用户名: 密码: 验证码:
断层共生裂缝系统的发育规律及分布评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油藏中天然裂缝的发育往往决定了油气的分布规律、影响油气在油气藏开发中的渗流特征,因此天然裂缝的特征、成因及分布规律研究对裂缝性油气藏勘探开发意义重大。从国内外多年来有关裂缝研究工作可知,裂缝的成因异常复杂,受控因素众多,研究难度大。在众多成因类型的裂缝中,与断层相关的断层共生裂缝前人已做过一些研究,取得了一些认识,但缺乏系统性和对其定量化分布评价的方法。文中以阿曼Daleel油田UPPER SHUAIBA组储层中典型的断层共生裂缝为例开展了系统和定量化研究,为断层共生裂缝系统的研究提供了新的研究思路和方法。
     论文充分结合研究区地质背景,从岩心观察、薄片鉴定入手对裂缝进行了细致和系统的描述和统计,重点对单井的裂缝走向、裂缝倾角及裂缝参数等进行了系统地总结,分析了裂缝发育特征、研究区构造与地应力场的演化,讨论了断层共生裂缝的力学机理与破裂特征。由于裂缝的发育与断层的发育密不可分,断层的识别是断层共生裂缝研究的基础,本文尝试采用谱分解技术将地震资料从时间域转换到频率域,以单井钻遇断层作为验证条件,在优势频带内分别利用低频率相位数据体和高频率相位数据体进行了大断层和小断层的识别。裂缝单井识别是本文研究的重点,也是裂缝分布评价的关键,其识别技术方法采用了水平井的成像测井和直井常规测井资料进行,根据成像测井的影像特征识别出了连续高导裂缝、不连续高导裂缝、连续高阻裂缝、不连续高阻裂缝,并对裂缝的产状、参数进行了相关计算。通过常规测井对裂缝响应特征的分析,研究区有效裂缝往往表现为密度低、高中子孔隙度、高声波时差、高深浅侧向电阻率幅度差,考虑到非裂缝因素对常规测井的影响,往往不能靠单一测井系列、单一方法达到对裂缝有效的识别,文中通过深浅双侧向测井计算了裂缝孔隙度、宽度参数,应用判别分析建立了多测井系列裂缝识别的判别函数,应用R/S分析方法计算了井段的分形分维数,最后结合岩心裂缝特征综合建立了基于常规测井的综合裂缝识别标准。裂缝分布研究是基于裂缝密度来进行的,通过抽取了20条典型断层,对其附近不同距离的钻井进行了裂缝识别和裂缝密度计算,建立了断层附近裂缝发育的密度函数,并按照函数类型进行归类,最终按照断层规模(断层长度)建立了大、中、小断层控制的裂缝密度函数。根据断层对裂缝密度的控制函数,设计了相关计算方法,编制了计算程序,对研究区目的层段裂缝密度进行了计算,完成了对裂缝的分布预测。最后通过所有单井裂缝识别成果、生产动态所反映出的裂缝特征对研究区裂缝发育规律的认识和分布预测结果进行了验证和评价。
     论文在对断层共生裂缝系统性研究、定量化评价思路与方法建立方面做了一些探索性工作,并且将研究成果与地质、测井、生产等各项资料所反映的实际裂缝特征相结合,研究成果对研究区目的层各断块的开发具有指导意义,研究成果对于目前注水开发中所出现问题的综合治理以及后续投产含油断块的开发方案编制提供可靠的依据。
The development of natural fracture in reservoir often decide the distribution of oil and gas, impact the filtrate characteristics of oil and gas development, so the study of natural fracture’s characteristics, causes and distribution have great significance to fracture reservoir exploration and development. From domestic and abroad previous research work on the fracture, the causes of the fracture is very complex, be controlled by many factors, and very difficult. The causes of the many types of fracture, the symbiotic fracture which related with fault have done some research by predecessor, received some awareness, but it is lack of systematic and quantitative evaluation of the distribution. Text to UPPER SHUAIBA formation, Daleel Oilfield, Oman reservoir an example, carry out the typical fault symbiotic fracture studies, provide reference and inspiration for the fault symbiotic fracture zone study
     This paper is fully integrated geological background of the study area, first of all, through the core and core thin, the fracture was observed, described and been statistic, and combined with single-well analysis of fracture direction, inclination and parameters, summarized the fracture characteristics of the study area systematically. Combining the study area’s fracture development characteristics and the evolution of the tectonic and stress field, were analysis and comparison of fault fracture symbiotic mechanism and the breakdown characteristics, recognized that the fracture was controlled by the fault, is fault symbiotic fracture. Fault identification is the premise of fault symbiotic fracture study, through the use of spectral decomposition of seismic data converted from time domain to frequency domain, according a single well drilling meeting fault as valid condition, in the band edge, respectively, the use of low-frequency phase data and high - frequency phase data for a large body of small faults and fault identification. Identification of fracture in a single well is often the focus of the fracture study, but also the key to the evaluation of fracture distribution, mainly to take a horizontal well logging and imaging of conventional