [72]胡瑞林,王思敬,李向全,等.土体微结构力学——概念、观点、核心[J].地球学报,1999(2):150-156.
    [73]和礼红,汪稔,张慧梅.土结构性研究方法之现状[M].土工基础,2003.9(3):84~86.
    [74]谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111~114.
    [75]李振.非饱和膨胀土增湿变形和增湿强度的试验研究[D].杨凌:西北农林科技大学,2006.5.
    [76]陈正汉,卢再华,蒲毅彬.非饱和三轴仪的CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [77]陈正汉,孙树国,方祥位,等.土工多功能三轴仪的研制及其应用[J].后勤工程学院学报,2007,23(4):1-5.
    [78]张苏民,邓建国.湿陷性黄土(Q3)的增湿变形特性[J].岩土工程学报,1990,12(4):21-31.
    [79]湿陷性黄土地区建筑规范,TJ25-73,中国建筑工业出版社,1979,p.7.
    [80]杨更社,谢定义,张长庆.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报,1998,17(3):279~285.
    [81]丁卫华,仵彦卿,蒲毅彬,等.CT技术应用于岩石实验动态观测的新进展[J].冰川冻土,2000,22(3):218-222.
    [82]吴紫旺,蒲毅彬,马巍,等.冻土蠕变过程体积变化的CT分析[J].冰川冻土,1995,17(增刊):41-46.
    [83]施斌,姜洪涛.外力作用下土体内部裂隙发育过程的CT研究[J].2000,22(5):537~541.
    [84]尹小涛.基于图像定量分析的砂岩破坏细观机理研究[D].西安:西安理工大学,2005.
    [85]刘慧.基于CT图像处理的冻融岩石细观损伤特性研究[D].西安:西安科技大学,2006.
    [86]刘彦文.混凝土力学行为的CT研究[D].西安:西安理工大学,2007.
    [87]蒲毅彬,陇东黄土湿陷过程的CT结构变化研究[J].2000,岩土工程学报,22(1):49-54.
    [88]李晓军,张登良,路基填土单轴受压细观结构CT监测分析[J].岩土工程学报,2000,22(2):
    205-209.
    [89]唐文栋,湿陷性黄土静力特性及三轴试验过程的CT扫描研究[D].西安:长安大学,2003.
    [90]党发宁.岩土破损演化理论(Ⅰ):破损空间[J].岩石力学,2005,26(4):513~519.
    [91]党发宁.岩土破损演化理论(Ⅱ):物理状态指标与分区破损理论[J].岩土力学,2005,26(5):673~679.
    [92]沈珠江,陈铁林.岩土力学分析新理论:岩土破损力学[C].中国土木工程学会第九届土力学及岩土工程学术会议论文集.北京,2003,406~411.
    [93]葛修润,任建喜,蒲毅彬,等.煤岩三轴细观损伤演化规律的CT动态实验[J].岩石力学与工程学报,1999,18(50:497~502.
    [94]简浩,李学术,朱维申,等.含裂隙水脆性材料单轴压缩CT分析[J].岩土力学,2002,23(5):578~591.
    [95]仵彦卿,丁卫华,蒲毅彬,等.压缩条件下岩石密度损伤增量的CT动态观测[J].自然科学进展,2000,10(9):830~835.
    [96]陈正汉.特殊土的细观结构及其演化的CT-三轴试验研究[C].第一届全国岩土本构理论研讨会论文集,2008,6-17.
    [97]朱元青.基于细观结构变化的非饱和和原状湿陷性黄土的本构模型研究[D].重庆:后勤工程学院博士学位论文,2008.1.
    [98]方祥位.Qz黄土的微细观结构和力学特性研究[D].重庆:后勤工程学院博士学位论文,2008.8.
    [99]陈存礼,高鹏,唐杰.三轴应力状态下不同湿度原状黄土的结构性定量化参数[J].岩石力学与工程学报,2006,25(11):2313-2319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700