用户名: 密码: 验证码:
用Oligo基因芯片以及PCR技术研究外阴阴道念珠菌病的发病机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外阴阴道念珠菌病(vulvovaginal candidiasis,VVC)是一种由念珠菌(属)引起的阴道粘膜和或外阴的真菌感染。对于该病的发病机制,国内外学者从不同角度进行研究,得到了各异的研究结果。前些年国外学者经过研究几成共识的是:在阴道念珠菌病,是局部而非系统的体液免疫和细胞免疫对真菌感染呈保护作用,而且天然免疫可能参与了局部的免疫作用。此外,念珠菌在致病条件下的毒力增强也是该病的一个重要发病机制,而且这种菌株毒力特性可能与其特殊的基因型有关。可见,涉及本病发生发展的因子和因素很多,舍弃某一个研究方向都有可能遗漏重要的致病机制。因此,在本次研究中我们想到应用不同的研究方法针对不同的可能致病因素进行分析。借助微点阵芯片、荧光定量PCR等技术的高通量、高灵敏度的优势,从各相关因子在疾病不同阶段和不同状态时表达的高低和动态变化,来整体地系统地较全面地分析探讨本病的发病机制,试图揭示宿主和病原菌相互作用的内在关系,以期得到更接近于真实的结果,为今后临床更有效地防治本病打下良好基础。
     第一,利用自制Oligo基因芯片研究小鼠念珠菌性阴道炎的发病机制。首先,成功构建雌激素化小鼠阴道念珠菌病模型,并设立单独雌激素化小鼠阴性对照组以及正常小鼠空白对照组。其次,根据需要自行设计制备小规模Oligo基因芯片,将不同组别的模型标本与芯片进行杂交,并将表达信号差异超过2倍的因子进行筛选与分析。研究结果显示,在宿主免疫方面,炎性趋化因子普遍表达增高,适应性免疫调节因子IL-1、IL-4、IL-6、IL-10、IL-12、TNF-α、NF-κB以及TGF-β均有不同程度增强,其中以IL-1和TGF-β增强最为明显。全部标本天然免疫成分TLR4的表达增高,TLR2仅表达增高于1/3的标本。在致病菌株毒力方面,EFG1、SAPs2、4、5、6、10、LIP2、LIP4和HWP1表达显著增强。实验结果说明,在小鼠阴道局部免疫过程中,细胞免疫较体液免疫在发病机制中似乎占有更重要的地位,但两者表达增高均不具有普遍现象,适应性免疫或许不能作为阴道念珠菌病的主要免疫机制。天然免疫成份TLR4可能参与了阴道念珠菌病患者的局部免疫过程。在致病菌株毒力方面,由EFG1通路介导的菌株表型转换、菌丝生成以及毒力增强是念珠菌性阴道炎发病的另外一个重要因素。
     第二,利用Oligo基因芯片对念珠菌性阴道炎患者阴道分泌物标本进行研究。首先,探索念珠菌性阴道炎患者阴道分泌物标本的RNA提取方法。通过对匀浆、玻璃珠和液氮研磨三种破壁方法,纯化柱、酚两种提取方法组合产生的5种不同RNA提取方法进行比较,发现以液氮研磨后Trizol提取法效果最好,可实现两种不同成分的共同提取,为直接应用临床标本进行芯片研究奠定了基础。然后,使用自制疾病相关因子Oligo芯片对疾病相关因子进行研究。结果显示,在阴道念珠菌病发病过程中,炎性细胞趋化因子普遍表达增高。适应性免疫因子部分表达增高,其中在VVC患者中Th2型细胞因子表达占优,而RVVC患者中Th1和Th2细胞因子无明显差别;但上述表达增高因子不具有普遍性,且部分因子表达不稳定。天然免疫因子TLR4表达普遍增高,而TLR2表达增高不显著。在致病菌株毒力方面,EFG1、CPH1、SAP2、SAP5、SAP6、SAP8、LIP4和HWP1等因子表达增强。综合人体临床标本以及动物模型实验结果显示,LIP4、SAP2、SAP5、HWP1、RANTES、MCP-1、MIP-1α、MIP-2、IL-1α、NF-κB、TLR4等因子在两种研究对象中均表达显著增高。实验结果说明,适应性免疫参与了患者阴道局部的部分免疫,而且体液免疫在VVC患者中占有一定优势,在RVVC患者中两种免疫成分具有相同的作用,但这些免疫成分可能作用有限。由TLR4介导的天然免疫反应可能参与了阴道组织对念珠菌感染的免疫反应。另外,由EFG1和CPH1通路共同介导的表型转换、菌丝生成以及毒力增强参与了致病菌株的致病过程,是阴道念珠菌病发病的另外一个重要因素。在两种研究对象中均表达增高的致病因子可能与疾病发生高度相关,而值得今后深入研究。同时,这也佐证了所采用的小鼠模型完全可以替代人体实验进行本病的一些深入探讨研究,如体内药效学评价、疫苗免疫、致病相关基因(如TLR4)敲除等。
     第三,使用荧光定量PCR方法检测念珠菌性阴道炎患者阴道分泌物的天然免疫成分。利用荧光定量PCR技术的高灵敏性、高特异性的特点,将最近研究较多的天然免疫成分包括防御素(β-defensin-2)、甘露糖凝集素(MBL)、Toll样受体家族等天然免疫成分进行定量检测分析,通过对比不同发病状态时各天然免疫成份的表达变化研究其在发病各个阶段所起的作用。结果显示,β-defensin-2可以表达于除1例VVC患者之外的全部患者标本中,而在健康带菌者标本中未表达,而且表达量在VVC和RVVC患者分泌物标本中均显著升高。MBL几乎在全部分泌物标本中可以被检测到,但在三组标本间未发现该基因表达水平的差异。TLR1、TLR2、TLR s4-6、TLR8表达于所有标本中,TLR9、TLR10部分表达于三组标本中,而TLR3和TLR7则仅见于部分感染标本中。定量结果显示,健康带菌者TLR3和TLR4表达水平较两组患者均明显降低,TLR2的表达水平较RVVC患者降低,其余TLRs均未见明显差异。实验结果说明,β-defensin-2介导的免疫反应可能由白念珠菌的菌丝相诱导参与了机体的抗白念珠菌感染作用。而MBL在机体由带菌状态转变为致病状态或者复发状态的过程中未起明显的免疫作用。在TLRs家族中,TLR3和TLR4可能在阴道念珠菌病发病过程中有较为重要的免疫机制,而TLR2的作用尚不清晰。
     第四,使用PCR技术对分离自阴道念珠菌病以及皮肤念珠菌病的白念珠菌进行基因型的比较。通过PCR技术扩增白念珠菌染色体25S rDNA片段和RPS序列片段,对分离自阴道念珠菌病患者以及皮肤念珠菌病患者的151株白念珠菌进行基因分型。结果显示,阴道分离菌株和皮肤分离菌株中A和Ⅰ基因型为分离菌株的主要基因类型,而C和Ⅴ型为少数基因型。Ⅳ和Ⅴ型菌株仅发现于皮肤念珠菌病患者。比较两组患者分离菌株各基因型比例显示,除C型外,两组间各基因型分布均存在显著性差异。而且具有更强毒力的A型白念珠菌在阴道念珠菌病分离菌株中明显增多。实验结果表明,阴道粘膜和皮肤不同的定植环境可能会影响感染菌株的基因型,而且阴道感染菌株具有更强的毒力,这也可能是阴道念珠菌病发病的另一个因素。
     总结:我们对念珠菌性阴道炎的发病机制从宿主免疫和菌株毒力两个研究方面,以及从mRNA表达差异和DNA遗传差异两个层面进行了研究。在宿主免疫方面,未见国外研究报道的局部细胞免疫缺陷现象,但各种适应性免疫成分表达总体偏低,适应性免疫可能功能有限而不能作为阴道念珠菌病的主要免疫机制。相反,天然免疫成分可能作为机体应对局部念珠菌感染的重要免疫介导因子,其中β-defensin-2、TLR3和TLR4在阴道念珠菌病发病的免疫机制中有较为重要的作用。在菌株毒力表达方面,由EFG1和CPH1通路介导的表型转换,以及SAPs、LIPs和HWP1表达增强导致菌株毒力增强是念珠菌性阴道炎发病的另外一个重要因素,而且这种菌株毒力增强可能与其特定的基因型遗传特征有关。总之,适应性免疫的功能有限以及菌株的毒力增强这两方面的因素均参与了念珠菌性阴道炎的发病机制。
Vulvovaginal candidiasis (VVC) is a common gynecological disease in childbearing women caused by Candida spp. The studies concering the pathogenesis of VVC are numerous, but the results are different or even contradictory. So, its pathogenesis is still unclear. Now, it is commonly accepted the theory that there are local but not systemic humoral immunity and cell immunity in VVC and innate immunity may be a key protective mechanism. In addition, the enhancements of the virulence of the pathogenic strains were also possible pathogen factors and the different virulence between strains may be related to their genotypes. So, the pathogen factors related to VVC are numerous and the study in one aspect maybe omits some other important pathogen factors. In this study, we utilized different methods researching different possible pathogens. With the superiority of the high capacity and high sensitivity from gene chip and real time PCR, we investigate all the possible pathogen factors in one unique condition and analyze the pathogenesis of VVC systemically. The results of our research may make a preliminary foundation for the prevention and treatment of VVC.
     Part I. Using oligo gene chips to investigate the pathogenesis of vulvovaginal candidiasis in mouse model.
     Firstly, mice models of vulvovaginal candidiasis and two control groups for research were established. Secondly, Oligo gene chips including the possible factors from host and pathogenic strains were conducted. Finally, RNA mixtures from different mouse model group and Candida albicans (C. albicans) strains were hybridized with the gene chip and the factors which signals increased or decreased two folds were selected and analyzed. The results showed that local cell immunity was more important than humoral immunity, but both were not increasing significantly during the infection. Whereas, the innate immunity component TLR4 incresed obviously in infective samples. On the other hand, the expression of virulent factors EFG1, SAP2, SAP4, SAP5, SAP6, SAP10, LIP2, LIP4 and HWP1 increased in pathogenic strains. The research indicated that the adaptive immune was not the important immunity in VVC of mouse model, but the TLR4 which mediated the innate immune maybe play a key role in the immunity of the host. In addition, the enhancement of virulence of pathogenic strain mediated by EFG1 pathway play an important role in the pathogenesis of VVC.