vertical well log data to identify fracture. According to the image features by imaging logging ,it recognized continuous high conductivity fracture, non-continuous high conductivity fracture, continuous high resistant fracture, non-continuous high resistant fracture, and calculated the relevant fracture occurrence and parameters. Through the analysis of conventional logging response to the fracture, the study area fracture is often manifested that low effective density, high neutron porosity, high-acoustic, high-resistivity range of the depth of the lateral deviation, but because of non-fracture on the impact of conventional logging, the effective identification of fracture often could not rely on a single logging series, a single method; therefore fracture porosity, width parameters are calculated by dual laterolog in text. Applied identification analysis to establish fracture identification function by a series of logging to identify, applied R / S analysis method to calculate fractal Well fractal dimension, and finally, combined the integrated characteristics of core fracture to establish conventional logging standard to identify fracture. Fracture distribution is carried out based on the fracture density, through the samples of 20 typical fault, identified the fracture and calculated its density of the vicinal drilling well, established the fracture density function near the fault, and classified in accordance with the function type, and ultimately according to the fault scale (fault length) established large, medium and small fault-controlled fracture density function. In accordance with the fault density of fracture in the control function, designed relevant calculation method, developed a computer program, calculated to the intended layer’s fracture density in study area, completed the distribution of fracture forecast. Finally, through all the fracture identify results of single well and the production reflects to the dynamic characteristics, verified and evaluated the understanding of the law of fracture development and the fracture predicting distribution in the study area.
     In this paper, some exploratory works have been done to the fault symbiotic fracture’s systematic research, ideas and methods of quantitative evaluation establishment. And attend to combine the research results with the geology, well logging, production data, etc., which reflects the characteristics of the actual fracture. Research results have guiding significance to the block layer’s development of study area. Especially, provide a practical basis to the comprehensive management about the current development water-injection problems and the follow-up oil block’s development programming.
引文
[1]童亨茂.储层裂缝描述与预测研究进展[J].新疆石油学院学报,2004,16(2):9-13.
    [2]袁士义,宋新民,冉起全等.裂缝性油藏开发技术[M].北京:石油工业出版社,2004.12.3-6,24-25
    [3] Li Guoyu, Tang Yangwu. The Diagrams of World Oil-field (top,down)[M].Beijing:Petroleum Industry Publishing House,1997.1-4
    [4]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展,2003,18(3):398-402.
    [5]郝明强,胡永乐,刘先贵.裂缝性低渗透油藏特征综述[J].特种油气藏,2007.14(3):12-15
    [6]周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社,1998. 10. 3-21, 275-285
    [7] E.M.麦斯霍夫著,陈定宝等译.裂缝性油气储层勘探的基本理论与方法[M].石油工业出版社,1985,5:1-5.
    [8] Dennis J G.International Tectonic Dictionary. Am. Assoc. Petrol. Geol., Men. 7, 1967:196
    [9] Pollard D D.Aydin. A. Progress in Understanding Joint over the Past Century. Bull[J]. Geol. Soc. Am. 100, 1988:1811-1204.
