用户名: 密码: 验证码:
基于实测数据的雷达成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像作为雷达的一个新的功能在国内外已被广泛应用,它具有全天候、全天时、远距离成像的特点,可以大大提高雷达的信息获取能力,特别是战场感知能力。现在国外对战场感知要求高的雷达均配有二维成像功能,其对军用和民用均有重大实用价值。
     雷达成像可分为逆合成孔径雷达(ISAR)成像和合成孔径雷达(SAR)成像,它的实践性非常强,对其研究需要大量实测数据。在过去,由于我国的宽带雷达比较少,录取的实测数据非常少,许多研究是基于仿真数据和少数国外录取的数据,限制了研究的深入。在ISAR成像方面,情况要好一些,“863”高科技计划的支持下,93年国内400MHz的宽带实验雷达研制完成,成功地录取几批实测数据,提供给多所高校和研究所,大大推动了研究工作。在SAR成像方面,可供研究的国内实测数据非常少,但近年来,由于需求牵引,许多研究所,如航空607所、电子14所、电子38所和兵器206所等,先后对机载SAR进行了较多批次的试飞,录取了一大批数据。本文就是利用我国自己录取的实测数据,在已有的研究工作基础上,对雷达成像作进一步研究。主要工作概述如下:
     第二章研究机动目标的逆合成孔径雷达成像原理。逆合成孔径雷达(ISAR)和合成孔径雷达(SAR)都是利用目标(场景)与雷达的相对运动,提高横向分辨率,实现对目标(场景)的成像。SAR的运动方是雷达平台,可控制作平稳飞行,且用仪器测校其偏离误差;ISAR的运动方通常是非合作目标,运动不受控制,且难以精确测量。当目标作机动飞行时,以目标作固定基准,雷达等效地在空间形成流形复杂的逆合成孔径(阵列),本第二章是对这种情况下成像原理进行了系统的研究。
     第三章是研究机动目标的平动补偿和成像方法。首先讨论平动补偿,它通常可以分解为两步进行——包络对齐和自聚焦,通过分析表明,针对平稳飞行的包络对齐方法(如相关法和最小熵方法)仍适用于机动目标,而根据相干积累原理,已有的自聚焦方法(如单特显点法,多特显点法,PGA方法)从理论上和实际上来说都不是最优的,我们提出适用于机动目标和平稳目标的迭代相干积累自聚焦(ICSA)算法,PGA算法是ICSA算法的一个特例;然后,本文讨论机动目标的成像,它实际上是一个瞬时谱估计问题,已有的一些瞬时成像方法(如联合时频分布方法,Radon-Wigner方法)只适用于散射点子回波
    
    基于实测数据的雷达成像方法研究
     为线性调频信号(多普勒分布为直线)。针对多普勒分布为非直线的情况,我
     们提出用自适应窗短时chirplet分解方法估计信号的瞬时频率和瞬时幅度,并
     结合“洁净”技术,提出了快速自适应窗短时chirplet分解成像(ACDD算法。
     实测数据的处理表明本章提出ICSA算法和ACDI算法是有效的。
    令第四章研究舰船目标的ISAR成像。有关飞机目标的ISAR成像国内已有较深
     入的研究,对水面舰船的雷达成像在国防上同样有重要意义,但国内对舰船
     的ISAR成像的研究,基本上为空白状态。虽然舰船成像与飞机成像在基本
     原理上没有区别,但由于海水的波动,使舰船的姿态变化比较复杂,有必要
     作专门的研究。第四章利用外场实测数据,针对舰船运动的特殊性,提出基
     于“Clean”的调幅·线性调频(AM一LFM)信号参数估计的方法,获得舰船目标
     的距离。瞬时多普勒动态像。
    令第五章研究一维高分辨距离像的特性。由前第二、三、四章可知,工SAR像的
     横向为多普勒,高的多普勒分辨率需要长的回波序列,即目标需有一定的转
     角,而且当目标机动时,所获得的工SAR像形态各异,给目标识别带来不利。
     雷达目标的高分辨一维距离像易于获取,它也包含目标形态的信息,且目标
     的机动与否,对其影响不大。但是,一维距离像的可视性是较差的,虽然一
     维距离像己将目标按距离分辨单元分割开,但每个分辨单元例还有许多散射
     点,该单元回波的复振幅为众多散射点子回波之和。当视角有微小变化时,
     虽然各散射点到雷达的距离变化并不大,但相对于微波波长,其相位差的变
     化相当大,从而使各分辨单元到复振幅有大的起伏,即一维距离像的方向敏
     感性十分敏感。为了能正确利用一维距离像作目标识别,必须利用实测数据
     对一维距离像的特性进行研究,并通过预处理得到相对稳定的一维距离像。
    令第六章研究基于运动参数估计的窄波束宽幅SAR成像。近年来,国内很多研
     究所,先后研制出分辨率为3m x 3m的机载SAR,进行了较多批次的试飞,
     录取了一大批数据。但这些试验雷达,载机虽然装备有INS一GPS系统,但并
     不对雷达的状态和参数作实时调整,天线上也未装捷联惯性测量组件(IMU),
     从而导航仪器测得的运动参数的精度较低,为作精确的运动补偿,运动参数
     需要从实测数据估计得到。本第六章,利用基于数据的多普勒中心和调频率
     估计方法,对运动参数的变化历程作了长时间的精确估计,并提出了新的补
     偿和成像方法,可在飞行状态不很理想时,仍能获得好的宽幅图像。
Imaging as a new function of radar is widely used, which has the characteristic of all-weather, day/night and long range, enhance radar's information acquisition capability, especially battlefield awareness ability. Now, most of radar in abroad that needs high battlefield awareness ability has the 2-D imaging function, which has great value in both civilian and military applications.
    Radar imaging can be divided Inverse synthetic aperture radar (ISAR) imaging and synthetic aperture radar (SAR) imaging. Radar imaging is a practical technique, a huge number of raw data must have to study it. In the past, because the number of wideband radar is few in our country, so the raw data is very rare, most of researches are based on simulation and raw from abroad, that restricts further researches. In 1993, a wideband ISAR radar with 400MHz bandwith is developed on the support of "863" program, and