用户名: 密码: 验证码:
网壳结构参数识别技术和损伤检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京奥运会所使用的比赛及训练场馆广泛采用了空间结构的形式。网壳结构是空间结构中的一种主要形式,其具有跨越能力强、造型美观、受力合理、施工简便等优点,为奥运场馆屋盖结构较多地采用,如奥运自行车比赛馆,其屋盖采用双层球面网壳结构;奥运羽毛球比赛馆,其屋盖采用弦支球面网壳结构,等等。网壳结构在保证奥运场馆新颖、美观、形式多样的同时,其复杂的动力学特性给结构的参数识别和损伤检测提出了新的挑战。本文重点针对网壳结构的模态参数识别、模态局部化和跃迁、损伤检测开展了系统深入的研究;此外,本文还对两类常见的建筑结构——层剪切结构和混凝土梁式结构的参数识别和损伤检测问题进行了有价值的研究和探索。取得的研究成果分述如下:
     1.提出了一种适用于网壳结构的模态测试技术。该技术联合使用单点瞬态冲击激励技术和模态参数识别的复模态指示函数法,通过单点瞬态冲击激励位置的优化选取,最大程度地孤立或分离待识别模态,在较大程度上减轻结构响应中重频(或近频)模态之间的互相干扰;复模态指示函数法作为一种先进的频域模态识别方法,能够快速、自动地确定结构模态参数,优于传统的峰值检测法。对所提出的模态测试技术进行了数值模拟,结果表明,该技术能够在一定程度上保证网壳结构模态参数识别的有效性和准确性。
     2.较为系统地研究了网壳结构的模态局部化和跃迁现象。通过对网壳结构子结构的算例分析,证实了两类现象在理论上是存在的;利用矩阵摄动法分析了两类现象的发生机理,即网壳结构模态局部化和跃迁现象发生的内因是结构固有频率的密集分布,外因是结构物理参数的小量变化;部分采用本文提出的网壳结构模态测试技术,对一个凯维特型单层球面网壳结构进行了模型试验,试验结果验证了模态局部化现象的存在性;阐述了模态局部化和跃迁对网壳结构抗震计算和损伤检测的重要影响;以一个单层球面网壳结构为例,进行了同一地面运动激励下,包含不同初始几何缺陷的网壳结构的线性动力反应分析,分析结果表明,与不考虑初始几何缺陷相比,某些杆件的轴压力峰值显著增大。因此,初始几何缺陷所导致的网壳结构模态局部化对结构线性动力反应的影响是不可忽略的,建议在网壳结构的抗震计算中予以足够的重视。
     3.针对网壳结构的轻度损伤,基于模态局部化和跃迁现象,提出了一种性质优良的损伤特征向量。该向量的构造简单,仅使用网壳结构的少数振型和少量的测试自由度。通过一个网壳结构的算例分析,对所提出的损伤特征向量的性质进行了检验。结果表明,该向量不仅具有较好的空间可分辨性、损伤敏感性和噪声鲁棒性,并且对结构有限元模型误差具有一定的适应性。进一步,通过一个凯维特型单层球面网壳结构模型的损伤试验,验证了损伤特征向量的良好性质。
     4.提出了一种基于高阶模态振型差的网壳结构损伤区域检测设想,并进行了试验探索。该设想首先对网壳结构进行区域划分并按区域布置传感器;然后利用单点随机激励获得结构的高阶模态响应,再由随机减量技术和Ibrahim时域辨识算法获取结构高阶模态参数;最后,利用损伤前后高阶模态振型差值的最大值来指示损伤区域。对一个单层椭球面网壳结构模型进行了损伤区域的检测试验,试验分析结果初步验证了所提出设想的可行性。
     5.针对环境激励下层剪切结构的刚度识别问题,提出了一种新的解决方法。该方法采用自然激励技术实现结构随机响应向确定性响应的过渡,推演了层剪切结构自由振动的参数解耦方程,以简化识别过程和降低计算量。将自然激励技术、参数解耦方法和扩展卡尔曼滤波算法三者有机结合,为环境激励下层剪切结构的刚度识别提供了一个较好的解决方案。分别以六自由度和十自由度的层剪切结构为例,对该方法进行了数值模拟和试验验证,结果表明,该方法能够比较准确地识别结构层间刚度,具有较好的工程应用前景,可用于框架结构建筑、连续梁桥以及力学模型可简化为链状多自由度系统的工程结构的健康监测中。
     6.对钢筋混凝土简支梁加载损伤后的阻尼特征进行了试验研究,提出了一种描述结构阻尼特征的新指标——相邻周期耗能比,并通过试验分析给出了该指标与简支梁弯曲裂缝损伤的关系。试验通过静力加载模拟简支梁的损伤累积过程,通过突加荷载试验跟踪简支梁阻尼特征随加载损伤等级的变化,深入分析和比较了阻尼比、相邻周期耗能比二者随裂缝损伤状态的变化机理,研究结果表明,相邻周期耗能比指标能够比较敏感地反映裂缝型损伤的程度变化,并具有很好的噪声鲁棒性,可以作为钢筋混凝土梁式结构的损伤检测指标。
Space structures are extensively used as roof structures of competition and training gymnasiums in Beijing Olympic Games. A latticed shell structure belongs one of main structural styles in space structures. It has a large span, a beautiful design, a reasonable stress and a convenient construction, so it is used as the roof structures of some Olympic gymnasiums. For example, the roof of Olympic Cycling Gymnasium is a double-layer spherical latticed shell structure; the roof of Olympic Badminton Gymnasium is a suspended spherical latticed shell structure. A latticed shell structure ensured these Olympic gymnasiums novel, artistic and multiform. But at the same time, its complex dynamical property brings some new challenge to structural parameter identification and damage detection. The main research targets of this dissertation are modal parameter identification, mode localization and transition, damage detection of latticed shell structures. Moreover, for two kinds of common structures, inter-story shearing structures and RC beam structures, the problems of parameter identification and damage detection were also researched. The research results are as follows:
