用户名: 密码: 验证码:
除草剂2,4-D的O_3、O_3/H_2O_2高级氧化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药污染成为近年来水环境保护领域的研究热点,苯氧羧酸类除草剂2,4-D是一种使用地域较广应用时间较长的农药,为潜在致癌物,其氯代中间产物毒性较高,可污染水体,对自然环境和人类健康造成威胁。本文主要采用臭氧化、臭氧/过氧化氢高级氧化技术,选择2,4-D为模型污染物配制模拟废水,进行动力学、机理研究,关注水质特性对2,4-D的O_3、O_3/H_2O_2氧化降解的影响,同时初步探讨臭氧/超声波联合降解2,4-D,进行臭氧化高级氧化技术的基础研究。
     对2,4-D的O_3、O_3/H_2O_2氧化过程进行影响因素分析,考察反应温度、溶液pH值、2,4-D初始浓度、气体流量、H_2O_2投加量等因素对降解效果的影响,探讨较合适的条件,考察O_3和H_2O_2之间的协同作用,比较O_3、O_3/H_2O_2氧化的效果。结果表明反应温度、溶液pH值、H_2O_2投加量影响较大,气体流量影响最小,随着温度升高、pH值升高、气体流量增大、2,4-D初始浓度降低、H_2O_2投加量增大,2,4-D降解速率提高。O_3/H_2O_2体系比O_3体系稳定,O_3和H_2O_2之间具有协同作用,H_2O_2可促进O_3分解产生·OH,反应增快,降解时间缩短,反应条件温和,易于操作和改进,降低操作费用。因此O_3/H_2O_2体系更为经济有效,对降解2,4-D等有机物具有良好的运用前景,更具实用价值。
     对臭氧分子直接氧化2,4-D动力学进行考察,2,4-D是可解离有机物,水溶液里呈现解离态和分子态两种,解离态的反应速率常数比分子态高,因此基于溶液中有机物解离程度,涵盖有机物的解离态、分子态反应的直接氧化动力学模型能比较好的模拟实验情况。进行2,4-D的O_3、O_3/H_2O_2氧化反应动力学研究,2,4-D降解符合拟一级动力学,有机物降解主要是羟基自由基间接氧化,在拟一级动力学反应速率常数基础上建立总动力学模型,适合于2,4-D实际氧化过程的预测。
     研究2,4-D的O_3、O_3/H_2O_2氧化降解机理,对反应过程中的羟基自由基浓度和作用进行分析,结果表明2,4-D降解主要是羟基自由基起主导作用,O_3/H_2O_2体系产生的羟基自由基比O_3体系多。借助GC-MS、HPLC、IC等分析手段,测定2,4-D降解中间产物,经过合理简化和假设,跟踪反应时间内2,4-D降解的主要中间产物类的浓度变化和动力学趋势,提出2,4-D分解为含氯有机物、无氯芳香族化合物、小分子有机酸等几类中间产物的氧化反应模式及脱氯模型,研究结果表明较为复杂的交叉式降解路径能更好的说明试验结果。在单独O_3过程中可观察到有H_2O_2产生,在O_3/H_2O_2体系里则伴随H_2O_2产生和分解的过程,考察H_2O_2产生动力学模型,可以借此认识H_2O_2在O_3、O_3/H_2O_2氧化中的作用。
The treatment of pesticide pollutants is one of the hotspots in water environmental protection. 2,4-dichlorophenoxyacetic acid, a chlorophenoxy herbicides, is the most widely used herbicide worldwide due to its low cost and high effectiveness. In recent years, 2,4-D has become one of the most common surface and groundwater pollutants. The World Health Organization (WHO) considers chlorophenoxy herbicides, including 2,4-D, to be possible human carcinogens. The degradation of 2,4-D using O_3 and O_3/H_2O_2 advanced oxidation processes have been studied in this paper. The mathematical model of reaction kinetics and degradation mechanisms are derived and verified by the experiment. The effect of water qualities on 2,4-D degradation is investigated. The elementary study of 2,4-D degradation using O3/US combined technology is also carried out and the results are shown to be useful in the future research.Firstly, the influential factors such as temperature, pH levels, 2,4-D initial concentration, gas flow rate and hydrogen peroxide dose are investigated in order to find out felicity conditions in O_3 or O_3/H_2O_2 processes. Two treatments (O_3 and O_3/H_2O_2) are compared in the case of reaction efficiency which depends on the experimental parameters. The synergetic effects in O_3 and H_2O_2 in O_3/H_2O_2 combined technology are investigated. The results show that: 1) Temperature is the key factor of removal rate; 2) pH strongly affects the degradation process, and 3) Gas flow has very little influence on the efficiency of processes. Effectiveness of O3/H2O2 oxidation greatly depends on the H_2O_2 dosage. The degradation rate of 2,4-D