     Part II. Using oligo gene chips to investigate the pathogenesis of vulvovaginal candidiasis in patient samples.
     First, a simple and rapid method of RNA extraction for vaginal secretion from patient with VVC was investigated. Comparing extraction quality of 5 methods for RNA extraction of the mixture of standard strain of C. albicans and HaCaT cell line showed the method of TRIzol after grinding with liquid nitrogen was the best method which could extract RNA from Candida spores and human cells. Second, the RNA of vaginal secretion from patients with VVC in different infect conditions were hybridized with the Oligo gene chips. The results showed adaptive immunity components were found in the vaginal secretion of patients. Furthermore, the humoral immunity were superior in the VVC patient, the cell immunity and humoral immunity were equal in RVVC patients. But the enhancements of adaptive immunity factors in were not universal. The expression of TLR4 incresed significantly in patient samples, but the expression of TLR2 was instable. Similar to the results of mice models, the expression of virulent factors EFG1, CPH1, SAP2, SAP5, SAP6, SAP8, LIP4 and HWP1 increased in pathogenic strains. The results of this study indicated that effects of adaptive immune were limited because of their low expression. The innate immune mediated by TLR4 maybe important in the course of VVC. In addition, the enhancements of virulence of pathogenic strains mediated by EFG1 and CPH1 co-pathway were important in the pathogenesis of VVC. Finally, the pathogen factors LIP4, SAP2, SAP5, HWP1, RANTES, MCP-1, MlP-1α, MIP-2, IL-1α, NF-κB and TLR4 both involve in the onset of VVC in mice and human, which seem highly related to the disease and need a further investigation.
     Part III. Using real time PCR to investigate the components of innate immunity in patient samples.
     In this study, the expression of innate immunity components includingβ-defensin-2, MBL and TLRs in vaginal secretion from different patient groups were investigated by real time PCR, and the effect of each immunity component was evaluated after comparing its expression variation in different infective conditions. The results showed that except one VVC and all carrier samples, P-defensin-2 could be found in other patient samples and its expression in patient samples was obvious higher than carriers. MBL could be found in almost all the samples, but no significant differences in expression levels among three groups were found. The distribution of TLRs showed that TLR1, TLR2, TLRs4-6, TLR8 were found in all the samples, TLR9 and TLR10 were found in part samples, whereas, TLR3 and TLR7 were only found in part samples of VVC and RVVC patients. Expression of TLR3, TLR4 and TLR2 in carrier samples decreased significantly comparing with VVC and RVVC patients. The research demonstrates that the innate immunity mediated by P-defensin-2 participates in the course of anti-infection, whereas MBL might not play an important role in the transition of carriers to VVC or RVVC. In addition, TLRs2-4 but not the other TLRs participate in the local immunity of vaginal in the course from the colonisation to infective condition.
     Part IV. Investigating the possible association between genotypes of the Candida albicans isolates and vulvovaginal candidiasis.
     In this study, 151 strains of C. albicans isolated from 74 infant patients with cutaneous candidiasis and 61 female patients with vaginal candidiasis were genotyped by using 25S rDNA and RPS-based PCR. Ten genotypes were detected and obvious differences in frequencies of genotypes between two groups were found, especially in genotype A and B. Furthermore, the number of genotype A strain with more virulence was significant higher in vulvovaginal candidiasis group. The results indicate that the obvious different environments of cutaneous and vaginal mucous membrane for C. albicans colonizing maybe influence the genotypes of invasive strains, and the C. albicans strains from vagina with more virulence which may be another pathogen for VVC.
     Summary: We investigated the pathogenesis of VVC from two aspects including host and pathogenic strains and in two levels of mRNA and DNA. The results of series research suggest that the deficiency of adaptive immunity and the increased virulence of pathogenic strains played an important role in the pathogenesis of VVC. The innate immunity components P-defensin-2, TLR3 and TLR4 were important in the immunopathogenesis of VVC and the evaluated virulence of pathogenic strains may be related to their specific genotypes.
引文
1、 Fidel PL Jr. History and insight into host defence against vaginal candidiasis. Trends Microbiol. 2004; 12: 220-7.
    
