用户名: 密码: 验证码:
过氧化氢的测定方法及其在光催化氧化技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用离子色谱仪和流动注射电导检测法原理,建立了一种新的测定过氧化氢的方法。在该方法以及荧光、化学发光法测定过氧化氢的基础上设计构思了三套过氧化氢自动连续监测系统。同时利用二氧化钛光催化氧化来降解苯酚废水及染料废水,对污染物的降解情况进行了测定。在苯酚降解过程中,利用已经建立的新方法对过氧化氢残留浓度进行了测定,结合氧化过程中过氧化氢分解情况和苯酚降解效率,对光催化氧化机理进行了初步的探讨。
     1 利用离子色谱仪流动注射-电导检测法测定过氧化氢的方法研究
     实验以H_2SO_3与H_2O_2反应生成H_2SO_4产生的电导变化与H_2O_2的量呈线性关系为理论依据,根据流动注射原理将现有离子色谱仪改装成流动注射仪测定过氧化氢。此方法有很好的重现性,8次进样所得相对标准偏差小于2.6%,所得结果稳定,其检测下限为0.5mg/L,标准曲线的相关系数达0.9995。本实验对某些分析条件,诸如H_2SO_3的浓度和流速、样品用量、反应管长度等因素进行了探讨。由于实际样品中因存在不同离子而具有不同背景电导,因而在测定实际样品时采用经过过氧化氢酶处理的样品作空白,以此消除背景电导的干扰。
     2 过氧化氢自动连续监测系统的设计
     2.1 电导法自动连续监测水中H_2O_2系统的设计
     在上述流动注射-电导检测法测定过氧化氢的原理基础上,提出了双通道自动连续监测过氧化氢的监测系统,其中一个通道以过氧化氢酶分解过氧化氢后的电导值作空白,另一通道测定过氧化氢和H_2SO_3反应之后的电导值,两个通道之间电导值之差即可得出过氧化氢浓度,通过蠕动泵的输送,系统能自动连续测得两个管路中的信号值。该系统有望用于水处理过程中过氧化氢浓度的自动连续监测。
     2.2 荧光法自动连续监测水中H_2O_2系统的设计
     荧光法测定过氧化氢是以过氧化物酶催化作用下过氧化氢使对羟基苯甲酸生成荧光物质,而过氧化氢浓度与荧光强度成正比来测定过氧化氢浓度。由于过氧化物酶也同样催化有机过氧化物形成荧光衍生物,为了区别过氧化氢和其它过氧化物,运用双通道化学流动体系来测定过氧化氢,一个通道测总过氧化物浓度,另一通道先通入过氧化氢酶,利用过氧化氢酶使过氧化氢在催化生成衍生物之前就分解完全以消除
    
     浙江大学硕土学位论文
     HZOZ测得ROOH浓度,两各差值即为HZOZ浓度。迎过I”l动连续蠕动泵的输送,系
     统能自动连续测得两个管路中的信号值。在前人工作的基础上作者将该法应用于水处
     理中HZOZ自动监测系统的设计。
     2.3 化学发光法自动连续监测水中比 系绞的设计
     据报道KIO4与HZOZ在碱性条件下反应能产生化学发光,加入KZCO3能使化学
     发光强度增加从而用来测定过氧化氢。该方法的检测限jJSX10{ffiOVLHZOZ,4X10
     ’molANZO。的相对标准偏差(RSD,11二 14)为工8%。该方法选择性高、灵敏度好,
     许多过渡金属对测定没有干扰【’‘],克服了传统鲁米诺化学法光方法的弊端。作者在该
     方法的基础上设计了化学发光体系连续自动监测水中H。O。的系统,井对不同系统进
     行了一定程度上的比较。
     3 光催化氧化过程
     3.1 过氧化氢的分解试验
     选用 fiOZ作为光催化氧化过程的催化剂,对 HZOZ在紫外光(UVL二氧化钛
     (TIOZ*紫外光和二氧化钛(UV + fiOZ)条件下的分解情况进行了试验,试验结果
     得到HZOZ在UV+TIOZ条件下分解最迅速,30分钟之内能分解80%以上,在紫外光
     照射下比TIOZ条件下分解要快,实验表明紫外光对HZOZ的分解作用比二氧化钛对其
     催化分解作用要明显,而紫外光和二氧化钛的共同作用大大加速了H。O。的分解。
     3.2 光催化氧化降解染料废水和苯酚废水
     以TIO。为光催化氧化的催化剂,对亚甲基蓝染料废水和苯酚废水进行光催化氧
     化试验,并在是否紫外光照、不同PH值、不同HZO。初始浓度和不同TIO。投加量下
     进行染料的脱色和苯酚的降解试验,得出了亚甲基蓝染料和苯酚废水在不同条件下的
     脱色和降解效率,并初步探究了原因。
     在苯酚废水光催化氧化过程中,用IIPLC和离子色谱仪流动注射电导法分别对苯
     酚浓度和残留过氧化氢浓度进行测定,得出了苯酚的降解效率和降解过程中过氧化氢
     浓度的变化,并对变化机理和中间产物进行了初步的讨论。
In this thesis, a new method for determination of hydrogen peroxide using a modified ion chromatograph based on the flow injection analysis principle was developed. Three sets of automatic and continuous mornitoring systems for controlling the concentration of HaCh during water treatment were designed. Dye wastewater and phenol wastewater were treated with photocatalytic oxidation. During the reaction of phenol wastewater the residual concentrations of H2O2 were determined using the new method. According to the relationship between the residual H2O2 and the reaction efficiency, mechanism of photocatalytic reaction of TiOi was discussed.