increases with the increment of temperature, pH value, and hydrogen peroxide dose. The degradation efficiency is enhanced when 2,4-D initial concentration is decreased. Gas flow rate has both positive and negative influence on reaction; therefore, its overall effect is not evident. Compared with O3 process, O3/H2O2 greatly increases the removal efficiency of 2,4-D. The synergy of O3 and H_2O_2 is proved by the experiment. Hydrogen peroxide is the initiator of ozone decomposition chain reaction to generate hydroxyl radical. Hence, greater amounts of hydroxyl radicals are generated by the O_3/H_2O_2 system than ozonation alone. O_3/H_2O_2 has more advantages such as excellent degradation effectiveness, faster removal rate, more moderate conditions and lower operating cost than O3 system. O_3/H_2O_2 technology is an excellent advanced oxidation process in removal of 2,4-dichlorophenoxyacetic acid, and appeared to be more applicable for the treatment of wastewater.Secondly, the reaction kinetics of O3 and O_3/H_2O_2 processes are studied. This includes the kinetics of direct oxidation with ozone molecule and indirect oxidation with hydroxyl radical. The direct oxidation process is performed using radical scavenger to inhibit indirect oxidation. 2,4-D dissolved in water is dissociated to deprotonized and protonated species. The results show that reaction rate of dissociated species is fast than that of deprotonized species. It is confirmed through experiment that the relation of second-order rate constants is dependent on the degree of dissociation. A direct oxidation model in view of dissociation is proposed to predict 2,4-D degradation and proved to be agreeable to the simulated degradation. The overall degradation of 2,4-D follows the pseudo-first-order reaction. It has been found that the indirect oxidation of hydroxyl radical is dominant in 2,4-D degradation. Furthermore, the proposed overall kinetics model based on the observed psudo-fisrt-order kinetics is applied to
    practical operation, and verified by the experimental results. It is shown that the model is well constructed.In order to have a better understanding of the oxidation process, the degradation mechanism is studied for 2,4-D with ozone and ozone/hydrogen peroxide. The dominant active species is identified to be hydroxyl radical and the hydroxyl radical is determined. The results show that the radical plays the key role in 2,4-D degr
引文
[1] Niels H S, Benny K. Occurrence of pesticides in Danish shallow ground water. Chemosphere, 1998, 37(7):1307-1316.
    [2] Lagana A, Bacaloni A, Leva ID, et al. Occurrence and determination of herbicides and their major transformation products in environmental waters. Analytica Chimica Acta, 2000, 462:187-198.
    [3] Tibor C Esther F.Phenoxyacetic acids: Separation and quantitative determination,Journal of Chromatography B,1998, 717: 157-178.
    [4] 孙德智主编,于秀娟,冯玉杰副主编.环境工程中的高级氧化技术.北京:化学工业出版社环境科学与工程出版中心出版发行,2002,4.
