用户名: 密码: 验证码:
水作用下油页岩力学特性及巷道支护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩油气作为一种重要的石油补充和替代能源,以其巨大的储量、丰富的综合利用层次,引起了全世界的关注。我国油页岩以地下开采为主,在地下水作用下,油页岩巷道围岩变形速度加剧、变形量增大,蠕变性更加显著,这是制约我国油页岩开采的一大难题。本文以我国重要的油页岩生产基地-吉林桦甸油页岩矿为工程背景,采用实验室实验、理论分析、数值模拟及现场工业试验相结合的方法,对水作用下油页岩力学特性及其在油页岩巷道稳定性分析中的应用等进行了较为系统和深入的研究。论文主要内容和成果如下:
     (1)以吉林桦甸油页岩矿为工程背景,现场取油页岩岩样,进行自然状态下油页岩常规三轴压缩实验、油页岩真三轴压缩实验、油页岩三轴蠕变实验,探讨油页岩瞬态变性特征及破坏特征,分析中间应力对油页岩岩石变形破坏的影响,分析油页岩蠕变特性及影响因素,探讨油页岩蠕变机理,并为与含水状态下的岩石力学特性对比作准备;
     (2)研究水对油页岩力学特性的影响。开展不同含水状态下油页岩单轴、三轴压缩实验、不同含水状态和不同孔隙压力下的油页岩三轴蠕变实验,探讨不同含水率及不同水压力对油页岩力学特性的影响;
     (3)基于油页岩基本力学特性、油页岩蠕变特性分析,以Burger模型为基础,将Burger模型与一种符合Mohr-Coulomb塑性流动规律的塑性元件串联,建立改进的Burger模型,即cvisc模型。以蠕变实验结果为基础,利用非线性最小二乘法,分析cvisc模型中蠕变参数随时间、应力及含水率的变化规律,建立蠕变参数随时间、应力和含水率变化关系式,进而建立考虑参数变化的非线性蠕变方程;
     (4)将蠕变方程与流固耦合方程联立,建立考虑时效性的渗流-蠕变耦合力学模型,利用FLAC3D软件良好的二次开发环境进行了模型的程序二次开发研究,对所建立数学模型进行了数值求解,模拟了水作用下油页岩巷道蠕变变形特征及其蠕变控制效果;
     (5)在理论分析、实验室实验、数值模拟的基础上,提出以自钻注浆锚杆为核心耦合支护方案。以吉林桦甸油页岩矿一井运输大巷为巷道围岩控制实验段,进行现场工业实验。结果表明,以自钻注浆锚杆为核心的耦合支护方案对水作用下油页岩巷道稳定性控制效果明显,为极软岩石巷道围岩变形控制提供实践经验。
Oil gas of oil shale arouses concern among the world as an important alternative energywith giant reserves and abundant multipurpose use levels. In our country, oil shale is mainlyexploited in the manner of underground mining and with the effect of underground water, thesurrounding rock of the roadway is transformed in higher speed and larger deformation and therheological property is more significant. It is a big problem to restrict the exploitation of oil shalein our country. On the domestic, under the background of an important oil shale production basein our country-Jilin Huadian oil shale mine, with the method of experiment, theoretical analysisand numerical simulation, the oil shale mechanics characteristic under the effect of undergroundwater and its apply in the analysis of roadway rock stability are studied systematically andintensively. The main content and achievement are as follows:
     (1) In Jilin Huadian oil shale mine, the rock samples are drilled and tested by conventionaltriaxial compression, true triaxial compression and triaxial creep. The Instantaneous deformationcharacteristics and damage characteristics, the effect on deformation damage by intermediatestress, the creep characteristic and influencing factors, the creep mechanism are analysed. Andthese are prepared for the comparison with mechanics properties of rock containing water.
     (2) Water’s impact on mechanics characteristic of rock is studied. Homotaxial and triaxialcompression experiment under different water containing statuses and triaxial creep experimentunder different water containing statuses and different pore pressure are conducted. Theinfluence of different water ratio and pressure on the mechanics characteristic of oil shale isstudied.
     (3) With the analysis of basic mechanical characteristic and creep characteristic of oil shale,based on Burger model, combining Berger model and a plastic component which fits plastic flowlaw, an improved Burger model, which is cvisc model, is built. Based on the result of saturatedwater creep experiment, making use of non-linear least squares, the changing regularity of creepparameters adapted to time and stress in cvisc model has been analyzed, and the relationalexpression about creep parameters changing with time and stress has been established, and thencreep equation of oil shale is established, considering timeliness and saturated conditions.