     1. A modal testing technique for latticed shell structures is presented. The technique combines the technique of single-point transient shock excitation and the complex mode indication function method for modal parameter identification. Through the optimal position selection of single-point transient shock excitation, the mode identified can be isolated or separated to a great extent, and the interference between repeated frequencies modes (or closed frequencies modes) in structural response can be lightened to some extent. The complex mode indication function method is an advanced modal identification method in frequency domain. It can determine modal parameters automatically with a high-speed, so it is better than traditional peak-pick method. Numerical simulation was done to the modal testing technique. The results show that the technique has good validity and accuracy to some extent.
     2. Mode localization and transition of latticed shell structures were researched systematically. Through a numerical simulation example of a latticed shell substructure, the existence of mode localization and transition phenomena is verified in theory. The mechanism of two phenomena is analyzed by the matrix perturbation theory. It shows that the internal cause of two phenomena is the intensive frequencies of latticed shell structures and the external cause is the slight change of structural physical parameters. Using the modal testing technique presented in this dissertation partly, a model experiment was done to a Kiewitt single-layer spherical latticed shell structure. The experiment results prove that the phenomenon of mode localization is existent indeedly. The important impact of two phenomena is expounded in the areas of earthquake resistant calculation and damage detection of latticed shell structures. And using a single spherical latticed shell structure as an example, structural linear dynamic response under the same ground movement are calculated and analyzed by considering different initial geometrical imperfections. The results show that comparing with the case of ignoring initial geometrical imperfections, the peak values of axial pressure of some members augment remarkably. Thus, mode localization caused by initial geometrical imperfections can make linear dynamic response of latticed shell structures change remarkably, so it should be considered adequately in the seismic calculation of latticed shell structures.