    2、 Sobel JD. Vulvovaginal candidosis. Lancet. 2007; 369: 1961-71.
    
    3、 Fidel PL Jr, Ginsburg KA, Cutright JL, et al. Vaginal-associated immunity in women with recurrent vulvovaginal candidiasis: evidence for vaginal Th1-type responses following intravaginal challenge with Candida antigen. J Infect Dis. 1997;176:728-39.
    
    4、 Mathews HL and Witek-Janusek L. Host defense against oral, esophageal, and gastrointestinal candidiasis. / Carderone RA, ed. Candida and Candidiasis. ASM Press.Washington. 2002: 179-92.
    
    5、 Sohnle PG, Bhatti M, Wagner DK. Immunology of cutaneous candidiasis. /Calderone RA, ed. Candida and Candidiasis. ASM Press. Washington. 2002: 211-21.
    
    6、 De Bernardis F, Boccanera M, Adriani D, et al. Introvaginal and intronasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis. Infect Immun. 2002; 70: 2725-9.
    
    7、 De Bernardis F, Boccanera M, Adriani D, et al. Protective role of antimannan and antiaspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats. Infect Immun. 1997; 65: 3399-405.
    
    8、 Wozniak KL, Wormley FL Jr, Fidel PL Jr. Candida-specific antibodies during experimental vaginal candidiasis in mice. Infect Immun. 2002; 70: 5790-99.
    
    9、 Witkin SS, Jeremias J, Ledger WJ. Vaginal eosinophils and IgE antibodies to Candida albicans in women with recurrent vaginitis. J Med Vet Mycol. 1989; 27:57-58.
    
    10、 Romani L, Puccetti P, Bistoni F. Biological role of Th cell subsets in candidiasis.Chem Immunol. 1996; 63:115-37.
    
    11、 Fidel PL Jr, Barousse M, Espinosa T, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004; 72: 2939-46.
    
    12、 Fidel PL Jr. Distinct protective host defenses against oral and vaginal candidiasis.Med Mycol. 2002; 40: 359-75.
    
    13、 Black CA, Eyers FM, Russell A, et al. Increased severity of Candida vaginitis in BALB/c nu/nu mice versus the parent strain is not abrogated by adoptive transfer of T cell enriched lymphocytes. J Reprod Immunol. 1999; 45: 1-18.
    
    14、 Taylor BN, Saavedra M, Fidel PL Jr. Local Th1/Th2 cytokine production during experimental vaginal candidiasis. Med Mycol. 2000; 38: 419-31.
    
    15、 Fidel PL Jr, Wolf NA, KuKuruga MA. T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun. 1996;64: 3793-9.
    
    16、 Nandi D and Allison JP. Phenotypic analysis and gamma/delta-T cell receptor repertoire of murine T cells associated with the vaginal epithelium. J Immunol. 1991;147: 1773-78.
    
    17、 Ibraghimov AR, Sacco RE, Sandor M, et al. Resident CD4+ alpha beta T cells of the murine female genital tract: a phenotypically distinct T cell lineage that rapidly proliferates in response to systemic T cell activation stimuli. Int Immunol. 1995; 7:1763-9.
    
    18、Sobel JD. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis. 1992; 14: 148-53.
    
    19、 Santoni G, Boccanera M, Adriani D, et al. Immune cell-mediated protection against vaginal candidiasis: evidence for a major role of vaginal CD4+ T cells and possible participation of other local lymphocyte effectors. Infect Immun. 2002; 70:4791-7.
    
    20、 Pivarcsi A, Nagy I, Koreck A, et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbes Infect. 2005; 7: 1117-27.
    
    21、 Liu F, Liao Q, Liu Z. Mannose-binding lectin and vulvovaginal candidiasis. Int J Gynaecol Obstet. 2006; 92: 43-7.
    
    22、 Soboll G, Schaefer TM, Wira CR, et al. Effect of toll-like receptor (TLR) agonists on TLR and microbicide expression in uterine and vaginal tissues of the mouse. Am J Reprod Immunol. 2006; 55: 434-46.
    
    23、 Blasi E, Mucci A, Neglia R, et al. Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol. 2005; 44: 69-79.
    
    24、 Fidel PL Jr. Immunity in vaginal candidiasis. Curr Opin Infect Dis. 2005; 18:107-11.
    
    25、 Fidel PL Jr, Cutright J, Steele C. Effects of reproductive hormones on experimental vaginal candidiasis. Infect Immun. 2000; 68: 651-7.
    
    26、 Schaller M, Schackert C, Korting HC, et al. Invasion of Candida albicans correlation with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Invest Dermatol. 2000; 114: 712-7.
    
    27、 Lian CH and Liu WD. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis. Mycoses. 2007; 50:383-90.
    
    28、 Stehr F, Felk A, Gacser A, et al. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res.2004; 4: 401-8.
    
    29、 Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol. 2006; 55:1323-7.
    
    30、 Lane S, Birse C, Zhou S, et al. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efgl in Candida albicans. J Biol Chem.2001; 276: 48988-96.
    
    31、 Nailis H, Coenye T, Van Nieuwerburgh F, et al. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006; 7: 25.
    
    32、 Chong PP, Lee YL, Tan BC, et al. Genetic relatedness of Candida strains isolated from women with vaginal candidiasis in Malasia. J Med Microbiol. 2003; 52: 657-66.
    
    33、 Martin Schaller, Claudia B, Hans CK, et al. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005; 48: 365-77.
    34、 Karahan ZC, Guriz H, Agirbasli H, et al. Genotype distribution of Candida albicans isolates by 25S intron analysis with regard to invasiveness. Mycoses. 2004;47: 465-9.
    
    35、 Sugita T, Kurosaka S, Yajitate M, et al. Extracellular proteinase and phospholipase activity of three genotypic strains of a human pathogenic yeast, Candida albicans.Microbiol Immunol. 2002; 46: 881-3.
    