    [5] von Gunten U. Ozoantion of drinking water: Part Ⅰ. Oxidation kinetics and product formation. Water Research, 2003,37: 1443-1467.
    [6] 陈英,张浩,钟理等.苯酚的O_3/H_2O_2化学氧化反应动力学研究.化学反应工程与工艺,2001,17(1):55-60.
    [7] 钟理,吕扬效,李小莹.废水中有机污染物高级氧化过程的降解.化工进展,1998,4:51-53.
    [8] 胡望钧主编.常见有毒化学品环境事故应急处置技术与监测方法.北京:中国环境科学出版社,1993:144-244.
    [9] 沈阳化工研究员环保室组织编写.农药废水处理.北京:化学工业出版社环境科学工程出版社,2000,9.
    [10] 沈景文.化肥农药和污灌对地下水的污染.农业环境保护,1992,11(3):137-139.
    [11] 单正军,朱忠林,华晓梅等.除草剂拉索对地下水影响研究.环境科学学报,1994,14(1):72-78.
    [12] 林玉锁,徐亦钢,石利利等.农药环境污染事故调查诊断方法研究.污染防治技术,1998,11(3):137-144.
    [13] 华小梅,单正军.我国农药的生产使用状况及其污染环境因子分析.环境科学进展,1996,4(2):33-45.
    [14] 刘丰茂编译,钱传范校.农药对地下水影响评价标准.世界农药,1999,21(5):55-58.
    [15] 曲格平.环境保护知识读本.北京:红旗出版社,1999,1.
    [16] 藤绳克之,周世杰.潜在的地下水污染源农药.水文地质工程地质译丛,1992,1:37-44.
    [17] Richards R P, Baker D B. Pesticide concentration patterns in agricultural drainage net works in the lake Erie basin.Environmental Toxicalogy and Chemistry.,1993, 12:13-26.
    [18] Thurman E M, Meyer M T. A reconnaissance study of herbicides and their metabolites in surface water of the mid-western United States using immunoassay and gas chromatography/mass spectrometry. Environmental Science & Technology, 1992, 26: 2440-2447.
    [19] Bester K. Atmospheric deposition of atrazine herbicides in north germany and germany bight. Chemosphere, 1995,30:1613-1653.
    [20] Siebers J. Pesticides in precipitation in northern Germany. Chemosphere, 1994, 28(8):1559-1570.
    [21] Cerejeira M J, Viana P, Batista S, et al. Pesticides in Portuguese surface and ground waters. Water Research, 2003, 37:1055-1063.
    [22] 陈坚,任洪强,堵国成,华兆哲编著.环境生物技术应用与发展.北京:中国轻工业出版社,2001,6.
    [23] 夏北成,李婉华,David S T等.两个分离菌株对2,4-D降解效率的微生态系统模拟.中山大学学报,2000,39(3):111-115.
    [24] Tian S Z, Liu Z, Weng J H, et al. Growth of chlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus. Chemospere, 1997, 35(11): 2713-2718.
    [25] 朱伟.农药工业三废处理技术的现状与进展.化工环保,1992,6(6):336-339.
    [26] 邱宇平,陈金龙等.超高交联树脂吸附处理2,4-D含酚废水的研究.工业水处理,2003,23(4):50-52.
    [27] Ghauch A, Gallet C, Charef A, et al. Reductive degradation of carbaryl in water by Zero-valent iron. Chemospere,2001, 42: 419-424.
    [28] Gregory D Sayles, Guanrong You, et al. DDT, DDD and DDE dechlorination by zero-valent iron. Environmental Science & Technology, 1997, 31:3448-3454.
    [29] Dombek T, Dolan E, Schultz J, et al. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environmental Pollution, 2001, 111:21-27.
    [30] 汪大翚,雷乐成.水处理新技术及工程设计.化学工业出版社,北京,2001:54-59.
    [31] Chu W, Wong C C. The photocatalytic degradation of dicamba in TiO2 suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research, 2004, 38:1037-1043.