     3. For the slight damage of latticed shell structures, a damage characteristic vector with good properties is presented based on the phenomena of mode localization and transition. The vector is simple, and it is composed of some low-order modes and a few testing freedoms. Through a numerical simulation example of a latticed shell structure, the properties of the damage characteristic vector are tested. The results show that the vector not only has good identifiable ability, damage sensitivity and noise robustness, and it can keep its adaptability to some extent to the error of structural finite element model. Furthermore, through a damage experiment of a Kiewitt single-layer spherical latticed shell structure model, the properties of damage characteristic vector are verified.
     4. A trial experiment is done on the damage region detection of latticed shell structures based on the difference of high-order modes. The experiment is to divide a latticed shell structure into several regions and place sensors in accordance to these regions firstly, then to acquire structural high-order modal response by single-point random excitation and identify the modal parameters by random decrement technique and Ibrahim time domain method, at last, to locate damage regions by the difference of high-order modes before and after damage. Through a damage detection test of a single-layer ellipsoidal latticed shell structure model, the feasibility of the method is verified basicly.
     5. The problem of inter-story stiffness identification for shearing structures under ambient excitation is researched and a new method is presented. In the method, the transition from structural random response to deterministic response is realized by the natural excitation technique (NExT). The parameter-decoupled free vibration equation of shearing structures is deduced, and the equation can simplify the process of identification and reduce the amount of calculation. Through the effective combination of the NExT, the parameter-decoupled method and the extended Kalman filter (EKF) algorithm, a good scheme is presented for inter-story stiffness identification of shearing structures under ambient excitation. Using shearing structures with six-degree-of-freedom and ten-degree-of-freedom as examples, the scheme is tested by numerical simulation and experimental verification. The results show that the inter-story stiffness can be identified with accuracy basically, and the scheme can be applied in frame constructions, continuous bridges and engineering structures whose mechnical models can be simplified as chain multiple degree of freedom systems.