many raw data (or real data) is collected, ISAR research becomes more deep by providing these data to many colleges, universities and institutes for research. In these years, many research institutes, such 607, 38,14 and 206, have developed airborne SAR system, and have collected many raw data from many times test-fly. This dissertation study the radar imaging methods based on real data collected by our country on the basis of existing research work. The following is the summarization of the main work: Chapter 2 studies the principle of ISAR imaging for maneuvering targets. ISAR and SAR all utilize the relative motion of target (scene) and radar to improve cross-range resolution, and then obtain the target's image. Usually, in SAR, the radar moves steadily by controlling, and the deviation can be measured, but, in ISAR, the target's motion is non-cooperative, and is difficult to measure. When target maneuvers, and if we take target as reference, radar will form a complicated inverse synthetic aperture (array) manifold equivalently in space, this chapter studies the imaging problem systematically in this situation.
     Chapter 3 studies the translational motion compensation (TMC) and imaging methods of maneuvering target. We first discuss TMC, which is usually discomposed into two step: envelope alignment and autofocus. The existing envelope alignment algorithms are still effective for not too big maneuvering target
    PhD Thesis of Xidian University
    
    
    
    
    whose migration through resolution cells (MTRC) is not take place, but the existing autofocus algorithms are not effective for maneuvering target in practice and in theory according to coherent summation principle. So we propose an iterative coherent summation autofocus (ICSA) algorithm, PGA is a particular case of ICSA. Then we discuss maneuvering target imaging problem, in fact, which is a instantaneous spectrum estimation problem, most existing algorithms are only effective when scatterers' echoes are linear frequency modulation (LFM) signals, for the situation when scatterers' time-frequency distribution is not linear, we put forward a adaptive chirplet decomposition method to estimate instantaneous frequency and instantaneous complex amplitude of multi-component polynomial phase signals, and propose a fast adaptive chirplet decomposition imaging (ACDI) algorithm by utilizing "Clean" technique. Real data processing proves the proposed ICSA algorithm and ACDI algorithm are effective.
     Chapter 4 studies the IS AR imaging of ship. Many researches of IS AR imaging for airplane have been done in our country, ISAR imaging for ship is also very important in national defense, but the research for it is very few. Although the difference is little in principle between airplane imaging and ship imaging, the pose variation of ship is more complicate for the fluctuation of sea, so it need to be studied specially. This paper propose a Range-Instantaneous Doppler Algorithm (RIDA) based on multi-component amplitude modulation and linear frequency modulation (AM-LFM) signal parameter estimation method to obtain good ship ISAR images from real data.