    [32] Konstantinou I K, Sakkas V A, Albanis T A. Photocatalytic degradation of the herbicides propanil and molinate over aqueous TiO_2 suspensions: identification of intermediates and the reaction pathway. Applied Catalysis B: Environmental, 2001, 34: 227-239.
    [33] Lee J-C, Kim M-S, Kim B-W. Removal of paraquat dissolved in a photoreactor with TiO_2 immobilized on the glass-tubes of UV lamps. Water Research, 2002, 36:1776-1782.
    [34] Lopez A, Mascolo G, Tiravanti G, et al. Degradation of herbicides (ametryn and isoproturon) during water disinfection by means of two oxidants (hypochlorite and chlorine dioxide). Water Science and Technology, 1997, 35(4):129-136.
    [35] Lu M-C, Chen J-N, Chang C-P. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst.Journal of Harzardous Materials, 1999, B65: 277-288.
    [36] Lu M-C. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent. Chemospere, 1997, 35(10): 2285-2293.
    [37] Tsyganok A I, Otsuka K. Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt. Applied Catalytic B: Environmtal, 1999, 22:15-26.
    [38] Brillas E, Boye B, Banos M A, et al. Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere, 2003, 51: 227-235.
    [39] Schramm J D, Hua I. Ultrasonic irradiation of dichlorvos: Decomposition mechanism. Water Research, 2001, 35(3):665-674.
    [40] Inez H, Ulrike P-T. Ultrasonic irradiation of carbofuran: Decomposition kinetics and reactor characterization. Water Research, 2001, 35(6): 1445-1452.
    [41] Benitez F J, Acero J L, Real F J. Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 2002, B89:51-65.
    [42] Tahmasseb L A, Nelieu S, Kerhoas L, Einhorn J. Ozonation of chlorophenylurea pesticides in water: Reaction monitoring and degradation pathways. The Science of Total Environmental, 2002, 291:33-44.
    [43] Mascolo G, Lopez A, James H, Fielding M. By-production during degradation of isoproturon in aqueous solution.Ⅰ:Ozoantion. Water Research, 2001, 35(7): 1695-1704.
    [44] Ku Y, Lin H-S. Decomposition of phorate in aqueous solution by photolytic ozoation. Water Research, 2002, 36:4155-4159.
    [45] Zona R, Solar S, Gehringer P. Degradation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: influence of oxygen concentration. Water Research, 2002, 36:1369-1374.
    [46] 苏允兰,莫汉宏,安凤春.土壤中苯氧羧酸类除草剂的降解动态.环境科学,2000,21(6):92-94.
    [47] Eline P M, et al. Water quality control in the production of drinking water from river water. The application of immunological techniques for the detection of chlorophenoxy acid herbicides (2,4-D). Analytica Chimica Acta, 1995,311: 407-413.
    [48] Gandahi R, Wandji S, Snedeker S. Critical evaluation of cancer risk from 2,4-D. Rev. Environ. Contam. Tcoxicol.,2000, 167: 1-33.
    [49] Grabinska-Sota E, Wisniowska E, Kalka J, et al. Genotoxicological effect of some phenoxyherbicides and their metabolites on Bacillus subtilis M45 Rec-and H17 Rec+strains.Chemospere, 2002, 47:81-85.
    [50] Vainio H, Nickels J, Linnainmaa K. Phenoxy acid herbicides cause peroxisome proliferation in Chinese hamsters, Scand. J. Work Environ, Health, 1982, 8: 70-73.
    [51] Amer S M, Aly F A E. Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2,4-dichlorophenol in mouse. Mutation Research, 2001, 494: 1-12.
    [52] Venkov P, Topashka-Ancheva M, Georgieva M, et al. Genotoxic effects of substituted phenoxyacetic acids. Archives of Toxicology, 2000, 74: 560-566.