    36、 Mercure S, Montplaisir S, Lemay G. Correlation between the presence of a self-splicing intron in the 25S rDNA of C. albicans and strains susceptibility to 5-fluorocytosine. Nucleic Acids Res. 1993; 21: 6020-7.
    1、吴绍熙主编.现代医学真菌检验手册(第二版).中国协和医科大学出版社,北京,2005年10月.
    2、Rodrigues AG,Mardh PA,Pina-Vaz C,et al.Germ tube formation changes surface hydrophobicity of Candida cells.Infect Dis Obstet Gynecol.1999;7:222-6.
    3、Casanova M,Cervera AM,Gozalbo D,et al.Hemin induces germ tube formation in Candida albicans.Infect Immun.1997;65:4360-4.
    4、Torosantucci A,Romagnoli G,Chiani P,et al.Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells:a novel dimorphism-dependent mechanism to escape the host's immune response.Infect Immun.2004;72:833-43.
    5、Sobel JD,Muller G,Buckley HR.Critical role of germ tube formation in the pathogenesis ofcandidal vaginitis.Infect Immun 1984;44:576-80.
    6、De Bemardis F,Agatensi L,Ross IK,et al.Evidence for a role for secreted aspartate proteinase of Candida albicans in vulvovaginal candidiasis.J Infect Dis 1990;161:1276-83.
    7、Chiani P,Bromuro C,Torosantucci A.Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans.Infect Immun.2000;68:5628-34.
    8、Gow NA.Germ tube growth of Candida albicans.Curr Top Med Mycol.1997;8(1-2):43-55.
    9、Kretschmar M,Hube B,Bertsch T,et al.Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis.Infect Immun.1999;67:6637-42.
    10、Staib P,Morschh(a|¨)user J.Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.Mol Microbiol.2005;55:637-52.
    11、Martin SW,Douglas LM,Konopka JB.Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth.Eukaryot Cell.2005;4:1191-202.
    1、赵敬军,沈永年,陈伟,等.白念珠菌性阴道炎动物模型的构建.中华皮肤科杂志.2002;05:346-8.
    2,Sobel JD,Faro S,Force RW,et al.Vulvovaginal candidiasis epidemiologic,diagnostic,and therapeutic considerations.Am J Obstet Gynecol.1998;178:203 -11.
    3、Sobel JD,Muller G,McCormick JF.Experimental chronic vaginal candidosis in rat.Sabouraudia.1985;23:199-206.
    4、Fidel PL Jr,Cutright JL,Tait L,et al.A murine model of Candida glabrata Vaginitis,J Infect Dis.1996;173:425 -31.
    5、Fidel PL Jr,Cutright J,Steele C.Effects of reproductive hormones of experimental vaginal candidiasis.Infect Immun.2000;68:651 -7.
    1、MAQC Consortium.The MicroArray Quality Control(MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements.Nat Biotechnol.2006;24:1151-61.
    2、Woo Y,Affourtit J,Daigle S,et al.A comparison of cDNA,oligonucleotide,and Affymetrix GeneChip gene expression microarray platforms.J Biomol Tech.2004;15:276-84.
    3、Irizarry RA,Wu Z,Jaffee HA.Comparison of Affymetrix GeneChip expression measures.Bioinformatics.2006;22:789-94.
    4、Irizarry RA,Warren D,Spencer F,et al.Multiple-laboratory comparison of microarray platforms.Nat Methods.2005;2:345-50.
    1、Romani L,Puccetti P,Bistoni F.Biological role of Th cell subsets in candidiasis.Chem Immunol.1996;63:115-37.
    2、Mathews HL and Witek-Janusek L.Host defense against oral,esophageal,and gastrointestinal candidiasis./Carderone RA,ed.Candida and Candidiasis.ASM Press.Washington.2002:179-92.
    3、Sohnle PG,Bhatti M,Wagner DK.Immunology of cutaneous candidiasis./Calderone RA,ed.In Candida and Candidiasis.ASM Press.Washington.2002:211-21.
    4、Santoni G,Boccanera M,Adriani D,et al.Immune cell-mediated protection against vaginal candidiasis:evidence for a major role of vaginal CD4(t) Tcells and possible participation of other local lymphocyte effectors.Infect Immun.2002;70:4791-7.
    5、Cassone A,Boccanera M,Adriani D,et al.Rats clearing a vaginal infection by Candida albicans aquire specific,antibody-mediated resistance to vaginal infection.Infect.Immun.1995;63:2619-24.
    6、De Bernardis F,Boccanera M,Adriani D,et al.Protective role of antimannan and antiaspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats.Infect Immun.1997;65:3399-405.
    7、De Bernardis F,Boccanera M,Adriani D,et al.Introvaginal and intronasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis.Infect Immun.2002;70:2725-29.
    8、Wozniak KL,Wormley FL Jr,Fidel PL Jr,et al.Candida-specific antibodies during experimental vaginal candidiasis in mice.Infect Immun.2002;70:5790-99.
    9、Fidel PL Jr.Distinct protective host defenses against oral and vaginal candidiasis.Med Mycol.2002;40:359-75.
    10、Black CA,Eyers FM,Russell A,et al.Increased severity of Candida vaginitis in BALB/c nu/nu mice versus the parent strain is not abrogated by adoptive transfer of T cell enriched lymphocytes.J Reprod Immunol.1999;45:1-18.
    11、Taylor BN,Saavedra M,Fidel PL Jr.Local Th1/Th2 cytokine production during experimental vaginal candidiasis.Med Mycol.2000;38:419-31.
    12、Fidel PL Jr,Wolf NA,KuKuruga MA.T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun. 1996;64: 3793-99.
    
    13、 Ibraghimov AR, Sacco RE, Sandor M, et al. Resident CD4+ alpha beta T cells of the murine female genital tract: a phenotypically distinct T cell lineage that rapidly proliferates in response to systemic T cell activation stimuli. Int Immunol. 1995; 7:1763-69.
    
    14、 Fidel PL Jr, Luo W, Steele C, et al. Analysis of vaginal cell populations during experimental vaginal candidiasis. Infect Immun. 1999; 67: 3135-40.
    
    15、 Saavedra M, Taylor B, Lukacs N, et al. Local production of chemokines during experimental vaginal candidiasis. Infect Immun.. 1999; 67: 5820-29.
    
    16、陈慰峰等 主编.医学免疫学(第4版).人民卫生出版社.北京.2004年8月.
    
    17、 David AC, Robina C. Molecules in focus: transforming growth factor-p. Int J Biochem Cell Biol. 1998; 30: 293-8.
    
    18、 Netea MG, Van Der Graaf CA, Vonk AG, et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185: 1483-9.
    
    19、 Soboll G, Shen L, Wira CR.. Expression of Toll-like receptors (TLR) and responsiveness to TLR agonists by polarized mouse uterine epithelial cells in culture.Biol Reprod. 2006; 75: 131-9.
    
    20、 Soboll G, Schaefer TM, Wira CR. Effect of toll-like receptor (TLR) agonists on TLR and microbicide expression in uterine and vaginal tissues of the mouse. Am J Reprod Immunol. 2006; 55: 434-46.
    
    21、 Zhang S, Li J, Jia X, et al. The expression of toll-like receptor 2 and 4 mRNA in local tissues of model of oropharyngeal candidiasis in mice. J Huazhong Univ Sci Technolog Med Sci. 2004; 24: 639-41.
    
    22、 Villamon E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 2004; 6: 1-7.
    