    [10] Ronald A. Nelson. Geologic analysis of naturally fractured reservoirs. Culf Publishing Company, Houston, Texas, 1985.13-19
    [11] D.W.Stearns.”Certain Aspects of Fracture in Naturally Defoumed Rocks”in NSF Advanced Science Seminar in Rock Mechanics,R.E.Rieker,Ed.,Special Report.Air Force Cambridge Research Laboratories,Bedford,Mass.,1968.97-118
    [12] M. Friedman and D.W.Stearns,Relations Betewwn Stresses Inferred from Calcite Twin Lamellae and Macrofractures.Teton Abticline, Montana, Geol. Soc. Amer. Bull., 1971, 82(11): 3151-3162
    [13] D.W.Stearns. and M. Friedman, Reservoirs in Fractured Rock. Am. Assoc. Petrol. Geol., Memoir 16.1972:82-100
    [14]李辉,肖克.裂缝研究方法综述[J] .内蒙古石油化工.2006(7):80-82.
    [15] T.D.Van Golf-Racht. Fundamentals of Factured Reservoir Engineering. Elsevier Scientific Publishing company new York.. 1982.
    [16] R.Ruhland. Methode date of fracturation natural desroches associes divers models structural.Ged.Soc,Bull.,1973,26,91-113
    [17] [美] T.D.Van Golf-Racht著.陈钟祥译.石油科学进展.裂缝油藏工程基础.北京:石油工业出版社,1986
    [18] A. Abgrall and R. Iffly. Physical study for the flow by expansion of dissolved gas. Revue ofFrench Petroleum Insitate,667-692,Sept,-Oct.1973
    [19] F.G.Jones.A laboratory study of the effects of confining pressure of fracture flow and storage capacity in carbonate rocks. Journal of Petroleum Technology, 23-29, Jan. 1975.
    [20]宋惠珍,贾承造,欧阳健等.裂缝性储集层研究理论与方法——塔里木盆地碳酸盐岩储集层裂缝预测[M].北京:石油工业出版社.
    [21] Murray G.H. Quantitative fracture study, Sanish pool, Mckenzie county, north Dakota[J]. AAPG Bulletin, 1968, 52(1) :57 - 65.
    [22] Murray G.H. Quantitative fracture study, Sanish Pool, Fracture– controlled[R]. AAPG, Bulletin Reprint Series 21, 1977.
    [23]邓瑞,郭海敏.常规测井亦可有效识别裂缝[J].中围石油石化.2006(19):62-63.
    [24] Sibbit A. M., Faivre O.裂缝岩石的双侧向测井响应(T) [A].宋兰琴译.测井分析家协会第二十六届年会论文集[C].北京:石油工业出版社, 1989.
    [25]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990,14(2):83-92.
    [26]苏培东.贵州赤水地区二、三叠系储层构造解析及裂缝预测研究[D].成都:西南石油大学,2004.
    [27]施冬,许晓宏,林克湘等.牛心坨油田裂缝性储层的测井评价[J].江汉石油学院学报,2000,22(3):24-26.
    [28]陈科贵,穆曙光,魏彩茹等.一种评价碳酸盐岩储层裂缝参数的测井新模型[J].西南石油学院学报,2003,25(1):6-8.
    [29]张林炎.安塞油田沿河湾探区长6储层构造裂缝分布定量预测[D].北京:中国地质科学院,2007.
    [30] Matthew A.d’Alessio、Stephen J. Martel. Fault terminations and barriers to fault growth[J]. Journal of Struction Geology,2004,26:1885-1896.
    [31] Barton,C. C.,Lapointe,P. R.,Fractal in petroleum geology and earth science processes [M]. New York,1995:23-89.
    [32]张健.官渡构造砂岩储层裂缝研究[D].成都:西南石油大学,2007.
    [33]曾锦光.应用构造面主曲率研究油藏裂缝问题[J].力学学报,1982.
    [34]曾锦光.构造裂缝的理论分析研究[A].中国南方油气勘查新领域探索论文集[C].北京:地质出版社,1988.
    [35]何光明,高如曾.分形理论在裂缝预测中的尝试[J].石油物探,1993,32(2):1-12.