     (4) Combining the fluid-solid coupling equations and the creep equations under saturatedcondition, the seepage-creep coupling mechanical model considering timeliness is built. And theprogram of this model is developed under the secondary development platform of FLAC3D. By solving this program with numerical method, the surrounding rock creep deformationcharacteristics under the water-rock coupling interaction condition and creep control effect aresimulated.
     (5) Based on theoretical analysis, laboratory experiment and numerical simulation, couplingsupport scheme centering on drill grouted anchor bar is put forward. Field test is performed inthe surrounding rock controlling test section of main haulage roadway of the first well in JilinHuadian oil shale mine. On the site practice, coupling support scheme centering on drill groutedanchor bar has a positive effect on the control of surrounding rock which is under gleization andit offers experience for the deformation control of very soft surrounding rock.
引文
[1]施国泉.一种现实的石油替代能源—油页岩[J].吉林大学学报(地球科学版).2006,3(6):888-891.
    [2]游君君,叶松青,刘昭君.油页岩的综合开发与利用[J].世界地质.2004,23(3):261-265.
    [3]柳蓉,刘昭君.国内外油页岩资源现状及综合开发潜力分析[J].吉林大学学报(地球科学版).2006,36(6):892-898.
    [4]刘昭君,柳蓉.中国油页岩特征及开发利用前景分析[J].地学前缘.2005,12(3):315-322.
    [5] U.S.Department of energy.Strategic significance of America’s oil shale resource,volume[M].washinton D C:[s.n.],2004.
    [6] Brendow Dr K.Globe oil shale issues and perspectives,Synthesis of symposium on oilshale[M].Tallinn(Estonra):[s.a.],2002.
    [7]高健.世界各国油页岩干馏技术简介[J].煤炭加工与综合利用,2003(2):44-46.
    [8]陈殿义.国内外油页岩开采方法和利用现状[J].吉林地质,2005,24(4):85-91.
    [9]刘昭君,董清水,叶松青等.中国油页岩资源现状[J].吉林大学学报(地球科学版).2006,36(6):869-874.
    [10]Papamichos E,Ringstad C,Brignoli M,et al.Modeling of partially saturated collapsiblerocks.In Proc.Eurock’96.Rotterdam,Balkema,1996,221-229.
    [11]Horsrund P,Holt R M,Sonstebo E F.Time dependent borehole stability:laboratory studies andnumerical simulation of different mechanism in shale.In Proc.Eurock’94.Rotterdam,Balkema,1994,259-266.
    [12]Chan K S.A damage mechanics treatment of creep failure in rock.International Journal ofDamage Mechanics,1997,(6):122-152.
    [13]Ito H,Sasajima S.A thirty year creep experiment on small rock specimens.International Journalof Rock Mechanics and Mining Sciences,1987,24(2):113-121.
    [14]Haupt M.A constitutive law for rock salt based on creep and relaxation tests.Rock Mechanicsand Rock Engineering,1991,(24):179-206.
    [15]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程.岩石力学与工程学报,1991,10(4):299-312.
    [16]郭志.软岩流变过程与强度研究.工程地质学报,1996,4(1):75-79.
    [17]郭志.软岩力学特性研究.工程地质学报,1996,4(3):79-84.
    [18]杨建辉.砂岩单轴受压蠕变试验现象研究.石家庄铁道学院学报,1995,8(2):77-80.
    [19]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究.岩石力学与工程学报,1995,14(1):39-47.
    [20]陈有亮,孙均.岩石的流变断裂特性[[J].岩石力学与工程学报,1996,15(4):323-327.
    [21]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析.岩石力学与工程学报,1996,15(4):312-322.
    [22]Xu P,Yang T Q.A study of the creep of granite.In:Proc.Of IMMM'95.Bejing:InternationalAcademic Publishers,1995,245-249.
    [23]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究.岩土工程学报,1996,18(4):246-251.
    [24]许宏发.软岩强度和弹模的时间效应研究.岩石力学与工程学报,1997,16(3):246-251.
    [25]孙钧.岩石流变力学及其工程应用研究的若干进展.岩石力学与工程学报:2007,26(6):1081-1106.
    [26]孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999:1-3.