    [53] 曹罡,莫汉宏,安凤春.除草剂2,4-D在胡敏酸上的吸附.环境科学学报,2002,22(1):120-122.
    [54] McGhee I, Burns R G. Biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D)and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in contaminated soil. Applied Soil Ecology, 1995, 2:143-154.
    [55] Romero E, Dios G, Mingorance M D, et al. Photodegradation of mecoprop and dichlorpron on dry, moist and amended soil surfaces exposed to sunlight. Chemosphere, 1998, 37(7): 577-589.
    [56] Zertal A, Sehili T, Boule P. Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid: Influence of pH and irradiation wavelength. Journal of Photochemistry and Photobiology A: Chemistry, 2001,146: 37-48.
    [57] Topalov A, Abramovic B, Molnar-Gabor D, et al. Photocatalytic oxidation of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) over TiO_2. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140: 249-253.
    [58] Topalov A, Molnar-Gabor D, Kosanic et al. Photomineralization of the herbicide mecoprop dissolved in water sensitized by TiO_2. Water Research, 2000, 34(5): 1473-1478.
    [59] Horikoshi S, Hidaka H. Environmental remediation by an integrated microwave /UV-illumination technique Ⅳ.Non-thermal effects in the microwave-assisted degradation of 2,4-dichlorophenoxyacetic acid in UV-irradiated TiO_2/H_2O_2 dispersions. Journal of Photochemistry and Photobiology A: Chemistry, 2003 (159): 289-300.
    [60] Kwan C Y, Chu W. Photodegradation of 2,4-dichlorphenoxyacetic acid in various iron-mediated oxidation systems.Water Research, 2003, 37:4405-4412.
    [61] Wang Q Q, Lemley A. Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environmental Science & Technology, 2001, 35:4509-4514.
    [62] Yunho Lee, Changha Lee. High temperature dependence of 2,4-dichlorophenoxyacetic acid degradation by Fe~(3+)/H_2O_2 system.Chemosphere, 2003(51): 963-971.
    [63] Plgnatello J J. Dark and photoassisted Fe~(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide.Environmental Science & Technology, 1992, 26:944-951.
    [64] Tsyganok A I, Otsuka K. Electrocatalytic reductive reductive dehalogenation of 2,4-D in aqueous solution on carbon materials containing supported palladium. Electrochimica Acta,1998, 43(18):2589-2596.
    [65] Zona R, Solar S. Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxication and mineralization. Radiation Physics and Chemistry, 2003 (66): 137-143.
    [66] Zona R, Solar S, Gehringer P. Degradation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: influence of oxygen concentraion. Water Research, 2002, 36: 1369-1374.
    [67] Haberhauer G, Temmel B, Gerzabek M H. Effects of elevated ozone concentration on the degradation of dichloprop in soil. Chemosphere, 1999, 39(9): 1459-1466.
    [68] Chu W, Chan K H, Kwan C Y. Modeling the ozonation of herbicide 2,4-D through a kinetic approach. Chemosphere, 2004, 55: 647-652.
    [69] Piera E, Calpe J C. 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO_2/UVA/O_3 and Fe(Ⅱ)/UVA/O_3 systems. Applied Catalysis B: Environmental, 2000 (27): 169-177.
    [70] Brillas E, Calpe J C. Degradation of the herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe~(2+) and UVA light. Applied Catalysis B: Environmental, 2003 (46): 381-391.
    [71] Drzewicz P, Trojanowicz M, Zona R, et al. Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation. Radiation Physics and Chemistry, 2004, 69: 281-287.
    [72] Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology, 1985, 19:1206-1213.
    [73] Richardson SD, Thruston Jr. AD, Caughtran TV, et al. Identification of new ozone disinfection byproducts in drinking water. Environmental Science & Technology, 1999, 33: 3368-3377.
    [74] Richardson SD, Thruston Jr. AD, Caughtran TV, et al. Identification of new drinking water disinfection byproducts formed in presence of bromide. Environmental Science & Technology, 1999, 33: 3378-3383.