    23、Darville T, O'Neill JM, Andrews CW Jr, et al. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol. 2003; 171: 6187-97.
    
    24、Nailis H, Coenye T, Van Nieuwerburgh F, et al. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006; 7: 25.
    
    25、Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human cliaical specimens and models of vaginal candidiasis. Infect Immun. 2005; 73: 1656-63.
    
    26、 Sundstrom P, Cutler JE, Staab JF. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun. 2002; 70: 3281-83.
    
    27、Sharkey LL, Liao WL, Ghosh AK, et al. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology.2005; 151: 1061-71.
    
    28、Zhao X, Oh SH, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology. 2004; 150: 2415-28.
    
    29、 Staab JF, Bradvvay SD, Fidel PL, et al. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 1999; 283: 1535-38.
    
    30、Sundstrom P. Adhesion in Candida spp. Cell Microbiol. 2002; 4: 461-9.
    
    31、 Tsuchimori N, Sharkey LL, Fonzi WA, et al. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells.Infect Immun. 2000; 68: 1997-2002.
    
    32、 Schaller M, Borelli C, Korting HC, et al. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005; 48: 365-377.
    
    33、 Hube B, Monod M, Schofield DA, et al. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 1994; 14: 87-99.
    
    34、 White TC, Miyasaki SH, Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol. 1993; 175: 6126-33.
    
    35、 White TC, Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors.J Bacteriol. 1995; 177: 5215-21.
    
    36、 Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003; 67: 400-28.
    
    37、Tavanti A, Pardini G, Campa D, et al. Differential expression of secretory aspartyl proteinase genes (SAP 1-10) in oral Candida albicans isolates with distinct karyotypes.J Clin Microbiol. 2004; 42: 4726-34.
    
    38、Taylor BN, Staib P, Binder A, et al. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 2005; 73: 1828-35.
    
    39、De Bernardis F, Arancia S, Morelli L, et al. Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis. 1999; 179: 201-8.
    
    40、Schaller M, Korting HC, Schafer W, et al. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol. 1999; 34: 169-80.
    
    41、Hube B, Stehr F, Bossenz M et al. Secreted lipases of Candida albicans: cloning,characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol. 2000; 174: 362-74.
    
    42、Hube B. Extracellular proteinases of human pathogenic fungi. Contrib Microbiol 2000; 5:126-37.
    
    43、 Lan CY, Newport G, Murillo LA, et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA. 2002; 99:14907-12.
    
    44、Schofield DA, Westwater C, Warner T, et al. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiol Lett. 2005; 244: 359-65.
    
    45、Cutfield SM, Dodson EJ, Anderson BF, et al. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors.Structure. 1995; 3: 1261-71.
    46、 Samaranayake YH, Dassanayake RS, Jayatilake JA, et al. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005; 54: 583-93.
    
    47、Naglik JR, Rodgers CA, Shirlaw PJ, et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis. 2003; 188: 465-75.
    
    48、 Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997; 90:939-49.
    
    49、Leng P, Lee PR, Wu H, et al. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol. 2001; 183: 4090-3.
    
    50、Nantel A, Dignard D, Bachewich C, et al. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell. 2002; 13:3452-65.
    
    51、 Lane S, Birse C, Zhou S, et al. DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efgl in Candida albicans. J Biol Chem. 2001; 28: 48988-96.
    
    52、 Staib P, Kretschmar M, Nichterlein T, et al. Transcriptional regulators Cph1p and Efg1p mediate activation of the Candida albicans virulence gene SAP5 during infection. Infect Immun. 2002; 7: 921-7.
    
    53、 Korting HC, Hube B, Oberbauer S, et al. Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. J Med Microbiol. 2003; 52: 623-32.
    
    54、 Sohn K, Urban C, Brunner H, et al. EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol. 2003;47:89-102.
    
    55、 Dieterich C, Schandar M, Noll M, et al. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion.Microbiology. 2002; 148: 497-506.
    
    56、Braun BR and Johnson AD. Control of filament formation in Candida albicans by the transcriptional repressor TUPl. Science. 1997; 277: 105-9.
    
    57、 Zhao R, Lockhart SR, Daniels K, et al. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell.2002; 1:353-65.
    
    58、 Murad AM, d'Enfert C, Gaillardin C, et al. Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1,CaMigl and CaNrg1. Mol Microbiol. 2001; 42: 981-93.
    
    59、Ishii N, Yamamoto M, Yoshihara F, et al. Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology. 1997; 143:429-35.
    
    60、 Kadosh D and Johnson AD. Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol. 2001; 21: 2496-05.
    61、 J Perez-Martin, JA Una, AD Johnson, et al. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 1999; 18: 2580-92.
    
    62、 Sonneborn A, Tebarth B, Ernst JF. Control of white-opaque phenotypic switching in Candida albicans by the Efglp morphogenetic regulator. Infect Immun.1999; 67:4655-60.
    
    63 、 Kvaal C, Lachke SA, Srikantha T, et al. Misexpression of the opaque-phase-specific gene PEPl (SAPl) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun.1999; 67:6652-62.
    
    64、 Miller MG and Johnson AD. White-opaque swiching in Candida albicans is controlled by mating type locus homeodomain proteins. Cell. 2002; 110: 293-302.
    
    65、 Soil DR. Gene regulation during high-frequency switching in Candida albicans.Microbiology. 1997; 143: 279-88.
    1、Naglik JR,Rodgers CA,Shirlaw PJ,et al.Differential Expression of Candida albicans secreted aspartyl proteinase and phospholipase B gene in humans correlates with active oral and vaginal infections.J Infect Dis.2003;188:469-79.
    2、奥斯伯 等主编,马学军 等译校.精编分子生物学实验指南(第四版).科学出版社.北京.2005年1月.
    3、邹福强 等著.基因工程操作技术(第一版).广东科技出版社.广州.1987年7月.
    4、萨姆布鲁克 等著,黄培堂 等译.分子克隆实验指南(第三版).科学出版社.北京.2003年1月.
    5、Makimura K,Tamura Y,Mochizuki T,et al.Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions.J Clin Microbiol.1999;37:920-4.
    6、廉翠红,赵敬军,刘维达等.念珠菌性外阴阴道炎患者阴道分泌物中白念珠菌分泌型天冬氨酸蛋白酶表达.中华皮肤科杂志.2005;38:488-491.
    7、Steele C,Ratterree M,Fidel PL Jr.Differential Susceptibility of Two Species of Macaques to Experimental Vaginal Candidiasis.J Infect Dis.1999;180:802-10.
    8、Barousse MM,Espinosa T,Dunlap K,et al.Vaginal epithelial cell anti-Candida albicans activity is associated with protection against symptomatic vaginal candidiasis.Infect Immun.2005;73:7765-7.
    9、Yano J,Lilly EA,Steele C,et al.Oral and vaginal epithelial cell anti-Candida activity is acid labile and does not require live epithelial cells.Oral Microbiol Immunol.2005;20:199-205.
    10、Nomanbhoy F,Steele C,Yano J,et al.Vaginal and oral epithelial cell anti-Candida activity.Infect Immun.2002;70:7081-8.
    1、Romani L,Puccetti P,Bistoni F.Biological role of Th cell subsets in candidiasis.Chem Immunol.1996;63:115-37.
    2、Carvalho LP,Bacellar O,Neves N,et al.Downregulation of IFN-gamma production in patients with recurrent vaginal candidiasis.J Allergy Clin Immunol.2002;109:102-5.
    3、Nawrot U,Grzybek-Hryncewicz K,Zielska U,et al.The study of cell-mediated immune response in recurrent vulvovaginal candidiasis.FEMS hnmunol Med Microbiol.2000;29:89-94.
    4、 Corrigan EM, Clancy RL, Dunkley ML, et al. Cellular immunity in recurrent vulvovaginal candidiasis. Clin Exp Immunol. 1998; 111: 574-8.
    