     6. The damping characteristic of a simple-supported RC (reinforced concrete) beam after damage is researched, and a new index of damping characteristic (adjacent periods’dissipative ratio, APDR) is presented. The relationship between new index and bend-crack damage of RC beam is given by experimental analysis. In the experiment, the accumulated damage of beam is realized by static load test, and the change of damping characteristic with loading damage is tracked by shock load test. The mechanism of damping ratio’s change and APDR’s change with crack damage states are analyzed and compared deeply. The results show that the APDR index is sensitive to the severity of crack damage, and it has good noise robustness. So it can be used as a damage detection index of RC beams. Keywords latticed shell structure; parameter identification; damage detection; mode
引文
1 G. W. Housner, L. A. Bergman, T. K. Caughey, et al. Structural Control: Past, Present and Future. ASCE, Journal of Engineering Mechanics, 1997, 123(9): 897~971
    2 S. C. Liu, T. P. Yao. Structural Identification Conception. Journal of Structural Division, 1978, 104(12): 1845~1858
    3周传荣,赵淳生.机械振动参数识别及其应用.北京:科学出版社, 1989
    4俞云书.结构试验模态分析.北京:宇航出版社, 2000
    5曹树谦,张文德,萧龙翔.振动结构模态分析——理论、实验与应用.天津:天津大学出版社, 2001
    6李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社, 2001
    7 S. R. Ibrahim, E. C. Mikulcik. A Time Domain Model Vibration Test Technique. The Shock and Vibration Bulletin 43, Part 4, 1973
    8 S. R. Ibrahim, E. C. Mikulcik. A Method for the Direct Identification of Vibration Parameters from the Free Response. The Shock and Vibration Bulletin 47, 1977, Part 4: 183~198
    9 S. R. Ibrahim. An Upper Hessenberg Sparse Matrix Algorithm for Model Identification on Minicomputer. Journal of Sound and Vibration, 1987, 113(1): 47~57
    10 S. M. Pandit, S. M. Wu. Time Series and System Analysis with Applications. New York: Wiley, 1983
    11张景绘,邱阳.时间序列分析在振动中的应用.振动与冲击. 1983, 2(1): 1~11
    12张景绘,洪钟瑜,邱阳.应用时间序列的基本性质识别振动系统的特性参数.振动与冲击. 1986, 5(2): 22-31和5(3): 35~47
    13 J. N. Juang, R. S. Pappa. An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction. Journal of Guidance, Control and Dynamics, 1985, 8(5): 620~627
    14 B. Peeters, et al. Stochastic Subspace Techniques Applied to Parameter Identification of Civil Engineering Structures. Proceeding of New Advances in Modal Synthesis of Large Structures: Nonlinear, Damped and Nondeterministic Cases, Lyon, France, September 1995, 151~162
    15赵寿根,程伟,孙国江等.航天器动力特性参数在轨辨识技术.北京航天航空大学学报. 2005, 31(9): 999~1003
    16赵寿根,程伟,姚军等.利用在轨航天器扰动响应辨识其动力学参数的研究.振动与冲击, 2005, 24(5): 65~67
    17 R. Chanem, M. Shinozuka. Strcutural System Identification I: Theory. Journal of EngineeringMechanics. 1995, 121(2): 255~264
    18 G. C. Hart, T. P. Yao. System Identification in Structural Dynamic. ASCE, EM., 1977, 103(6): 1089~1104
    19李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社, 2002
    20罗续成.实时加权递推最小二乘估计及其初步应用.导弹与航天运载技术, 1995, (1): 40~49
    21刘轩黄.严格的最小二乘递推算法.湖南大学学报(自然科学版), 2000, 18 (3): 222~226
    22阎晓明,李言俊,陈新海.一种自动调整遗忘因子的快速时变参数辨识方法.自动化学报, 1991, 17 (3): 336~339
    23梁艳春,王在申.遗忘因子选取对于时变参数识别结果的影响, 1996, 17 (1): 75~80