    [36]高如曾,何光明,刘开时等.断层系的分维及储层裂缝发育带的预测技术[J].四川地质学报,1996,16(2):180-185.
    [37]李海燕,彭仕宓.应用分形技术预测井间裂缝[J].石油大学学报(自然科学版),2002,26(6):33-36.
    [38] Crampin S.Estimation Crack parameters from observations of P-wave velocityanisotropy[J],Geophys.J.R.astr.Sot 1981,64:115-145
    [39] Crampin S.Effective anisotropic elastic constants for wave propagation through cracked solids[J],Geophys.J.R.astr.Soc.1984,76:135-145
    [40] Crampin S.Evaluation of anisotropy by shear-wave spiliting. Geophysics, 1985, 50: 142-152
    [41] Crampin S.Geological and industrial applications of extensive dilatancy anisotropy. Nature, 1987,328:49-496
    [42] Crampin S.The fracture criticality of crustal rocks, Geophysics.J.Int., Blackwell Science Ltd., 1994,428-438.
    [43] Crampin S.The new geophysics:Shear wave splitting provides a window into the crack-critical rock mass,The Leading EDGE(TLE),2003,Vol.22,No.6
    [44] Fjoer E.,Hole R.M. and Rathore J.S.,Seismic Anisotropy SEG,1996
    [45] Lynn H B,Bates C R,Layman M and Jones M.1995a.Natural fracture characterization using P-wave reflection seismic data,VSP,borehole imaging logs and the in-situ stress field determination:SPE paper 295,presented at the SPE Roky Mountain Regional/Low-Perm. Reservoirs Symposium, Denver CO,Mar.1995
    [46] Feng Shen,Sierra J.,D,R,Burns and Nafi Toksoz.Azimuthal offset-dependent attributes(AVO AND FVO) applied to fracture detection,Geophysics[J],2002,Vol.67,355-364
    [47] Gridlow P M,Smith G C,Vail P J.1992.Hydrocarbon detection using fluid factor traces:a case study:How useful if AVO analysis?SEG/EAEG summer research workshop, Technical program and Abstract,78-89
    [48] Goodway W,Chen T and Downton J,Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters.67th Ann.Internat.Mtg., Soc. Expl. Geohpys., Expanded Abstracts[J], 1997, 183-186
    [49] Gray D.Head Kim Fracture detection in Manderson Field:A 3-D AVAZ case history LeadinEdge[J].2000,19(11):1214-1221
    [50] Hall S.A.,and Kendall J.M.Fracture characterization at Valhall:Application of P-wave amplitude variation with offset and azimuth(AVOA) analysis to a 3D ocean-bottom data set[J].Geophysics,2003,68,1150-1160
    [52] Qinglin Liu,John Owusu,and Jaafar Alnemer.Fracture detection by P and C wave anisotropy from multi-azimuth VSP[J].SEG Expanded Abstracts,2006,3422-3426
    [53] Shen F,Xiang Zhu,Toksoz M N.Effects of fracture on NMO velocities and P-wave azimuthal AVO response[J],Geolphysics,2002,67:711-726
    [54] Ponit strahilevitz.用P波AVO进行裂隙探测[M],SEG65,北京:石油工业出版社,1995
    [55]方伍宝.方位各向异性介质的VSP资料处理[J].石油物探,1996,35(1):22-30
    [56] Xuan Zhu,Zhenwu Yin,Xusheng Guo.Application of advanced imaging technologies tocarbonate reservoirs in southern China[J],The Leading Edge,2006,25(11):1388-1395
    [57]李庆忠.岩石纵横波速度规律.石油地球物理勘探[J],1992,27(1):1-12
    [58]李亚林,贺振华.岩石孔隙流体对纵横波速度影响的实验研究及意义[J].矿物岩石,1998,(增刊)188-191
    [59]汪和杰,董敏翌.由裂隙引起的三分量资料中的泛张各向异性[J].石油地球物理勘探,1998,33(2):185-190
    [60]张帆,贺振华,黄德济等,储层裂隙波场特征物理模型试验研究,石油地球物理勘探,1999,34(6):675-681
    [61]王鹏,金卫东,高会军等.声、电成像测井资料裂缝识别技术及其运用[J].测井技术,24(增刊):487-490.