     Chapter 5 investigates the properti
引文
[1] J. C. Curlander, and R. N. McDonough, Synthetic aperture radar: system and signal processing, Jone Wiley & Sons, INC, 1991.
    [2] Mehrdad Soumekh, Fourier Array Imaging, Prentice Hall, Inc., 1994
    [3] W. G. Carrara, R. S. Goodman, and R. M. Majewski, SPOTLIGHT SYNTHETIC APERTURE RADAR: SIGNAL PROCESSING ALGORITHMS, Artech House, Boston, 1995.
    [4] C. V. Jakowatz Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston, 1996.
    [5] Giorgio Franceschetti and Riccardo Lanari, Synthetic Aperture Radar Processing, CRC Press Boca Raton London New York Washington, D.C.
    [6] Roger J. Sullivan, Micowave Radar Imaging and Advanced Concepts, Artech House, Boston, 2000.
    [7] Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999
    [8] J. Patrick Fitch, Synthetic Aperture Radar, Springer-Verlag New York Inc., 1988.
    [9] S.A.Hovanessian, Introduction to Synthetic Array and Imaging Radar, Artech House, 1980.
    [10] 张澄波,综合孔径雷达,科学出版社,1989。
    [11] 张直中,微波成像技术,科学出版社,1990。
    [12] Donald R. Wehner, High-Resolution Radar, 2nd Edition, Artech House, Inc., 1995
    [13] Dean L. Mensa, High Resolution Radar Imaging, Artech House, Inc., 1981
    [14] Dean L. Mensa, High Resolution Radar Cross-Section Imaging, Artech House, Inc., 1991
    [15] Brett Borden, Radar imaging of airborne targets: a primer for applied mathematicians and physicists, Institute of Physics Publishing Bristol and Philadelphia, 1999.
    [16] W. M. Brown, "Synthetic aperture radar", IEEE Trans.AES, Vol.3, NO.2, pp217-
    
    229,1967.
    [17] W. M. Brown and Porrcello, "An introduction to synthetic aperture radar", IEEE Spectectrum, Vol.4, Sept. pp.52-62, 1969.
    [18] C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu, "Spaceborne synthetic aperture imaging radars: application, techniques, and technology," Proc. Of IEEE, Vol.70, No. 10, pp. 1174-1209,1982.
    [19] Wiley, C.A., "Synthetic Aperture radar," IEEE Trans. AES, Vol.21, No.3, pp440-443,1985
    [20] C. W. Sherwin, J. P. Ruina, R. D. Rawcliffe, "Some early developments in synthetic aperture radar systems," IRE Trans. On military electronics, Vol.6, No.2, pp.111-115,1962.
    [21] J. J. Kovaly, High resolution radar fundamentals, In Eli-Broakner, Radar Technology, Dedham. Mass., Artech House, 1977.
    [22] J. C. Kirk, "Digital synthetic aperture radar technology," IEEE International Radar Conference, 1975.
    [23] R. Horn, "E-SAR--The experimental airborne L/C band SAR system of DLR," Proc. of IGARSS'88, pp. 1025-1026, 1988.
    [24] S. N. Maden, E. L. Christensen, et al, "The danish SAR system: design and initial tests," IEEE Trans. GRS, Vol.29, No.3, pp.417-426, 1991.
    [25] J. Dall, J. H. J, E. L. C, S. N. Madsen, "Real-time processor for the danish airborne SAR," IEE Proceedings-F, Vol.139, No.2, pp115-121, 1992.
    [26] A.Jain ,I.Patel, "SAR/ISAR imaging of uniformly rotating target",IEEE Trans, on AES.,Vol.28, No.1, pp317-320, 1992.
    [27] A.Damini, G.E.Halslam,"SAR/ISAR ship imaging theoretic analysis and practical results",Proc. EUSAR,Konigswinter(Germany), 26-28 March, pp443-446,1996.
    [28] F.Berrizzi,M.Diani,"Target angular motion effects on ISAR imaging", IEE Proc.-F, Vol. 144, No.2, pp87-95.