    24 C. B. Yun, M. Shinozuka. Identification of Nonlinear Dynamic System. Journal of Structural Mechanics, 1980, 8 (2): 1371~1390
    25 M. Hoshiya, E. Saito. Structural Identification by Extended Kalman Filter, ASCE, EM., 1984, 110(2): 1757~1770
    26 M. Hoshiya, A. Sutoh. Kalman Filter-finite Element System Method in Identification. Journal of Engineering Mechanics, 1993, 119(2): 197~210
    27 A. H. Jazwinski. Stochastic Process and Filtering Theory. Academic Press, 1970.
    28李杰.基于微分算子变换的广义卡尔曼估计方法.计算结构力学及应用, 1995, 10 (4): 394~400
    29赵昕,李杰.一类加权全局迭代参数卡尔曼滤波算法.计算力学学报, 2002, 19 (4): 403~408
    30任宜春,易伟建.结构物理参数识别的多尺度参数卡尔曼滤波方法.工程力学, 2008, 25(5): 1~5
    31潘芹,易伟建.卡尔曼滤波在结构物理参数识别中的应用.湖南大学学报, 2002, 29 (3): 137~142
    32王晓燕,黄维平,李华军.地震动反演及结构参数识别的EKF算法.工程力学, 2005, 22 (4): 20~23
    33王卓,任晓强等.简支梁桥结构抗弯刚度的快速检测方法与试验验证.公路交通科技应用技术版, 2008, 4(10): 12~14
    34 L. Ljung. Asymptotic Behavior of the Extended Kalman Filter as a Parameter Estimator for Linear System. IEEE, 1979, 24: 36~50
    35张德文,李应明.元素性摄动迭代法——动力模型修正与广义故障诊断.振动与冲击, 1989, 8(3): 23~31
    36 K. K. Denoyer, L. D. Peterson. Model Update Using Modal Contribution to Static Flexibility Error. AIAA, 1997, 35(11): 1739~1745
    37冯新,周晶,陈健云等.基于观测柔度阵的结构参数识别.世界地震工程, 2002, 18(1): 51~55
    38 A. Berman, E. J. Nagy. Improvement of Large Analytical Model Using Test Data. AIAA Journal, 1983, 21(8): 1168~1173
    39 M. Baruch, I. Y. Itzhack. Optimal Weighted Orthogonalization of Measured Modes. AIAA Journal, 1978, 16(4): 345~351
    40 A. Berman. Mass Matrix Correction Using an Incomplete Set of Measured Models. AIAA Journal, 1979, 17(10): 1147~1158
    41 K. A. Stetson, G. E. Palma. Inversion of the First-order Perturbation Theory and Its Application to Structural Design. AIAA Journey, 1976, 14(4): 454~460
    42 Chen J C, Wada B K. Matrix perturbation for structural dynamic analysis. AIAA Journal, 1977, 15(8): 1095~1100
    43纽马克,罗森布卢斯.地震工程学原理.北京:中国建筑出版社, 1986
    44 M. A. M. Torkamani, A. K. Ahmadi. Stiffness Identification of Two and Three-dimensional Frames. Earthquake Engineering and Structural Dynamic, 1988(16): 1157~1176
    45 J. C. Chen, J. A. Garba. Analytical Model Improvement Using Modal Test Result, AIAA Journal, 1980, 18(6)
    46李华军,杨和振.海洋平台结构参数识别和损伤诊断研究进展.第十三届全国结构工程学术会议特邀报告, 2004, 116~138
    47 P. Cawley, R. D. Adams. The Location of Defects in Structures from Measurements of the Natural Frequencies. Journal of Strain Analysis. 1979, 14(2): 49~57
    48 O. S. Salawu. Detection of Structural Damage through Changes in Frequency: a Review, Engineering Structures, 1997, 19(9): 718~723
    49 W. M. West. Illustration of the Use of Model Assurance Criterion to Detect Structural Changes in an Orbiter Test Specimen. Proceedings of Air Force Conference on Aircraft Structural Integrity, 1984: 1~6
    50 R. J. Allemang, D. L. Brown. A Correlation Coefficient for Modal Vector Analysis. Proceedings of the 1st IMAC, 1982, Vol.Ⅰ, 110~116