    [27]徐平,丁秀丽,全海,等.溪洛渡水电站坝址区岩体蠕变特性试验研究.岩土力学,2003,24(增1):220-226.
    [28]赵永辉,何之民,沈明荣.润扬大桥北锚旋岩石流变特性的试验研究.岩土力学,2003,24(4):583-586.
    [29]李化敏,李振华,苏承东.大理岩蠕变特性试验研究.岩石力学与工程学报,2004,23(22):3745-3749.
    [30]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究.岩石力学与工程学报,2005,24(15):2659-2664.
    [31]宋飞.石膏角砾岩非线性流变模型研究及有限元分析[博士学位论文].西安:长安大学地质工程系,2006.
    [32]徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果.岩土力学,2005,26(4):531-537.
    [33]赵延林,曹平,文有道,等.岩石弹粘塑性流变试验和非线性流变模型研究.岩石力学与工程学报,2008,27(3):477-486.
    [34]范广勤.岩土工程流变力学.北京:煤炭工业出版社,1993.
    [35]刘雄.岩石流变学概论.北京:地质出版社,1994.
    [36]Chan K S.A damage mechanics treatment of creep failure in rock.International Journal ofDamage Mechanics,1997,(6):122-152.
    [37]袁龙蔚.流变力学.北京:科学出版社,1986:49-123.
    [38]王来贵,黄润秋,王永嘉,等.岩石力学系统运动稳定性理论及其应用.北京:地质出版社,1998.
    [39]吕学清.岩体工程变参数流变计算方法.武汉工业大学学报,1987,(2):201-207.岩体工程变参数流变计算方法.武汉工业大学学报,1987,(2):201-207.
    [40]宋德彰.岩质材料非线性粘塑性蠕变属性的研究.同济大学学报,1993,21(1):27-34.
    [41]邓荣贵,周德培,张悼元,等.一种新的岩石流变模型.岩石力学与工程学报,2001,20(6):780-784.
    [42]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比.重庆大学学报,2002,25(7):96-98.
    [43]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型.岩石力学与工程学报,2002,21(5):632-634.
    [44]陈沅江.岩石流变的本构模型及其智能辨识研究[博士学位论文].长沙:中南大学资源与安全工程学院,2003.
    [45]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型.岩土力学,2003,24(2):209-214.
    [46]陈沅江,潘长良,曹平,等.一种软岩流变模型.中南工业大学学报(自然科学版),2003,23(1):16-20.
    [47]徐卫亚,杨圣奇,褚为江.岩石非线性粘弹塑性流变模型(河海模型)及其应用.岩石力学与工程学报,2006,25(3):433-447.
    [48]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数识别.岩土力学学报,2004,25(增):37-40.
    [49]赵延林,曹平,文有道,等.岩石弹粘塑性流变试验和非线性流变模型研究.岩石力学与工程学报,2008,27(3):477-486.
    [50]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程,岩土力学学报,
    [51]崔少东.岩石力学参数的时效性及非定常流变本构模型研究.[博士学位论文].北京:北京交通大学土木建筑学院,2010.
    [52]Chugh Y P,Missavage R A.Effects of moisture on strata coal mines. Engineering Geology,1981,(17):241-2553.
    [53]Dyke C G,Dobereiner L.Evaluating the strength and deformability of sandstone.QuarterlyJournal of Engineering Geology,1991,(24):123-134.
    [54]Hawkins A B,McConnell B J.Sensitivity of sandstone strength and deformability tochanges inmoisture content.Quarterly Journal of Engineering Geology,1992,(25):115-130.
    [55]孙钧.三峡工程永久船闸边坡岩体弹粘塑性时空效应及对工程稳定的影响—专题研究总报告.同济大学岩土工程研究所,1999.
    [56]周瑞光,成彬芳.糜棱岩流动变形与含水量的关系.工程勘察,1997,(5):34-37.
    [57]周瑞光,成彬芳.断层泥蠕变特性与含水量的关系研究.工程地质学报,1998,6(3):218-222.
    [58]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究.岩石力学与工程学报,2002,21(12):1791-1796.
    [59]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究.岩石力学与工程学报,2003,22(10):1673-1677.
    [60]刘光廷,胡昱,陈凤歧,等.软岩多轴流变特性及其对拱坝的影响.岩石力学与工程学报,2004,23(8):1237-1241.