    [75] Sotelo J L, Beltran F J, Benitez F J, et al. Henry's law constant for the ozone-water system. Water Research, 1989,1239-1246.
    [76] Oyama S T. Chemical and catalytic properties of ozone. Catalysis Reviews-Science and Engineering, 2000,42(3):279-323.
    [77] Sheng H L, et al. Looking to treat wastewater-try ozone. Chemical Engineering, 1993,3:112-116.
    [78] 茂庭竹生.臭氧在净水处理中的效果与评价,臭氧水生成装置与应用技术.臭氧技术信息服务网,2000年12月.61-69.
    [79] Hoigne J et al. Rate constants of reaction of ozone with organic and inorganic compounds in water, Part Ⅱ,Dissociation organic compounds. Water Research, 1983,17:185.
    [80] Weiss J. Investigations on the radical HO_2 in solution. Tran. Far. Soc., 1935, 31: 668-681.
    [81] Czapski G et al. The formation and decay of H_2O_3 and HO_2 in electron-irradiated aqueous solution. Phys.Chem.,1963,67:2180-2184.
    [82] 徐新华,赵伟荣编.水与废水的臭氧处理.北京:化学工业出版社环境科学与工程出版中心,2003,10.
    [83] Tomiyasu H, Fukutomi H, Gordon G. Kinetics and Mechanisms of Ozone Decompo-sition in Basic Aqueous Solution.Inorganic Chemistry, 1985(24): 2962-2967.
    [84] Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide.Environmental Science & Technology, 1982; 16:676-681.
    [85] Sehested K, Holeman J, Bjergbakke E, Hart EJ. Formation of ozone in the reaction fo O_3- and the decaty of the ozonide ion radical t pH 10-13. Journal Physical Chemistry, 1984, 88: 269-273.
    [86] Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅲ,Inorganic compounds and radicals. Water Research, 1985, 19: 993-1004.
    [87] Staehelin J., Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reaction. Environmental Science & Technology, 1985, 19:1206-1213.
    [88] Chen S., Hoffman M. Z. and Parsons J. H. J. Reactivity of the carbonate radical toward aromatic compounds in aqueous solution.Journal Physical Chemistry, 1975, 79:1911-1912.
    [89] Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ.Non-dissociating organic compounds. Water Research, 1985, 19: 993-1004.
    [90] Trapido M, et al. Ozonation and advanced oxidation processed of polycyclic aromatic hydrocarbons in aqueous solution, a kinetic study. Environmental Science & Technology, 1995,16: 729-740.
    [91] 吕希伦编著.无机过氧化合物化学.北京:科学出版社,1987,9.
    [92] Staehelin J, Hoigne J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide.Environmental Science & Technology, 1982; 16:676-681.
    [93] Mokrini A, Ousse D, Esplugas S. Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide.Water Science and Technology, 1997, 35(4): 95-102.
    [94] 江举辉,虞继舜,李武等.臭氧协同产生·OH的高级氧化过程研究进展及影响因素的探讨.工业安全与环保,2001,27(12):16-20.
    [95] Sunder M, Hempel DC. Oxidation of tri- and perchloroethene in aqueous solution with ozone and hydrogen peroxide in a tube reactor.Water Research,1997,31(1):33-40.
    [96] 张文兵,肖肾明,傅家谟等.过氧化氢高级氧化技术去除水中有机污染物,中国给水排水,2002,18(3):89-92
    [97] 吕锡武等.光化学氧化钦用水中有面污染物,中国环境科学,1992,12(1):71.
    [98] Gulyas H, von Bismarck R, Hemmerling L. Treatment of industrial wastewaters with ozone/hydrogen peroxide.Water Science and Technology, 1995, 32(7): 127-134.