    51 A. J. Lieven, D. J. Ewins. Spatial Correlation for Mode Shapes: the Coordinate Modal Assurance Criterion (COMAC). Proceedings of the 6st IMAC, 1988, Vol.Ⅰ, 690~695
    52 A. K. Pandy, M. Biswas, M. Msamman. Damage Detection from Changes in Curvature Mode Shapes. Journal of Sound and Vibration. 1991, 145(2): 321~332
    53 C. P. Ratcliffe. Damage Detection Using a Modified Laplacian Operator on Mode Shape Data. Journal of Sound and Vibration, 1997, vol. 204, No. 3, 505~517
    54李忠献,齐怀展,朱劲松.基于模态曲率法的大跨度斜拉桥损伤识别.地震工程与工程振动. 2007, 27(4): 122~126
    55李德葆.实验应变模态分析原理和方法.清华大学学报. 1990, 30(2): 22~26
    56周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究.湖南大学学报. 1997, 24(5): 69~74
    57徐丽,易伟建,吴高烈.混凝土框架柱刚度变化识别的应变模态方法研究.振动与冲击. 2006, 25(3): 1~5
    58丁阳,宋扬,李忠献.大跨度空间网格结构节点损伤识别定位.天津大学学报. 2007, 40(6): 726~730
    59 A. K. Pandy, M. Biswas. Damage Detection in Structures Using Changes in Flexibility. Journal of Sound and Vibration. 1994, 169: 3~17
    60 A. K. Pandy, M. Biswas. Experimental Verification of Flexibility Difference Method for Locating Damage in Structures. Journal of Sound and Vibration. 1995, 184(2): 311~328
    61李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法.地震工程与工程振动. 1999, 19(1): 31~37
    62綦宝晖,邬瑞锋,蔡贤辉.一种桁架结构损伤识别的柔度阵法.计算力学学报. 2001, 18(l): 42~47
    63 Jay-Ching Chen, J. A. Garba. On-orbit Damage Assessment for Large Space Structures. AIAA, 1988, 26(9): 1098~1126
    64史治宇等.结构破损定位的单元模态应变能变化率法.振动工程学报, 1998, 11(3): 356~360
    65史治宇,吕令毅.由模态应变能法诊断结构破损的实验研究.东南大学学报, 1999, 29 (2): 134~138
    66李忠献,刘永光.基于遗传神经网络与模态应变能的斜裂缝两阶段诊断方法.工程力学. 2008, 25(2): 9~16
    67 J. M. Ricles, J. B. Kosmatka. Damage detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity. AIAA, 1992, 30(9): 2310~2316
    68 H. Batuth, S. Ratan. Damage Detection in the Flexible Structures. Journal of Sound and Vibration. 1993, 166(l): 21~30
    69周先雁,沈蒲生,易伟建.混凝土平面杆系结构破损评估理论及试验研究.湖南大学学报, 1995, 22(4): 104~109
    70高维成,刘伟.网壳结构损伤识别的数值模拟及试验研究.工程力学, 2006, 23(10): 111~117
    71 D. Bernal. Load Vectors for Damage Localization. DOI: 10.1061/(ASCE)0733-9399(2002) 128: 1(7)
    72纪晓东,钱嫁茹,徐龙河.两层钢支撑框架模型损伤定位试验.工程力学, 2007, 24(1):62~66
    73钱稼茹,纪晓东,张微敬等.国家游泳中心子结构模型损伤识别试验研究.中国科学E辑:技术科学. 2007, 37(5): 621~627
    74 A. Al-khalidy, M. Noori, Z. Hou, et al. Health Monitoring Systems of Linear Structures Using Wavelet Analysis. Proceedings of International Workshop on Structural Health Monitoring: Current, Status and Perspectives. California: Stanford University, Stanford, 1997: 164~175
    75 A. Al-khalidy, M. Noori, Z. Hou, et al. A Study of Health Monitoring Systems of Linear Structures Using Wavelet Analysis. Proceedings of the ASME Pressure Vessels and Piping Conference, FL: Orlando, 1997, 347: 49~58
    76 Z. Hou, M. Noori, R. Amand. Wavelet-based Approach for Structural Damage Detection. Journal of Engineering Mechanics. 2000, 126 (7): 677~683
    77李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验分析.土木工程学报. 2003, 36(5): 52~57