    5、Piccinni MP, Vultaggio A, Scaletti C, et al. Type 1 T helper cells specific for Candida albicans antigens in peripheral blood and vaginal mucosa of women with recurrent vaginal candidiasis. J Infect Dis. 2002; 186: 87-93.
    
    6、Fidel PL Jr. Immunity in vaginal candidiasis. Curr Opin Infect Dis. 2005; 18:107-11.
    
    7、 Wozniak KL, Wormley FL Jr, Fidel PL Jr. Candida-specific antibodies during experimental vaginal candidiasis in mice. Infect Immun. 2002; 70: 5790-99.
    
    8、 Witkin SS, Jeremias J, Ledger WJ. Vaginal eosinophils and IgE antibodies to Candida albicans in women with recurrent vaginitis. J Med Vet Mycol. 1989; 27:57-8.
    
    9、 Fidel PL Jr, Barousse M, Espinosa T, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004; 72: 2939-46.
    
    10、 Sobel JD. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis. 1992;14 (Suppl 1): 148-53.
    
    11、 Cu-Uvin S, Hogan JW, Warren D, et al. Prevalence of lower genital tract infections among human immunodeficiency virus (HIV)-serpositive and highrisk HIV-seronegative women. Clin Infect Dis. 1999; 29: 1145-50.
    
    12、White MH. Is vulvovaginal candidiasis an AIDS-related illness. Clin Infect Dis.1996; 22 (Suppl 2): 124-7.
    
    13、 Leigh JE, Barousse M, Swoboda RK, et al. Candida-specific systemic cell-mediated immune reactivities in HIV-infected personswith and without mucosal candidiaisis. J Infect Dis. 2001; 183: 277-85.
    
    14、 Fidel PL Jr, Lynch ME, Redondo-Lopez V, et al. Systemic cell-mediated immune reactivity in women with recurrent vulvovaginal candidiasis. J Infect Dis. 1993; 168:1458-65.
    
    15、Fidel PL Jr, Ginsburg KA, Cutright JL, et al. Vaginal-associated immunity in women with recurrent vulvovaginal candidiasis: Evidence for vaginal Th1-type responses following intravaginal challenge with Candida antigen. J Infect Dis. 1997;176: 728-39.
    
    16、Santoni G, Boccanera M, Adriani D, et al. Immune cell-mediated protection against vaginal candidiasis: evidence for a major role of vaginal CD4+ T cells and possible participation of other local lymphocyte effectors. Infect Immun. 2002; 70:4791-7.
    
    17、 Lane S, Birse C, Zhou S, et al. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efgl in Candida albicans. J Biol Chem. 2001; 276: 48988-96.
    
    18、 Giusani AD, Vinces M, Kumamoto CA. Invasive filamentous growth of Candida albicans is promoted by Czflp-dependent relief of Efg1p-mediated repression.Genetics. 2002; 160: 1749-53.
    
    19、 Harcus D, Nantel A, Marcil A, et al. Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell. 2004; 15: 4490-9.
    20、 Leng P, Lee PR, Wu H, et al. Efgl, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol. 2001; 183: 4090-3.
    
    21、 Lan CY, Newport G, Murillo LA, et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci USA. 2002; 99:14907-12.
    
    22、 Schaller M, Bein M, Korting HC, et al. The secreted aspartyl proteinases Sapl and Sap2 cause tissue damage in a in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun. 2003; 71: 3227-34.
    
    23、 Schaller M, Korting HC, Borelli C, et al. Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in, an in vitro model of vaginal candidiasis. Infect Immun. 2005; 73: 2758-65.
    
    24、Naglik JR, Newport G, White TC, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun. 1999; 67: 2482-90.
    
    25、 Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003; 67:400-28.
    
    26、 Taylor BN, Staib P, Binder A, et al. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 2005; 73: 1828-35.
    
    27、 Lian CH and Liu WD. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis. Mycoses. 2007; 50: 383-90.
    
    28、 Schaller M, Schackert C, Korting HC, et al. Invasion of Candida albicans correlation with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Invest Dermatol. 2000; 114: 712-7.
    
    29、Chen YC, Wu CC, Chung WL, et al. Differential secretion of Sap4-6 proteins in Candida albicans during hyphae formation. Microbiology. 2002; 148: 3743-54.
    
    30、Smolenski G, Sullivan PA, Cutfield SM et al. Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology. 1997; 143: 349-56.
    
    31、 Borg-von Zepelin M, Beggah S, Boggian K, et al. The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol. 1998; 28: 543-54.
    
    32、Wagner T, Borg von Zepelin M, Ruchel R. pH-dependent denaturation of extracellular aspartic proteinases from Candida species. J Med Vet Mycol. 1995; 33:275-8.
    
    33、Stehr F, Felk A, Gacser A, et al. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res.2004; 4: 401-8.
    
    34、Kamai Y, Kubota M, Kamai Y, et al. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun. 2002; 70:5256-8.
    
    35、 Sobel JD, Myers PG, Kaye D, et al. Adherence of Candida albicans to human vaginal and buccal epithelial cells. J Infect Dis. 1981; 143: 76-82.
    
    36、 Trumbore DJ, Sobel JD. Recurrent vulvovaginal candidiasis: vaginal epithelial cell susceptibility to Candida albicans adherence. Obstet Gynecol. 1986; 67: 810-2.
    
    37、 King RD, Lee JC, Morris AL. Adherence of Candida albicans and other Candida species to mucosal epithelial cells. Infect lmmun. 1980; 27: 667-74.
    
    38、 Hoyer LL. The ALS gene family of Candida albicans. Trends microbial. 2001; 9:327-35.
    
    39、Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun. 2005; 73: 1656-63.
    
    40、 Green CB, Cheng G, Chandra J, et al. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology. 2004; 150: 267-75.
    