    [61]Guo S.,Stankus J.Control mechanism of a tensioned bolt system in the laminated roof withalarge horizontal stress[A].16th Int.Conf.on Ground Control in Mining,Morgantown,WestVirginia,1997.
    [62]Stankus J.,Guo S.Computer automated finite element analysis-a powerful tool for fast minedesign and ground control problem diagnosis and solving[A].5th Conf.on the Use of Computersin the Coal Industry,Morgantown,West Virginia,1996.
    [63]郭富利,张顶立,苏洁,等.地下水和围压对软岩力学特性影响的试验研究.岩石力学与工程学报,2007,26(11):2327-2332.
    [64]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.
    [65]陈宗基.应力释放对开挖工程稳定性的重要影响[J].岩石力学与工程学报.1992,1(11):1-10.
    [66]杨彩红,王永岩,李剑光,等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699.
    [67]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆大学,2010.
    [68]王贵荣,任建喜.基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版),2006,26(6):48-51.
    [69]王来贵,赵娜,何峰.软岩的非线性蠕变模型剪切稳定性分析[J].辽宁工程技术大学学报,2006,25(5):680-682.
    [70]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214.
    [71]熊良霄,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版),2010,41(2):679-684.
    [72]吕爱钟,丁志坤,焦春茂.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(1):16-21.
    [73]崔少东.岩石力学参数的时效性及非定常流变本构模型研究[D].北京交通大学,2010.
    [74]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
    [75]袁海平,曹平,许万忠,等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [76]丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨别[J].岩土力学,2004,25:37-40.
    [77]熊良霄,杨林德.硬脆岩的非线性粘弹塑性流变模型[J].同济大学学报(自然科学版),2010,38(2):188-193.
    [78]熊良霄,杨林德,张尧.硬岩的复合黏弹塑性流变模型[J].中南大学学报(自然科学版),2010,41(4):1540-1548.
    [79]阎岩,王恩志,王思敬.岩石渗流-流变耦合的试验研究[J].岩土力学,2010,31(7):2095-2103.
    [80]丁秀丽.岩石流变特性的试验研究及模型参数辨识[D]中国科学院研究生院(武汉岩土力学研究所),2005.
    [81]ALAN R. HUFFMAN,The future of pore-pressure prediction using geophysical methods THELEADING EDGE FEBRUARY2002:199-205.
    [82]N. Phienwej, P. K. Thakur,and E. J. Cording, P.E..Time-Dependent Response of TunnelsConsidering Creep Effect [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS2007.7:296-306.
    [83]Griggs,D.T.,Creep of rocks,J.of Geol[J].1939,47:225-251.
    [84]Langer M.Rheological behavior of rock masses[J].Proc.of4th Cong.of ISRM,1979.
    [85]Ladanyi,B.In situ determination of creep properties of rock salt[J]. proc.of5th Cong.of ISRM,1983.
    [86]Ito H.Creep of rock based on long-term experimentes[J].Proc.of4th Cong.of OSRM,1983.
    [87]Ito H.and Sasajima S,A ten year creep experiment on small rock specimens[J].Int.J.RockMech.Min.Sci.Geomech.Abstr.1987,24(2):113-121.
    [88]Ito H,The phenomenon and examples of rock creep[J], In:Hudson,J.A,et al.(Eds.),Comprehensive Rock Engineering,vol,3.Pergamon Press,Oxford,1993,:693-708.
    [89]Okubo S, Nishimatsu Y.and Fukui K, Complete creep curves under uniaxialcompression[J].Int.J.Rock Mech.Min.Sci.Geomech.Absre,1991,28(1):77-82.
    [90]Korzeniowski W.Rheological model of hard rock pillar[J].Roch Mech.and Roch Engng.1991,24:155-166.
    [91]Matsumoto M,Tatsuoka F.Study of rheological modelling of creep behavior for sedimentarysoft rock[A].In: Proc.of the51th Annual Conference of the the Japan Society of CovilEngineers[C],1996,660-661.
    [92]Malan,D F,Vogler U W,Drescher K.Time-dependent behaviour of had rock in deep level goldmines[J].Journal of the South African Institute of Mining and Metallurgy,1997:135-147
    [93]Malan,D F,An investigation into the identification and modelling of time-dependent behaviourof deep level excavations in hard rock[D],University of the Witwatersrand,Johannesburg,South Africa,1998.
