用户名: 密码: 验证码:
大直径嵌岩灌注桩承载性状及桩侧阻力强化效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着西部大开发战略的实施,各类建筑物的大量新建,尤其是高层、超高层建筑、大跨桥梁等的需要,嵌岩桩以其单桩承载力高、变形小,施工简单,造价经济,在工程中得到了广泛的应用,成为大型建筑物重要的基础形式。虽然嵌岩桩应用较早,但其受力机理和工作特性仍存在许多问题有待深入研究。如:合理嵌岩深度的问题,嵌岩段摩阻力分布模式,嵌岩桩承载力计算问题,水平载荷作用下嵌岩桩的承载性状等。另外,关于桩端(岩)土层性质影响着桩端附近一定范围内的桩侧阻力发挥大小的现象已经引起了越来越多学者的关注,但是迄今为止,关于这方面的研究和试验资料比较少。
     本文通过现场竖向静载荷试验,分析了嵌岩桩的荷载传递机理、桩侧阻力和桩端阻力分布规律、及其二者之间的分担比等,同时还发现,在本次试验中桩端阻力对侧阻力也存在明显的强化效应现象。结合大型有限元软件ANSYS,对试验进行数值模拟,得到ANSYS计算结果与试验结果相近,模拟效果较精确,在此基础上,还探讨了竖向荷载作用下单桩在相同桩侧土,不同桩端岩(持力层)条件下的荷载传递机理及端阻对侧阻力强化效应现象。最后,在竖向静载荷试验结束后,还进行了水平静载荷试验,得到了水平荷载作用下嵌岩桩的水平力-时间-水平位移、水平力-位移梯度曲线及桩身应力分布和桩身弯矩分布,分析了嵌岩桩水平受荷性质及其机理。结果表明,嵌岩桩桩侧摩阻力在承担桩顶荷载的过程中起了很重要的作用,而在摩阻力中,上部土层发挥的作用不可忽视;端阻对侧阻的强化效应不仅发生在桩端附近,在桩身上部土层中也存在,强化效应的发生与桩端岩强度和端阻力发挥的大小有关系;水平荷载作用下桩身弯矩主要集中在0-6m范围内,6m以下弯矩较小,水平受荷桩钢筋笼不需全长配置,仅在桩身弯矩集中部位布设便可抵抗水平力所产生的弯矩。具体包括:
     1.单桩的荷载-沉降关系;
     2.单桩桩身轴力传递特征;
     3.单桩桩侧阻力分布规律,侧阻与端阻分担比及侧阻强化效应分析;
     4.通过单桩水平载荷试验,分析了水平荷载作用下嵌岩桩的承载性状及其影响因素,为合理进行水平受荷嵌岩桩的设计提供了依据。
     5.以有限元软件ANSYS为工具,建立不同桩端岩层强度条件下的单桩模型,分析荷载传递机理及强化效应现象。
In recent years, with the implementation of the western development strategy, a large number of new types of buildings are springing up, especially high-rise, super high-rise buildings and long span bridges.so it posed the higher requirments for foundation.Because of high bearing capacity,small deformation,simple construction, cost economic,rock-socketed piles as an important basic form of large buildings have been widely used in the project. Although the application of rock-socketed pile more early, its stress mechanism and work characteristics exist many issues to further investigation. Such as the problem about a reasonable depth of embedded in rock, the distribution patterns of rock-socketed frictional resistance,bearing calculation of rock-socketed pile, the bearing characteristics of rock-socketed piles under the effect of loading and so on. In addition, the phenomenon about soil properties of the pile (rock) tips influencing the play of pile side resistance on a certain range has aroused more and more attention from scholars, but so far, the research and test information in this area are even less.