    [62]杨旭海、张晓春.利用声成像测井数据实现岩石裂缝特征的自动识别[J].中国海上油气(地质),2000,14(6):429-431.
    [63]童亨茂.成像测井资料在构造裂缝预测和评价中的应用[J].天然气工业,2006,26(9):58-61.
    [64]李辉,肖克,伍友佳等.裂缝研究方法综述[J].内蒙古石油化工,2006,07:80-82.
    [65]胡光岷,贺振华,黄德济等.利用纵波资料反演裂缝发育密度和方向.成都理工大学学报[J].2000,27(2):145-150
    [66]李亚林,贺振华,黄德济等.岩石孔渗特性与地震波衰减、传播速度的相互关系.天然气工业,2001,21(4):7-11
    [67] Harding,T.P., Vierbuchen, R.C., Christie-Blick, N.(Eds.), Strike-slip Deformation, Basin Formation, and Sedimentation.Society of Economic Palaeontologists and Mineralogists. Special Publication 37, pp.51-77
    [68] Aiming Lin,Tadashi Maryyama,Kenta Kobayshi.Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima fault, Japan[J], Tectonophysics 2007(443):161-173
    [69]王允诚等.裂缝性致密油气储集层[M].北京:地质出版社,1992.
    [70]曾锦光,苏雅琴.断层裂缝系统分布的预测方法研究[A].中国南方碳酸盐岩油气勘查研究论文集[C].南京:江苏科技出版社,1994.
    [71]胡明,秦启荣,陈继明等,断层应力效应分析及其在裂缝性储层研究中的作用[J].新疆石油地质,1992,13(2),280-284
    [72]张宗命,胡明,秦启荣等,应用有限单元法预测碳酸盐岩裂缝发育区带[J],天然气工业,1993,13(3),21-26
    [73]袁明生,杨珍详,牛仁杰等,吐哈盆地前路冲断带地质特征与勘探成果[J],吐哈油气,2002,7(3),201-206
    [74]周新桂,操成杰,袁嘉音,储层构造裂缝定量预测与油气渗流规律研究现状和进展[J],地球科学进展,2003,18(3),398-403
    [75]徐国强,刘树根,Yang Qinming等.断层相关裂隙的一种定量计算方法[J].地质学报,2006,80(2):192-195.
    [76] Ramon J.H. Loosveld, Andy Bell and Jos J.M. Terken,The Tectonic Evolution of Interior Oman[J],GeoArabia Vol.1, No.1, 1996
    [77] Davies,R.B.,Casey,D.M.,2002.Early to Mid-Cretaceous Mixed Carbonate-Clastic Shelfal System:Examples,Is-sues and Models from the Arabian Plate.Arabia,7(3):541–591
    [78] Wang Feng,Jiang Zaixing,Zhou Liqing,Sedimentary Facies Models on Carbonatite in the Upper Shuaiba Member of Lower Cretaceous in Daleel Field,Oman[J],Journal of China University of Geosciences,Vol.18,No.1,p.60–71,March 2007
    [79]王锋,姜在兴,周丽清等,阿曼Daleel油田下白垩统Shuaiba组上段碳酸盐岩沉积相模式[J],沉积学报,2007,25(2),192-199
    [80] Dunham,R.J.,1962.Classification of Carbonate Rocks ac-cording to Sedimentary Texture.Men Amer Assoc Petrol Geol[J],(1):108–121
    [81] Frans S.P. van Buchem, Philippe Razin and Peter W. Homewood, High Resolution Sequence Stratigraphy of the Natih Formation(Cenomanian/Turonian) in Northern Oman:Distribution of Source Rocks and Reservoir Facies[J], GeoArabia, Vol. 1, No. 1, 1996
    [82]李方明,苏武,赵国良等,地震相特征在阿曼Daleel油田碳酸盐岩储层预测研究中的应用[J],海外勘探,2007,2,66-70
    [83] Ronald A.Nelson.天然裂缝性储集层地质分析[M].北京:石油工业出版社, 1991.