    [99] 杨志华,祝万鹏等.H_2O_2-O_3氧化法处理染料中间体H酸和1-氨基葸醌生成废液的研究.环境科学,1994,15(6):4-8.
    [100] Acero JL, Haderlein SB, Schmidt TC, et al. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation. Environmental Science & Technology,2001, 35: 4252-4259.
    [101] 陈英,张浩,钟理等.苯酚的O_3/H_2O_2化学氧化动力学研究.化学反应工程与工艺,2001,17(1):55-60.
    [102] 马军,石枫华.O_3/H_2O_2氧化工艺去除水中硝基苯的研究.环境科学,2002,23(5):67-71.
    [103] 马军,高金胜.O_3/H_2O_2系统对水中二苯甲酮的去除效能及其机理探讨.黑龙江大学自然科学学报,2003,20(1):86-91.
    [104] Yao C C D, Haag W R. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Research, 1991, 25: 761-773.
    [105] Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment. Water Research, 1998, 32(11): 3208-3222.
    [106] Nelieu S, Kerhoas L, Einhorn J. Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water. Environmental Science & Technology, 2000, 34: 430-437.
    [107] Teo K C, Xu YR, Yang C. Sonochemical degradation for toxic halogenated organic compoumds. Ultrasonic Sonochemistry, 2001, 8: 241-246.
    [108] Entezari M H, Petrier C, Devidal P. Sonochemical degradation of phenol in water: A comparison of classical equipment with a new cylindrical reactor. Ultrasonic Sonochemistry, 2003, 10:103-108.
    [109] Ragaini V, Selli E, Bianchi C L, Pirola C. Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques. Ultrasonics Sonochemistry, 2001, 8:251-258.
    [110] Naffrechoux E, Chanoux S, Petrier C, et al. Sonochemical and photochemical oxidation of organic matter.Ultrasonic Sonochemistry, 2000, 7: 255-259.
    [111] Hardcastle J L, Ball J C, Hong Q, et al. Sonoelectrochemical and sonocemical effects of cavitation: Correlation with interracial cavitation induced by 20 kHz ultrasound. Ultrasonic Sonochemistry, 2000, 7: 7-14.
    [112] Dahi E. Physicochemical aspects of disinfection of water by means of ultrasound and ozone. Water Research, 1976,10:677—684
    [113] Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology, 1998, 32: 2727-2733.
    [114] Kang J W, Hoffmann M R. Kinetics and mechanism of the sonolytic destructionof methyl ter-buryl ether by ultrasonic irradiation in the presence of ozone. Environmental Science & Technology, 1998, 32:3194-3199.
    [115] Weavers L K, Hoffmann M R. Sonolytic decomposition of ozone in aqueous solution: mass transfer effects.Environmental Science & Technology, 1998, 32: 3941-3947.
    [116] Suslick K S,Doktyes S J, Flint E B. On the Origin of Sonoluminescence and sonochemistry. Ultrasonics, 1990, 28:280-285.
    [117] Petrier C. Ultrasoud and environment: sonochemical degradation of chloroaromatic derivatives. Environmental Science & Technology, 1998, 32: 1316-1318.
    [118] Petrier C, et al. Characteristic of pentachlorophenate degration in aqueous solution by means of ultrasound. Environmental Science&Technology,1992.26:1639-1642.
    [119] 刘琼玉,李太友.难降解有机污染物的高级氧化技术.江汉大学学报(自然科学版),2002,19(2):56-58.
    [120] Schramm J D, Hua I. Ultrasonic irradiation of dichlorvos: decomposition mechanism. Water Research, 2001, 35(3):665-674.
    [121] Pettier C, David B, Laguian S. Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: Preliminary Results. Chemosphere, 1996, 32(9): 1709-1718.
    [122] Cheung H M, Bhatnagar A, Jansen G Sonochemical destruction of chlorinated hydrocarbons in dilute aqueous solution. Environmental Science & Technology, 1991, 25:1510-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700