     Through testing on-site vertical static loading, this article analysis the load transfer mechanism of rock-socketed pile, pile side resistance and tip resistance distribution, and the ratio between the two sharing, and found that pile side lateral shear resistance strengthening effect is also obvious phenomenon in this test Using finite element soft ANSYS, the numerical simulation are more accurate and results are more similar with testing results, on this basis, this article also discussed load transfer mechanism of the single pile under vertical loading of soil in the same pile, different pile end rock (support layer) and the phenomenon of reinforced effect about the tip resistance to side resistance. Finally, at the end of the vertical static load testing, doing level static load testing obtain the curves of horizontal force-time-horizontal displacement, force displacement gradient and stress and moment distribution of pile shafe,and analysis the mechanism and characteristics of level loading of rock-socketed piles. The results showed that rock-socketed pile side friction in the commitment to the process of pile top load played an important role, and in the friction, the upper part of the role of soil can not be ignored; side effect of blocking the contralateral enhanced resistance not only occurs In the pile near the pile top soil there, strengthening effect of the occurrence of pile tip resistance of rock strength and size to play a relationship; level of bending moment under the load concentrated in the 0~6m range 6m moment the following small piles under lateral reinforcement cage without full configuration, only the bending moment concentration is laid horizontal force can resist the moment generated.Includes:
     1. the load-settlement of single-pile;
     2. column load transfer characteristics of single-pile shaft;
     3. Distribution single pile side resistance, the ratio of side friction and end resistance distribution;
     4. Finite element soft ANSYS as a tool to establish the model of different rock pile under strength condition, analyze the phenomenon of the load transfer mechanism and the strengthening effect
     5. Through level load testing of the pile, analysis bearing behavior of rock-socketed piles and the influencing factors at horizontal load, provide the basis of conducting a reasonable level of loaded rock-socketed pile design.
引文
[1]史佩栋.实用桩基工程手册[M].北京:中国建筑工业出版社,1999.
    [2]《建筑桩基技术规范》JGJ94-08[S].北京:中国建筑工业出版社,2008.
    [3]刘利民,舒翔,熊巨华著.桩基工程的理论进展与工程实践[M].北京:中国建筑工业出版社,2002.12.
    [4]明可前.嵌岩桩受力机理分析[J].武汉:岩土力学,1998,19(1):65-69.
    [5]黄求顺.嵌岩桩承载力的试验研究[C].山西:山西高校联合出版社,1992.
    [6]陈斌,卓家寿,吴天寿.嵌岩桩承载性状的有限元分析[J].武汉:岩土工程学报,2002,24(1):51-55.
    [7]史佩栋,梁晋渝.嵌岩桩竖向承载力的研究[J].武汉:岩土工程学报,1994,16(4):32-39.
    [8]查金波.嵌岩桩承载性能研究及影响桩设计因素分析[D].南昌:南昌大学,2006.5.
    [9]艾智勇,杨敏.广义Mindl in解在多层地基单桩分析中的应用[J].北京:土木工程学报,2001,34(2):89-95.
    [10]Coyle H M, Reese L C. Load transfer for axially loaded pi les in clay[J]. Journalof the Soi 1 MechaniCS and Foundations DiviSion。ASCE,1966,92(2):卜 26.
    [11]王波涛,唐萍,郭玉林.利用岩体Hoek-Brown强度准则确定嵌岩桩桩端阻力的探讨[J].成都:四川建筑科学研究,2000,26(3):49-51.
    [12]Delpak R, Oner J R, Robinson R B, Load/settlement Prediction for Large diameterBored Pi les in Marcia Mudstone,Proc[J]. Instn. Civ. Engrs, Geotech. Engng,2000,14(3):201-224
    [13]史佩栋等.嵌岩桩竖向承载力的研究[J].北京:岩土工程学报,1994.07,16(4):23-26.
    [14]黄求顺.嵌岩桩承载力的试验研究.见:黄熙龄主编.中国建筑学会地基基础学术委员会论文集.西安:山西高校联合出版社,1992.47-52.
    [15]明可前.嵌岩桩的受力机理分析.岩土力学,1998,19(1):65-69.
    [16]王国民.嵌岩钻孔灌注桩的荷载传递性状[J].岩土工程学报,1996,18(2):99-104.
    [17]吕福庆,吴文,旭晓辉.嵌岩桩静载试验结果的研究与讨论.岩土力学,1996,17(1):84-96.
    [18]张忠苗,汤展飞,吴世明.基于桩顶与桩端沉降的钻孔桩受力性状研究[J].岩土工程学报,1997,19(4):88-93.
    [19]Pells,P.J.N and Turner,R.M.(1979)Elastic solutions for the design and analysis of roek-socketed Piles, Can.Geoteeh.J.VOI.16.PP481-487.
    [20]刘树亚,刘祖德.嵌岩桩理论研究和设计中的几个问题.岩土力学,1999,20(4):86-92.
    [21]Vesic A S. Design of pile foundations in national corperation highway research program, Washington DC:TRB, NRC.
    [22]吴兴序.桩的端阻和侧阻相互作用及其工程应用价值.西南交通大学学报,1997(3).
    [23]席宁中.试论桩端土层强度对桩侧阻力的影响[J].建筑科学,2000,16(6):51-60.
    [24]刘利民,陈竹昌,李发明.桩的侧阻力强化效应[J].特种结构,1998,(4):27-29.