    1 A study on the determination of hydrogen peroxide based on the flow injection analysis-conductivity method with a modified ion chromatograph
    A new method for the determination of hydrogen peroxide using a modified ion chromatograph with a conductometric detector based on the flow injection analysis principle was developed. In this study HjSOj is used as carrier liquid which reacts with HzOz to produce H2SO4 and the conductivity change between FfeSCb and H2SO4 has a good linearity with the concentration of hydrogen peroxide. The results showed the repeatability of 8 times was less than 2.6%, the lowest detectable concentration was 0.5mg/L and the relationship coefficient was 0.9996. The effects of H^SOs concentration, injection volume, reactor length on the results were also discussed. In order to eliminate the interference of the conductivity of other ions in water catalase was used to decompose the I-bC^ for the blank.
    2 Design of automatic and continuous mornitoring systems for controlling the concentration of H2O2 during water treatment
    2.1 Automatic and continuous mornitoring system for controlling the concentration of HjOi with conductometric detector
    According to the study of the determination of hydrogen peroxide using flow injection
    ?.
    analysis-conductometric method, an automatic and continuous mornitoring system for controlling the concentration of HaOa with conductometric detector was designed. A ual-channel flow system with a dual-cell conductometric detector is utilized. In one
    
    
    
    channel the enzyme catalase is added, which selectively destroys hydrogen peroxide before the oxidation reaction between HiOz and HiSOs. This channel therefore provides an analytical blank for the determination of hhOj. There is no enzyme catalase in another channel. The difference of these two signals is recorded simultaneously by the system. The whole system is run automatically by means of peristaltic pumps.
    2.2 Automatic and continuous mornitoring system for controlling the concentration of HjOz with fluorometric detector
    This technique is based on the selective catalysis of H2O2 which can react with
    (p-hydroxyphenyl) acetic acid (POPHA) and produce a dimeric product
    (6,6'-dihydroxy-3,3'-biphenyldiacetic acid). The dimeric product has strong fluorescence
    with a peak excitation wavelength of 320 nm and a peak emission wavelength of 400 nm.
    The peroxide concentration is directly proportional to the fluorescence intensity.
    Peroxidase also catalyzes the reaction of organic hydroperoxides to form the fluorescence dimmer. In order to distinguish HiOi from organic hydroperoxides, a dual-channel flow system with a dual-cell fluorometer is utilized, hi one channel the enzyme catalase is added, which selectively destroys hydrogen peroxide before the peroxide-catalyzed reaction occurs. This channel therefore provides an analytical blank for the determination of HaC^. There is no enzyme catalase in another channel. The difference of these two signals is recorded simultaneously by the system. The whole system is run automatically by means of peristaltic pumps.