    [94]D.F.Malan.Time-dependen behaviour of deep level tabular excavations in hard rock[J].RockMech.Rock Engng.1999,32(2):123-155.
    [95]Maranini,E,Brignoli M,Creep behaviour of a weak rock:experimental characterization[J].Int.J.Rock Mech.Min.Sci,1996,36(1):127-138.
    [96]E.Maranini,Tsutomu Yamaguchi,A non-associated viscoplastic model for the behaviour ofgranite in triaxial compression[J].Mechanics of Materials,2001,33:283-293.
    [97]Senseny,P.E,Specimen size and history effects on creep of rock salt[C].In:Pcoc.of the1thConference on the Mechanical Behaviour of salt,1981,369-379.
    [98]G Vouille, S.M.Tijani and F.de Grenier, Experimental determination of the reologicalbehaviour of Tersanne rock salt[C],Proc.of the1th Conference on the Mechanical Behaviourof salt,1981,408-420.
    [99]Cornelins R.R., Scott P.A.A materials failure relation of accelerating creep as empiricaldescription of damage accululation[J].Rock Mech.and Rock Engng.1993,26(3):233-252.
    [100]Munson D.E., Constitutive model of creep in rock salt applied to underground roonclosure[J].Int.JRock Mech.Min.Sci.,1997,34(2):233-247.
    [101]Callahan G.D., Mellegard K.D., Hansen F.D., Constitutive behavior of reconsolidatingcrushed salt[J].Int.J.Rock Mech.Min.Sci.,1998,35(4-5):422-423.
    [102]Haupt M, A constitutive law for rock salt based on creep and relaxation tests[J].RockMech.and Rock Engng.1991,24:179-206.
    [103]仵彦卿.岩体水力学概述[J].地质灾害与环境保护,1995,6(1):57-64.
    [104]伍美华,柴军瑞,李亚盟.岩体水-岩耦合作用研究简述[J].工程勘察,2007,34-38.
    [105]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005,4.
    [106]沈珠江.理论土力学[M].北京:中国水利水电出版社,1999.
    [107]李广信.高等土力学[M].北京:清华大学出版社,2004,7.
    [108]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学[M].北京:科学出版社,2003.
    [109]Ali R.Nowrozi.Fractal theory and groundwater flow in fractured media[D].United States,University of Southern Califirnia,2003,5.
    [110]Itasca Consulting Group, Inc.Fluid-mechanical interaction-single phase fluid (FLAC3DVersion3.0)[M]. Minneapolis,Minnesota,2005.
    [111]王芝银,李云鹏.岩体流变理论及其数值模拟[J].北京:科学出版社,2008.
    [112]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].北京:中国矿业大学,2008.
    [113]陈育民,徐鼎平.FALC/FALC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [114]陈育民,刘汉龙.邓肯-张本构模型在FLAC-(3D)中的开发与实现[J].岩土力学,2007,(10).
    [115]孙建国,王芳其,程崇国.地下工程围岩稳定性的3D-FLAC位移分析[J].公路隧道,2007,(04).
    [116]王俊光,梁冰,鲁秀生,等.油页岩矿松软破碎围岩巷道变形机理及控制技术[J].煤炭学报,2010,35(4):546-550.
    [117]王亚男.油页岩巷道围岩变形规律的数值模拟研究[D].阜新:辽宁工程技术大学,2009.
    [118]刘志春,李文江,朱永全,孙明磊.软岩大变形隧道二次衬砌施作时机探讨[J]岩石力学与工程学报,2008,(03).
    [119]胡华.软弱岩土突发地质灾害的动态流变力学机理分析[J].灾害学.2005(04).
    [120]王永岩,李剑光,魏佳等.黏弹性有限元反分析方法及其在软岩流变问题中的应用[J].煤炭学报.2007,(11):1162-1165.
    [121]高廷法,曲祖俊,牛学良等.深井软岩巷道围岩流变与应力场演变规律[J].煤炭学报.2007,(12):1244-1252.
    [122]包兴胜.软岩巷道流变稳定性研究[J].采矿技术.2007(2):34-35.
    [123]南培珠,宋永杰,王金安.基于流变分析的软岩回采巷道全程变形规律研究[J].中国矿业.2009(04).
    [124]王俊光,梁冰.油页岩地下开采巷道围岩流变特性及工程应用[J].防灾减灾工程学报.2010,30(6):685-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700