    [84]廖新华,阎平凡.基于谱分解的断层自动识别[J].地球物理学报,1990,33(2):220-226.
    [85]张延庆,魏小东,王亚楠等,谱分解技术在QL油田小断层识别与解释中的应用[J],石油地球物理勘探,2006,41(5),584-591
    [86] Mite Bahorich and Steve Farmer.3-D seismic discontinuity for faults and stratigraphic features:the coherence cube.TLE,1995,10
    [87] Partyka and Gridley .Interpretational Aspects of Spectral Decomposition,Abstract.Istanbul’97 International Geophysical Conference and Exposition,1997
    [88] Partyka G A,Gridley J M and Lopez J.Interpretational Applications of Spectral Decomposition in Reservoir Characterization.The Leading Edge,1999,18(3):353~360
    [89] Partyka G,Bottjer R and Peyton L.Interpretation of incised valleys using new 3-D seismic techniques:A case history using spectral decomposition and coherency.The Leading Edge,1998,1294~1298
    [90] Bahorich M,Motsch A,Laughlin K.Amplitude responses image reservoir.Harts E&P, 2001, 59~62
    [91]吴清龙,张延庆,崔全章.小断层综合解释技术在英台地区的应用.石油地球物理勘探,2003,33(5)
    [92]陈琼,王伟,葛辉,成像测井技术现状及进展[J],国外测井技术,2007,22(3),8-10
    [93]邓瑞,郭海敏.常规测井亦可有效识别裂缝[J].中围石油石化.2006(19):62-63.
    [94]邓瑞,郭海敏.裂缝性储层的常规测井识别方法[J].勘探地球物理进展.2007(2):107-110.
    [95]谭延栋.裂缝性油藏测井资料定量解释[J]石油与天然气地质. 1987(2):171-175.
    [96]刘兴刚,张旭.测井裂缝参数估算方法研究[J]天然气工业.2003(4):31-34.
    [97]谭延栋.裂缝性油藏测井解释模型与评价方法[M].北京:石油工业出版社,1987.
    [98]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井.1990(2):83-92.
    [99] P.A.拉亨布鲁克著.判别分析[M].北京:群众出版社,1988
    [100]郭科,龚灏编.多元统计方法及其应用[M].成都:电子科技大学出版社,2003
    [101]朱建平,殷瑞飞编. SPSS在统计分析中的应用[M].北京:清华大学出版社,2007
    [102]薛薇编.基于SPSS的数据分析[M].北京:中国人民大学出版社,2006
    [103]胡宗全.R/S分析在储层垂向非均质性和裂缝评价中的应用[J].石油实验地质.2000 (4) : 382-386.
    [104]孙霞等.分形原理及其运用[M].安徽:中国科技大学出版社,2003.
    [105] John Sharp,John Jagger著,朱峰奎译,Visual C#.NET程序设计[M],北京:北京大学出版社,2002
    [106]张晓洪,表达式句法分析及求值算法在优化设计中的应用[J],机械设计与制造,2002,8(4),21-23
    [107]王迤冉,王华东,表达式求值的一种实现方法[J],周口师范高等专科学校学报,2001,18(2),31-33
    [108]李贵春,关于逆波兰表达式在程序设计中的应用[J],白城师范学院学报,2007,21(6),45-47
    [109]周丰,逆波兰表达式及其算法实现[J],武汉交通职业学院学报,2004,6(2),60-63
    [110]颜庆津,数值分析[M],北京:北京航空航天大学出版社,2000
    [111] Baisch Stefan,Voros Robert,Weidler Ralph.Investigation of fault mechanisms during geothermal reservoir stimulation expertiments in the Cooper Basin.Bulletin of the Seismological Society of America, v99, n1,148~158, February 1, 2009
    [112] Carpinteri Alberto,Paqqi Marco,A fractal interpretation of size-scale effects on strength, friction and fracture of faults.chaos,Solitons and Fractals,v39,n2,p540-546,January 30,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700