    2.3 Automatic and continuous mornitoring system for controlling the concentration of HjOa with chemiluminescent detector
    It is reported that KIO/rK^COa system which produces strong chemiluminescent signals can be used to determine HaC^. It
引文
1 梁旭霞译,Soap Cosmetics Chemical Specialities, 1994, 1, 50~54
    2 邓南圣,吴峰,田世忠,天然水中过氧化氢生成及其光化学反应的研究进展,环境科学进展,1997,5(6):1~9
    3 Low RS et al. Physiologia Plantarum, 1996, 96:533--542
    4 Flidovich I Science BU, 1994:1--9
    5 Auh Ck et al. Plant Physiol, 1995, 107: 1241-1247)
    6 俞绍才,大气和降水中过氧化氢的测定方法,中国环境监测,1992,8(4),49
    7 周丰举,环境中微量过氧化氢分析方法,黎明化工,1991,4:23~25
    8 徐晓斌等.环境科学情报,1985(6):14
    9 张国芳、陈洪渊,流动注射胶束电化学发光测定过氧化氢的研究,分析科学学报,17(1):1~5
    10 osanna Toniolo, Paola Geatti,Gino Bontempelli et al. Jounal of Electroanalytical Chemistry,2001,14:123~128
    11 P. Westbroek, E. Temmerman et al. Analytica Chimica Acta 1999,385:423~428
    12 L. Campanella, R. Roversi et al. Journal of Pharmaceutical and Biomedical Analysis, 1998,18:105~116
    13 Keiko, Yamamoto, Takanori Ohgaru, Analytica Chimica Acta,2000,406:201~207
    14 A. Schwake, B. Ross et al. Sensor and Actuators, 1998, B, 46:242~248
    15 章亚彦,林荔,苏必桔,碘化钾碘蓝分光光度法测定微量过氢化氢,分析实验室,2001,20(4):41~42
    16 白林山,陈庆,PADAP分光光度法测定雨水中微量过氧化氢,环境科学与技术,1996(4):20~23
    17 Bulmi.Analysis,1988,61:185
    18 高甲友,秦希亚,流动注射—分光光度法测定痕量过氧化氢,分析化学,1995,23(6):678~680
    19 D. Janasek, U. Spohn et al. Sensor and Actuators B 1998 51:107~113
    20 Jin-Ming Lin, Hajime Arokawa et al. Analytica Chimica Acta 371(1998)171~176
    21 David Price, R. Fauzi, C. Mantoura et al. Analytica Chimica Acta, 1998, 371:205~215
    22 谢光华、黄岗,化学发光法测定过氢化氢条件的优化,分析化学,1991,19(7):823~825
    23 Quanli Ma, Huimin Ma, Talanta, 2001, 53:983~990
    24 W L, Miller Anal. Chem., 1988, 60:2711
    
    
    25 朱昌青,李东辉等,厦门大学学报(自然科学版),2001,40(1)
    26 朱昌青,四磺基锰酞营催化高香草酸与过氧化氢荧光反应的研究,安徽农业大学学报,2000,27(3),294~279
    27 李巍等.环境化学,1987,6(6):12
    28 Yuan--zong Li, Alan Townshend, Analytica Chimica Acta, 1998, 359:149~156
    29 obayyashi Keiko, J Chromatography, 1982(2):339
    30 Stefan, Analytica Chimica Acta 1998, 363:97~103
    31 萧安民编译,Food Processing, 1993, 10:59~65
    32 钟理 郭江海 高桂田 李琼 李小莹 吕扬效,化学反应工程与工艺 1998,14(3)
    33 Fenton, H. J. H, J. Chem. Soc. 1894, 65
    34 徐云侠,过氧化氢在水处理中的应用,《无机盐工业》1984,27(3),27—36
    35 王炳坤等 采用Fenton试剂处理废水中难降解的苯胺类化合物,《环境化学》,1987,6(3),80--83
    36 阮爱珍,利用H_2O_2和FeSO_4处理环氧大豆油生产的废水,广州化工,98,26(1)
    37 鲁军,刘兆骏、谭福先、王莉,过氧化氢催化氧化处理含氯酚废水的研究,华东理工大学学报 1998,24(1)
    38 Malaiyandi, M. Water Research, 1984, 141131--1136
    39 欧阳福承等,UV+H_2O_2+Fe~(2+)处理焦化废水中难降解的有机毒物的研究,《环境科学研究》1990,3(1),20-2538
    40 杨文忠、陈戈、王海峻,Fenton试剂和紫外光--Fenton试剂联合作用处理硝基苯废水,南京化工大学学报,1998,20(1):24~28
    41 至全罗、张克荣、李崇福等,中国卫生检验杂志,2000,2(10):10
    42 翟由涛,臭氧过氧化氢在水处理中的应用,环境科学技术,1991,4(1):21~22
    43 朱粹敏、严煦世,紫外——过氧化氢法去除饮用水三氯甲烷的研究,上海环境科学,1991,10(1):3~5
    44 汪兴涛,紫外一过氢化氢法对染料废水的脱色,上海环境科学,1995,14(8):16~20
    45 钟理,O_3/H_2O_2氧化处理废水中污染物及其动力学模型,华南理工大学学报(自然科学版