    78唐和生,薛松涛,陈镕等.基于小波变换在线结构损伤检测分析研究.固体力学学报. 2004, 25(1): 47~52
    79任宜春,马石城,林琳.移动荷载作用下梁裂缝识别的小波方法研究.振动与冲击. 2004, 23(2): 82~85
    80 K. M. Liew, Q. Wang. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics. 1998, 124(2): 152~157
    81 J. C. Hong, Y. Y. Kim, H. C. Lee, et al. Damage Detection Using the Lipschitz Exponent Estimated by the Wavelet Transform Applications to Vibration Modes of a Beam. International Journal of Solids and Structures. 2002, 39: 1803~1816
    82 A. V. Ovanesova, L. E. Suarez. Applications of Wavelet Transforms to Damage Detection in Frame Structures. Engineering Structures, 2004, (26): 39~49
    83 Z. Sun, C. C. Chang. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering. 2002, 128(10): 1354~1361
    84 L. H. Yam, Y. J. Yan, J. S. Jiang. Vibration-based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification. Composite structure. 2003, 60: 403~412
    85丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究.工程力学. 2006, 23(8): 42~48
    86 G. R. Yan, Z. D. Duan, J. P. Ou. Damage Localization Based on the Residual Wavelet Force. The 2nd Conference on Structural Health Monitoring of Intelligent Infrastructure. Shenzhen, 2005
    87 V. Amaravadi, V. Rao, L. R. Koval, et al. Structural Health Monitoring Using WaveletTransforms. Proceedings of SPIE-The International Society for Optical Engineering, Newport Beach, CA, 2001, 4327: 258~269
    88焦莉,李宏男.基于数据融合和小波分析的结构损伤诊断.振动与冲击. 2006, 25(5): 85~88
    89曹茂森,任青文,史立红.小波-分形联合的结构损伤无损振动诊断.实验力学. 2004, 19(3): 360~365
    90任宜春.基于小波分析的结构参数识别方法研究.湖南大学博士论文. 2007: 5~6
    91郭长城.建筑结构振动计算续编.北京:中国建筑工业出版社, 1992
    92于建华,谢用久,魏泳涛.高等结构动力学.成都:四川大学出版社, 2001: 109~113
    93沈士钊,陈昕.网壳结构稳定性.北京:科学出版社, 1999
    94 P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Physical Review, 1958, 109(3): 1492~1505
    95 P. W. Anderson, N. Mott. Nobel Lecture in Physics for 1977. Review of Modern Physics, 1978, 50(2): 191~208
    96 C. H. Hodges. Confinement of Vibration by Structure Irregularity. Journal of Sound and Vibration, 1982, 82(3): 411~424
    97 C. Pierre, E. H. Dowell. Localization of Vibration by Structural Irregularity. Journal of Sound and Vibration, 1987, 114(3): 549~564
    98 O. O. Bendiksen. Mode localization phenomena in large space structures. AIAA Journal, 1987, 25(9): 1241~1248
    99罗惟德,王皓.失调结构的模态分析.复旦学报(自然科学版), 1992, 31(3): 318~325
    100刘济科,赵令诚.结构振动模态局部化评述.振动与冲击, 1995, 14(4): 1~4
    101王建军,李其汉,朱梓根.失谐叶片-轮盘结构系统振动局部化问题的研究进展.力学进展, 2000, 30(4): 517~528
    102李凤明,汪越胜,黄文虎等.失谐周期结构中振动局部化问题的研究进展.力学进展, 2005, 35(4): 498~512
    103蒋友宝,冯健,孟少平.结构损伤识别中模态跃迁的研究.工程力学, 2006, 23(6): 35~40
    104史志宇,罗绍湘,张令弥等.由试验模态数据检测结构破损的位置和大小.南京航天航空大学学报, 1997, 29(1): 71~78
    105史志宇,罗绍湘,张令弥.结构破损定位的单元模态应变能变化率法.振动工程学报, 1998, 11(3): 356~360
    106钱稼茹,徐龙河,纪晓东等. Benchmark模型结构两阶段损伤诊断试验分析.工程力学, 2006, 23(9): 89~92
    107 JGJ61-2003,网壳结构技术规程
    108唐敢,黎德琳,赵才其等.空间结构初始几何缺陷分布规律的实测数据及统计参数.建筑结构. 2008, 38(2): 74-78