    [25]刘利民,陈竹昌.桩侧阻力增强效应及其工程意义[J].铁道建筑技术,2001,(1):7-9.
    [26]张建新,·吴东云.桩端阻力与桩侧阻力相互作用研究[J].岩土力学,2008,29(2):541-544.
    [27]Vogan R W. Discussion on friction and end bearing tests on bed rock of high capacity socket design.Can.Geotech.J,1977, (14):156-158
    [28]Osterberg J D, Gill S A. Load transfer mechanism of Piers socketed in hard soils or rock. Montreal P Q,1973, (3):235-262
    [29]Rowe R K, Bells P J N.A theoretical study of pile-rock socket behavior Proceedings of International conference on structural Froundations on rock.Sydney,1980, (5):253-264
    [30]Rowe R K, Armitage H. Theoretical solutions for axial deformation of drilled in rock.Can.Geotech. J,1987, (24):114-125
    [31]Donald I B, Sloan S W, Chiu H K.Theoretical analyses of rock socketed Piles.Proceedings of International Conference on Structural Foundations on rock.Sydney,1980, (8):303-316
    [32]Leong E C, Randolph M F. Finilte element modeling of rock-socketed Piles.Int.J.of Numerical and Analytical Methods in Geo mechanics,1994, (18):25-47
    [33]L. G. Tham, C. K. Chu & Z. X.Lci Analysis of the Transient Response of Vertically Loaded Single Piles by Time-domain BEM ComPuter and Geotectures.Vol.19.NO.2.pp 117-136,1996.
    [34]刘树亚.嵌岩桩承载机理研究(博士论文).武汉.武汉水利水电大学.1998
    [35]寥雄华,李锡.关于土-结构相互作用界面力学行为的数值模拟.计算力学报,2002,19(4):450-455.
    [36]Rase, P. E.. Theory of lateral bearing capacity of piles, Proc, IstICSMFE, 1936.
    [37]Broms, B. B.. Lateral resistance of piles in cohesive soils, Proc, ASCE,1964, 90(2):27-63.
    [38]Broms, B. B.. Lateral resistance of piles in cohesive soils, Proc, ASCE,1964, 90(3):123-156.
    [39]Broms, B. B.. Design of laterally loaded piles, Proc, ASCE,1965,91(3): 77-99.
    [40]Zhang, Y. L.. Discussion on "lateral pile loading tests" by Feagin, Trans, ASCE,1937; 272-278.
    [41]横山幸满.桩结构物的计算方法和计算实例.唐业清、吴庆荪译,北京:中国铁道出版社,1984.
    [42]王伯惠,上官兴著.中国钻孔灌注桩新发展.北京:人民交通出版社,1999.
    [43]吴恒立著.计算推力桩的综合刚度原理和双参数法.北京:人民交通出版社,2000.
    [44]叶万灵,时蓓玲.桩的水平承载力实用非线性计算方法—NL法.岩土力学,2000,(2).
    [45]熊辉,邹银生.水平荷载作用下桩-土非线性反应分析的特征荷载法[J].岩土工程技术,2002,(5):275-279.
    [46]劳伟康,周立运,王钊.大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J].岩石力学与工程学报,2004,23(10):1770-1777.
    [47]王建华,陈锦剑,柯学.水平荷载下大直径嵌岩桩的承载力特性研究[J].岩土工程学报,2007,29(8):1194-1198.
    [48]刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.
    [49]马志涛.水平荷载下桩基受力特性研究综述[J].河海大学学报,2006,34(5):546-551.
    [50]王鹏.桩的水平承载力的理论研究现状[J].山西建筑,2004,30(15):59-60.
    [51]韩理安等编著.水平承载桩的计算[M].中南大学出版社,2004
    [52]劳伟康,周立运,王钊.大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J].岩石力学与工程学报,2004,23(10):1770-1777.
    [53]黄雪峰,陈正汉,哈双,等.大厚度自重湿陷性黄土中灌注桩承载性状与负摩阻力的试验研究[J].岩土工程学报,2007,29(3):338-346.
    [54]刘利民.桩基承载性状研究的新进展[J].岩土工程界,2000(1):19-21
    [55]张公略,王保田,李守德.桩端土层条件对桩侧阻力影响的探讨[J].山西建筑,2005,31(23):73-74
    [56]席宁中,刘金砺.桩端土刚度和桩长径比对桩侧阻力影响的试验研究.见:刘金砺主编.桩基工程技术进展2009论文集.中国建筑工业出版社,2009.196-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700