    46 钟理、郭江海、高桂田、李琼、李小莹、吕扬效,三氯乙烯O_3/H_2O_2化学氧化过程,化学反应工程与工艺,1998,14(3):313~319
    47 钟理,胡孙林,氯乙烯废水AOPs过程及其反应动力学,化工科技,2000,8(5):1~4
    48 黄玉明,李天安,章烟君,西南师范大学学报,TiO_2光催化降解印染废水的研究,1999,24(4):443~448
    
    
    49 国伟林、王西奎、许崇娟、郑礼胜、王士龙,光催化氧化法去除水中的酚类物质,山东建材学院学报,1998,12(2):107~108
    50 刘正宝,姚清照,光催化氧化技术及其发展,工业水处理,1997,17(6):7~8
    51 吴海宝,半导体一水体系光催化氧化有机物机理及应用,环境污染与防治,1996,18(2):40~44
    52 施利毅,李春忠,二氧化钛超细粒子的制备及其光催化降解含酚溶液,华东理工大学学报,1998,24(3):291-297
    53 邓慧华,陆祖宏,半导体光催化杀菌的机理和应用,东南大学学报,1996,26(6A):1~6
    54 李天琪、卢义程,染料废水湿式氧化技术,工业用水与废水 1999,30(1)
    55 李伟,范瑾初等,超声一过氧化氢技术降解水中4—氯酚,中国给排水,2000,16(2):1~4
    56 周书天、杨润昌、黄明、谢磊,湿式过氧化氢氧化处理高浓度染料废水的工艺研究,重庆环境科学,2001,23(2):62~66
    57 吴林友、曹中秋、韩光喜,程殿柱,蒋湘顺,催化氧化处理糠醛废水,中国环境科学 1999(2)183—184
    58 关汇川,用磷酸—过氢化氢混合液去除废水中的氢化物,黎明化工,1996,4:11~13
    59 李硕文,活性炭吸附—H_2O_2氧化法处理染色废水的实验研究,化工环保,1997,17:131~135
    60 关汇川,过氧化氢在控制空气污染中的应用,黎明化工,1991(2):5~10
    61 金静英,双氧水发展应用近况,开发与应用,97(5):22~25)
    62 周克钊,西南给排水,1999,5,5~12
    63 含晶,张涛,用于过氧化氢分解的锰铅复合氧化物催化剂,催化学报,2000,21(6):600~604)
    64 林道汉,许绍权,绿色氢化剂过氢化氢,化学教育,2000(10):1~4
    65 雷乐成,汪大翚著,水处理高级氧化技术,化学工业出版社
    66 Matthews R. Hydroxylation Reactions induced by near-Ultraviolet photolysis of aqueous titanium dioxide suspensions, J. Chem. Soc. Faraday Trans.Ⅰ. 1984, 80:457~463
    67 Romero et al., Solar photocatalytic degradation of water and air pollutants:challenge and perspectives. Solar Energy, 1999,66:169~182
    68 Gr tzel C.K. et al., Decomposition of organophosphons compounds on photoactivated TiO_2 surfaces. J. Mol. Catal. 1990,60,375~387
    69 Petizzetti et al., Enhancement of the rate of photocatalytic degradation on TiO_2 of 2-chlorophenol,2,7-dichlorodibenzodioxin and atrazine by inorganic oxidizing species. N. J. Chem. 1990,15,351~359
    
    
    70 Malato S., et al., Enhance of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Appl. Catal. B: Environ. 1998,17,347~356
    71 牟世芬,刘克纳编著,离子色谱方法及应用,化学工业出版社
    72 Fang Zhaolun et al., J. Anal. Atom. Spectrom., 1992,7:239
    73 Ruzicka J, Hansen E. H. Anal. Chim. Acta. 1975, 78:145~147
    74 马惠昌,流动分析技术的发展,分析仪器,1994,3:1~4
    75 齐文启等,干旱环境监测,16(4),202(1992)
    76 周增柟,陈健,中国纺织大学学报,1990,16(2)79~81
    77 王凯雄,臧荣春,何增耀.分析化学,1992,20(1):19~22
    78 Kaixiong Wang, William H. Glaze. Journal of Chromatography A, 1998, 822:207~211
    79 方肇伦,分析化学,1980;9(3):369
    80 Zhu Yan, Wang Sufeng, Liu Weiping. LCGC. 2000,18(2):200~204
    81 Allan L. Lazrus, Gregory L. Kok. American Chemical Society. 1986, 57:917~919
    82 Allan L. Lazrus et al.,Anal. Chem.,1985,57:917~922
    83 祝红兵,周淑晶,H_2O_2的分解过程影响因素及其稳定剂,佳木斯大学学报,2000,18(4):385~389
    84 孙福侠、吴鸣等,纳米TiO_2光催化降解苯酚的动力学研究,催化学报,1999,20(3):301~304
    85 黄玉明,刘希东,李天安,吴友谊,活性炭吸附下TiO_2光催化降解苯酚的研究。西南师范大学学报,1999,24(1):50~53)
    86 曹亚安,吴越,TiO_2纳米颗粒薄膜光催化降解苯酚的研究,科学通报,1998,43(9):1004~1005)
    87 Pelizzetti et al., Comments Iorg. Chem. 1994, 15(5&6):297~337
    88 吴祖成,李伟,UV/H_2O_2系统光催化氧化苯酚废水,化工学报,2001,52(3):277~280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700