    [29] Zheng Bao, Changyin Sun, Mengdao Xing, "Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations". IEEE Trans, on AES, Vol.37, No.3, pp.1091-1099, Jul 2001.
    [30] M.J.Prickect,C.C.Chen,"Principle of Inverse Synthetic Aperture Radar(ISAR) Imaging", EASCON record, pp340-345,1980
    [31] C.C.Chen and H.C.Andrews, "Target-motion-induced radar imaging", IEEE
    
    Transaction on Aerospace and Electronic System, Vol.16, No.1, pp.2-14, 1980.
    [32] Ausherman, D.A., Kozma, A., Walker, J.L., Jones, H. M., and Poggio, E.C. "Developments in radar imaging". IEEE Trans. AES, Vol.20, No.4, July 1984, pp.363-400.
    [33] V.C.Chen,.S.Qian, "Joint time-frequency analysis for radar range-Doppler imaging", IEEE Trans. AES,Vol.34, No.2, 1998, pp486-499.
    [34] Bao Zheng, Wang Genyuan, Luo Lin, "Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets", Optical Engineering, Vol.37, No.5, 1582-1588, May 1998.
    [35] Wei Ye, Tat Soon Yeo, Zheng Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus" IEEE Trans. GRS, Vol.37, No.5. 1999
    [36] F.Natterer The Mathematics of Computerized Tomography, Wiley, 1986.
    [37] 保铮,孙长印,邢孟道,“机动目标的逆合成孔径雷达成像原理及算法”,《电子学报》,Vol.28,No.6,2000,p24-pp28。
    [38] 邢孟道,保铮,“ISAR机动目标的平动补偿和瞬时成像研究”,《电子学报》,第29卷,第6期,2001年,pp.733-737。
    [39] 叶炜,保铮,“逆合成孔径自聚焦的新方法.局域特显点综合法”,《中国科学(E)》,第27卷,第5期,1997年。
    [40] Berizzi, F.; Dalle Mese, E.; Martorella, M, "ISAR imaging of oscillating targets by range-instantaneous-Doppler technique", Radar Conference, 2000. The Record of the IEEE 2000 International, 2000, Page(s): 475-480.
    [41] Xiaojian Xu; Narayanan, R.M, "Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling", Image Processing, IEEE Transactions on, Volume:10, Issue: 7, Jul 2001, Page(s): 1094-1102.
    [42] Genyuan Wang; Xiang-Gen Xia; Chen, V.C, "Three-dimensional ISAR imaging of maneuvering targets using three receivers Image Processing", IEEE Transactions on, Volume:10, Issue:3, Mar. 2001. Page(s): 436-447.
    [43] Delisle, G.Y., and Wu.H, "Moving target imaging and trajectory computation using ISAR" IEEE Trans. on AES, Vol.30, No.3, 1994, pp.887-889.
    [44] 王根原,保铮,“逆合成孔径雷达运动补偿中包络对齐的新方法”,《电子学报》,第26卷,第6期,pp5-8,1998年,pp.3-5。
    [45] Wang Genyuan, Bao Zheng, "The Minimum Entropy Critertion of Range Alignment in ISAR Motion Compeasation", Proceeding Conference Radar 97,
    
    Edinburgh UK, 14-16, October 1997.
    [46] Steinberg, B.D. "Microwave imaging of aircraft", Proceedings of IEEE, Vol.76, No.12, 1988, pp.1578-1592.
    [47] Itoh, T., Sueda, H., and Watanabe, Y. "Motion compensation for ISAR via centroid tracking", IEEE Trans. on AES, Vol.32, No.3, pp. 1191-1197.
    [48] Zhang Shouhong, Ma Changzheng, Chen Baixiao "Monopulse Radar Three-dimensional Imaging For Maneuvering Target," SPIE, ISMIP'98,多谱段图象处理国际会议,武汉。
    [49] Wahl, D.E., P.H.Eichel, D.C. Ghiglia, and C.V.Jakowatz, Jr., "Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction," IEEE Trans. on AES, Vol.30, No.3, July 1994, pp.827-83.
    [50] Wei Ye, Tat Soon Yeo, Zheng Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus" IEEE Transaction on Geoscience and Remote Sensing, Vol.37, No.5. 1999.