    41、 Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWPl gene expression and host antibody responses in colonization and disease. J Med Microbiol. 2006; 55:1323-7.
    1、Livark KJ,Schmittgen TD.Analysis of relative gene expression datausing realtime quantitative PCR and the 2~(-△△Ct) method.Methods.2001;25:402-8.
    2、Fidel PL Jr.Immunity in vaginal candidiasis.Current opinion in infectious diseases.2005;18:107-11.
    3、Pivarcsi A,Nagy I,Koreck A,et al.Microbial compounds induce the expression of pro-inflammatory cytokines,chemokines and human beta-defensin-2 in vaginal epithelial cells.Microbes Infect.2005;7:1117-27.
    4、Ip WK,Lau YL.Role of mannose-binding lectin in the innate defense against Candida albicans:enhancement of complement activation,but lack of opsonic function,in phagocytosis by human dendritic cells.J Infect Dis.2004;190:632-40.
    5、Pellis V,De Seta F,Crovella S,et al.Mannose binding lectin and C3 act as recognition molecules for infectious agents in the vagina.Clin Exp Immunol.2005;139:120-6.
    6、Liu F,Liao Q,Liu Z.Mannose-binding lectin and vulvovaginal candidiasis.Int J Gynaecol Obstet.2006;92:43-7.
    7、Giraldo PC,Babula O,Goncalves AK,et al.Mannose-binding lectin gene polymorphism,vulvovaginal candidiasis,and bacterial vaginosis.Obstet Gynecol.2007;109:1123-8.
    8、Belvin MP,Anderson KV.A conserved signaling pathway:the Drosophila toll-dorsal pathway.Annu Rev Cell Dev Biol.1996;12:393-416.
    9、Medzhitov R and Janeway Jr.The Toll receptor family and microbial recognition.Trends Microbiol.2000;8:452-6.
    10、Schwandner R,Dziarski R,Wesche H,et al.Peptidoglycan and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2.J Biol Chem.1999;274:17406-9.
    11、Takeuchi O,Sato S,Horiuchi T,et al.Cutting edge:role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins.J Immunol.2002;169:10-4.
    12、Nakao Y,Funami K,Kikkawa S,et al.Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells. J Immunol. 2005; 174: 1566-73.
    
    13、 Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001; 413: 732-8.
    
    14、 Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002; 3: 667-72.
    
    15、 Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 2004; 6: 1382-7.
    
    16、 Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine. 2003; 21 (Suppl. 2): 55-60.
    
    17、 Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001; 410: 1099-1103.
    
    18、 Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002; 3: 499.
    
    19、 Fazeli A, Bruce C, Anumba DO, et al. Characterization of Toll like receptors in the female reproductive tract in humans. Hum Reprod. 2005; 20: 1372-8.
    
    .20, Hemmi H, Takeuchi O, Kawai T, et al. Toll-like receptor recognizes bacterial DNA. Nature. 2000; 408: 740-5.
    
    21、 Flacher V, Bouschbacher M, Verronese E, et al. Human langerhans cells express a specific TLR profile and differentially respond to viruses and gram-positive bacteria.J Immunol. 2006; 177: 7959-67.
    
    22、 Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005; 174: 2942-50.
    
    23、Fichorova RN, Cronin AO, Lien E, et al. Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling. J Immunol. 2002; 168: 2424-32.
    
    24、 Andersen JM, Al-Khairy D, Ingalls RR, et al. Innate immunity at the mucosal surface: role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol Reprod. 2006; 74: 824-31.
    
    25、 Aflatoonian R, Fazeli A. Toll-like receptors in female reproductive tract and their menstrual cycle dependent expression. J Reprod Immunol. 2008; 77: 7-13.
    
    26、 Young SL, Lyddon TD, Jorgenson RL, et al. Expression of Toll-like receptors in human endometrial epithelial cells and cell lines. Am J Reprod Immunol. 2004; 52:67-73.
    
    27、 Schaefer TM, Desouza K, Fahey JV, et al. Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells.Immunology. 2004; 112: 428-36.
    
    28、 Schaefer TM, Fahey JV, Wright JA, et al. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol. 2005; 174: 992-1002.
    
    29、 Pioli PA, Amiel E, Schaefer TM, et al. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect Immun.2004; 72: 5799-5806.
    30、 Itoh H, Nasu K, Nishida M, et al. Human oviductal stromal fibroblasts, but not oviductal epithelial cells, express Toll-like receptor 4: the site-specific mucosal immunity of the human fallopian tube against bacterial infection. Am J Reprod Immunol. 2006; 56: 91-101.
    
    31、 Medzhitov R, Janeway Jr. CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002; 296: 298-300.
    
    32、 Parker LC, Whyte MKB, Dower SK, et al. The expression and roles of Toll like receptors in the biology of the human neutrophil. J Leuk Biol. 2005; 77: 886-92.
    
    33、 Toni D, Joshua MO, Charles WA, et al. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infectionl. J Immunol. 2003; 171: 6187-97.
    
    34、 Soil DR, Galask R, Isley S, et al. Switching of Candida albicans during successive episodes of recurrent vaginitis. J Clin Microbiol. 1989; 27: 681-90.
    
    35、 Blasi E, Mucci A, Neglia R, et al. Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol. 2005; 44: 69-79.
    
    36、 Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells.J Immunol. 2004; 172: 3712-8.
    1、Soll DR,Galask R,Schmid J,et al.Genetic dissimilarity of commensal strains of Candida spp.carried in different anatomical locations of the same healthy women.J Clin Mierobiol.1991;29:1702-10.
    2、Xu J,Boyd CM,Livingston E,et al.Species and genotypic diversities and similarities of pathogenic yeasts colonizing women.J Clin Microbiol.1999;37:3835-43.
    3、Karatian ZC,Guriz H,Agirbasli H,et al.Genotype distribution of Candida albicans isolates by 25S intron analysis with regard to invasiveness.Mycoses.2004;47:465-9.
    4、Sugita T,S Kurosaka,M Yajitate,et al.Extracellular proteinase and phospholipase activity of three genotypic strains of a human pathogenic yeast,Candida albicans. Microbiol.Immunol.2002;46:881-3.
    5、Martin Schaller,Claudia B,Hans CK,et al.Hydrolytic enzymes as virulence factors of Candida albicans.Mycoses.2005;48:365-77.
    6、Lian C,Zhao J,Zhang Z,et al.Genotype of Candida species associated with different conditions of vaginal candidosis.Mycoses.2004;47:495-502.
    7、McCullough MJ,Clemons KV,Stevens DA.Molecular and phenotypic characterization of genotypic Candida albicans subgroups and comparison with Candida dubliniensis and Candida stellatoidea.J Clin Microbiol.1999;37:417-21.
    8、Tamura M,Watanabe K,Mikami Y,et al.Molecular characterization of new clinical isolates of Candida albicans and C.dubliniensis in Japan:analysis reveals a new genotype of C.albicans with group Ⅰ intron.J Clin Microbiol.2001;39:4309-15.
    9、Iwata T,Hattori H,Chibana H,et al.Genotyping of Candida albicans on the basis of polymorphisms of ALT repeats in the repetitive sequence(RPS).J Derrnatol Sci.2006;41:43-54.
    10、Kamiya A,Kikuchi A,Tomita Y,et al.Epidemiological study of Candida species in cutaneous candidiasis based on PCR using a primer mix specific for the DNA topoisomerase Ⅱ gene.J Dermatol Sci.2005;37:21-8.
    11、Iwaguchi SI,Homma M,Chibana H,et al.Isolation and characterization of a repeated sequence(RPS1) of Candida albicans.J Gen Microbiol.1992;138:1893-900.
    12、Hattori H,Iwata T,Nakagawa Y,et al.Genotype analysis of Candida albicans isolates obtained from different body locations of patients with superficial candidiasis using PCRs targeting 25S rDNA and ALT repeat sequences of the RPS.J Dermatol Sci.2006;42:31-46.
    13、朱晓芳,汪清,章强强等.念珠菌性外阴阴道炎患者身体不同部位白念珠菌基因型研究.中华皮肤科杂志.2003;36:446-8.
    14、Clemons KV,Feroze F,Holmberg K,et al.Comparative analysis of genetic variability among Candida albicans isolates from different geographic locales by three genotypic methods.J Clin Microbiol.1997;35:1332-6.
    15、Mercure S,Montplaisir S,Lemay G.Correlation between the presence of a self-splicing intron in the 25S rDNA of C.albicans and strains susceptibility to 5-fluorocytosine.Nucleic Acids Res.1993;21:6020-27.
    1、Cheung VG,Morley M,Aguilar F,et al.Making and reading microarrays.Nat Genet.1999;21(1 Suppl):15-9.
    2、Sandovsky-Losica H,Chauhan N,Calderone R et al.Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells.Med Mycol.2006;44:329-34.
    3、Marchais V,Kempf M,Licznar P,et al.DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene.FEMS Microbiol Lett.2005;245:25-32.
    4、Sohn K,Urban C,Brunner H,et al.EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays.Mol Microbiol.2003;47:89-102.
    5、Nantel A,Dignard D,Bachewich C,et al.Transcription Profiling of Candida albicans Cells Undergoing the Yeast-to-Hyphal Transition.Mol Biol Cell.2002;13:3452-65.
    6、 Lane S, Birse C, Zhou S, et al. DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efgl in Candida albicans. J Biol Chem. 2001; 276: 48988-96.
    