    109胡雄,陈兆能,佟德纯等.多参数监测与模式识别技术在斜拉桥模型中的应用.上海交通大学学报, 2000, 34(3): 354~359
    110张启伟.桥梁健康监测中的损伤特征提取与异常诊断.同济大学学报, 2003, 31(3): 258~262
    111樊可清,倪一清,高赞明.基于频域系统辨识和支持向量机的桥梁状态监测方法.工程力学, 2004, 21(5): 25~30
    112瞿伟廉,秦文科.输电塔法兰联结节点螺栓松动损伤诊断改进的模糊模式识别方法.地震工程与工程振动, 2006, 26(6): 138~143
    113 H. X. He, W. M. Yan. Structural Damage Detection with Wavelet Support Vector Machine: Introduction and Applications. Journal of Structural Control and Health Monitoring, 2007, 14(1): 162~176
    114 S R. Ibrahim. Random Decrement Technique for Modal Identification of Structures. AIAA. Journal of Spacecraft and Rockets, 1977, 14 (11): 696~700
    115 S. R. Ibrahim. Double Least Squares Approach for Use in Structural Model Identification, AIAA Journal, 1986, 24(3): 499~503
    116尚进等.用几何最小二乘法改进ITD法的阻尼识别精度.清华大学学报, 1997, 37(11): 46~48
    117 Y. B. Zheng, M. S. Wang, H. Liu, et al. Time-domain Identification of Dynamic Properties of Layered Soil by Using Extended Kalman Filter and Recorded Seismic Data. Earthquake Engineering and Engineering Vibration, 2004, 3(2): 237~247
    118谢献忠,易伟建.结构物理参数时域识别的子结构方法研究.工程力学, 2005, 22(5): 94~98
    119樊素英,李忠献.桥梁结构物理参数识别的双单元子结构法.工程力学, 2007, 24(6): 68~72
    120 M. C. Juan, J. D. Shirley, A. J. Erik. Natural Excitation Technique and Eigensystem Realization Algorithm for PhaseⅠof the IASC-ASCE Benchmark Problem: Simulated Data. Journal of Engineering Mechanics, 2004, 130 (1): 49~60
    121王树青,李华军.利用消去刚度法进行剪切型系统物理参数识别.中国海洋大学学报, 2004, 34(6): 1085~1089
    122易伟建,周云.基于高阶局部模态的弹性地基上框架结构物理参数识别研究.地震工程与工程振动, 2007, 27(1): 117~124
    123 G. H. James, T. G. Came, J. P. Lauffer. The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines. No. SAND92-1666, UC-261, Sandia: Sandia National Laboratories, 1993
    124 J. S. Bendat, A. G. Piersol. Random Data: Analysis and Measurement Procedures. Wiley, New York, 2000
    125 J. L. Beck, M. W. Vanik, L. S. Katafygiotis. Determination of Model Parameters from Ambient Vibration Data for Structural Health Monitoring. Proc., 1st World Conf. on Structural Control, Pasadena, 1994, Calif., 3~12
    126宝志雯,史文月.基于推广卡尔曼滤波算法的结构模型的参数识别.振动与冲击, 1990(1): 11~21
    127 S. A. Neild, M. S. Willianm, P. D. Mcfadden. Nonlinear Vibration Characteristic of Damaged Concrete Beams. Journal of Structural Engineering, 2003, 129(2): 260~268
    128 Koen Van Den Abeele, Joelle De Visscher. Damage Assessment in Reinforced Concrete Using Spectral and Temporal Nonlinear Vibration Techniques. Cement and Concrete Research, 2000, (30): 1453~1464
    129孙晓燕,孙保沭,黄承逵.钢筋混凝土简支梁超载后动力特性试验研究.振动、测试与诊断, 2005, 25(1): 61~65
    130王利恒,周锡元,闫维明.用锤击试验反应最大值监测钢筋混凝土简支梁桥结构损伤程度的试验研究,振动与冲击, 2006, 25(1): 90~94
    131王岐峰,李炎,李万恒等.桥梁自振特性与承载能力分析.公路交通科技, 2005, 22(11): 93-95
    132任宜春,易伟建.钢筋混凝土梁的非线性振动识别研究.工程力学, 2006, 23(8): 90-95
    133李德葆,陆秋海.工程振动试验分析.北京:清华大学出版社, 2004. 200-204
    134刘晶波,杜修力.结构动力学.北京:机械工业出版社, 2005. 41-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700