    7、 Lan CY, Newport G, Murillo LA, et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A. 2002; 99:14907-12.
    
    8、Barker KS, Liu T, Rogers PD, et al. Coculture of THP-1 human mononuclear cells with Candida albicans results in pronounced changes in host gene expression. J Infect Dis. 2005; 192: 901-12.
    
    9、Kim HS, Choi EH, Khan J,.et al. Expression of genes encoding innate host defense molecules in normal human monocytes in response to Candida albicans. Infect Immun.2005; 73: 3714-24.
    
    10、 Mullick A, Elias M, Harakidas P, et al. Gene expression in HL60 granulocytoids and human polymorphonuclear leukocytes exposed to Candida albicans. Infect Immun. 2004; 72: 414-29.
    
    11、 Fradin C, Kretschmar M, Nichterlein T, et al. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol. 2003; 47: 1523-43.
    
    12、 Liu TT, Lee RE, Barker KS, et al. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother. 2005; 49: 2226-36.
    
    13、 Rogers PD, Barker KS. Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother. 2002; 46: 3412-7.
    
    14、 Xu Z, Cao YB, Zhang JD, et al. cDNA array analysis of the differential expression change in virulence-related genes during the development of resistance in Candida albicans. Acta Biochim Biophys Sin (Shanghai). 2005; 37:463-72.
    
    15、Barker KS, Crisp S, Wiederhold N, et al .Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother. 2004; 54: 376-85.
    
    16、 Lee RE, Liu TT, Barker KS, et al. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. J Antimicrob Chemother. 2005;55: 655-62.
    
    17、 De Backer MD, Ilyina T, Ma XJ, et al. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother. 2001; 45: 1660-70.
    
    18、 Castillo L, Martinez AI, Garcera A, et al. Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal Genet Biol.2006;43:124-34.
    
    19、 Enjalbert B, Nantel A, Whiteway M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell. 2003;14:1460-7.
    
    20、 Bethann S, Hromatka, Suzanne M, et al. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell. 2005;16: 4814-26.
    1 Sobel JD.Vulvovaginal candidosis.Lancet.2007;369:1961-71.
    2 Wozniak KL,Palmer G,Kutner R,et al.Immunotherapeutic approaches to enhance protective immunity against Candida vaginitis.Med Mycol.2005;43:589-601.
    3 LeBlanc DM,Barousse MM,Fidel PL Jr.Role for dendritic cells in immunoregulation during experimental vaginal candidiasis.Infect Immun.2006;74:3213-21.
    4 De Bernardis F,Lucciarini R,Boccanera M,et al.Phenotypic and functional characterization of vaginal dendritic cells in a rat model of candida albicans vaginitis.Infect Immun.2006;74:4282-94.
    5 Liu F,Liao Q,Liu Z.Mannose-binding lectin and vulvovaginal candidiasis.Int J Gynaecol Obstet.2006;92:43-7.
    6 Giraldo PC,Babula O,Goncalves AK,et al.Mannose-binding lectin gene polymorphism,vulvovaginal candidiasis,and bacterial vaginosis.Obstet Gynecol.2007;109:1123-8.
    7 Nomanbhoy F,Steele C,Yano J,et al.Vaginal and oral epithelial cell anti-Candida activity.Infect Immun.2002;70:7081-8.
    8 Yano J,Lilly EA,Steele C,et al.Oral and vaginal epithelial cell anti-Candida activity is acid labile and does not require live epithelial cells.Oral Microbiol Immunol.2005;20:199-205.
    9 Liu ZH,Wu WX,Liao QP.Candida albicans growth inhibition by tumor necrosis factor-alpha in vaginal epithelial cells.Int J Gynaecol Obstet.2007;97:203-4.
    10 Fidel PL Jr,Barousse M,Espinosa T,et al.Live intravaginal Candida challenge in humans reveals new hypotheses for the immunopathogenesis of vulvovaginal candidiasis.Infect Immun.2004;72:2939-46.
    11 Barousse MM,Espinosa T,Dunlap K,et al.Vaginal epithelial cell anti-Candida albicans activity is associated with protection against symptomatic vaginal candidiasis.Infect Immun.2005;73:7765-7.
    12 Fidel PL Jr.History and new insights into host defense against vaginal candidiasis.Trends Microbiol.2004;12:220-7.
    13 Naglik JR,Challacombe SJ,Hube B.Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.Microbiol Mol Biol Rev.2003;67:400-28.
    14 Lian CH and Liu WD.Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis.Mycoses.2007;50:383-90.
    15 Taylor BN,Staib P,Binder A,et al.Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection.Infect Immun.2005;73:1828-35.
    16 Schaller M,Korting HC,Borelli C,et al.Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis.Infect Immun.2005;73:2758-65.
    17 Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol. 2006; 55:1323-7.
    
    18 Nailis H, Coenye T, Van Nieuwerburgh F, et al. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006; 47: 25.
    
    19 Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun. 2005; 73:1656-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700