    [51] 保铮,叶炜,“ISAR运动补偿聚焦方法的改进”,《电子学报》,第24卷,第9期,1996年。
    [52] Berizzi, and Cosini, G. "Autofocusing of inverse synthetic aperture radar images using contrast optimization" IEEE Trans. on AES. Vol.32, No.3, July 1996, pp.1185-1191.
    [53] Li, Xi, Liu Guosui, Jinlin Ni, "Autofocusing of ISAR Images Based on Entropy Minimization" IEEE Trans. AES, Vol.35, No.4, 1999, pp.1240-1251.
    [54] Barbarossa S., Scaglione A., and Giannakis G. B., "Product high-order ambiguity function for multicomponent polynomial-phase signal modeling", IEEE Trans. on Signal Processing, Vol. 46, No. 3, 1998, pp. 691-708.
    [55] S.Peleg and B.Friedlander, "Multicomponent signal analysis using the polynomial phase transform", IEEE Trans. on AES, Vol.32, Jan. 1996.
    [56] Genyuan wang, Zheng Bao and Xiaobing Sun, "Inverse synthetic aperture radar imaging of non-uniformly rotating targets", Optical Engineering, Vol.35, No.10, Oct. 1996, pp.3007-3011.
    [57] V.C.Chen,.S.Qian, "Joint time-frequency analysis for radar range-Doppler imaging", IEEE Transaction on Aerospace and Electronic System, Vol.34, No.2, 1998, pp486-499.
    [58] V.C.Chen, W.J.Miceli, "Time-varying spectral analysis for radar imaging of
    
    manoeuvring targets", IEE Proc. -Radar, Sonar, Navig., Vol.145, No.5. October 1998.
    [59] Jae Sok Son, Gabriel Thomas, Benjamin C. Flores "Range-Doppler Radar Imaging and Motion Compensation", Artech House, INC. Boston London 2001.
    [60] 保铮,王根原,“具有三维转动目标的逆合成孔径雷达成像算法”,《西安电子科技大学学报》,第24卷,增刊,1997年,pp1-9.
    [61] Genyuan Wang, Zheng Bao, "Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition", Opt. Eng. 38(9) September, 1999.
    [62] Lu Guangyao, Bao Zheng, "Compensation of scatterers migration through resolution cell in inverse synthetic aperture radar imaging", IEEE Proceeding, Radar Sonar Navigate, Vol.147, No.2, Apr.2000
    [63] 卢光跃,保铮,“基于瞬时谱估计的ISAR距离瞬时多普勒成像算法”,《西安电子科技大学学报》,第25卷,第5期,1998年.
    [64] 孙长印,保铮,“雷达成像的近似二维模型及其超分辨算法”,《电子学报》,vol.27,No.12,1999年.
    [65] Barber, B.C, "Theory of imaging from orbital synthetic aperture radar," Inter. J. Remote Sensing, Vol.6, No.7, pp.1009-1057, 1985.
    [66] A.D.Cenzo, "A new look at nonseparable synthetic aperture radar processing," IEEE Trans. AES, Vol.24, No.3, 1988.
    [67] G.Franceschetti, G.Schirinzi, "A SAR processor based on two-dimensional FFT codes," IEEE Trans. AES, Vol.26, No.2, pp.356-366, 1990.
    [68] C.Y.Chang, M.Jin, J.C.Curlander, "Squint mode SAR processing algorithms," Proc. IGARSS'89, Vancouver, pp. 1702-1706, 1989.
    [69] A.M.Smith, "A new approach to range-doppler SAR processing," Int. J. Remote Sensing, Vol.12, pp.235-251, 1991.
    [70] C.Wu, K.Y.Liu, M.Jin, "Modeling and a correlation algorith for spaceborne SAR signals," IEEE Trans. AES, Vol.18, No.5, pp.563-573, 1982
    [71] C.Wu, "A digital fast correlation approach to produce Seasat SAR imagery," IEEE Int. Radar Conf., pp.153-160, 1980
    [72] K.H.Wu, M.R.Vant, "Extensions to the step transform SAR processing technique," IEEE Trans. AES, Vol.21, No.3, pp.338-344, 1985
    [73] Frank H. Wong and Tat Soon Yeo, "New Applications of Nonlinear Chirp
    
    Scaling", IEEE Trans, on GRS, Vol.39, No.5, MAY 2001, pp.946-953.
    [74] Tat Soon Yeo, Ngee Leng Tan, Cheng Bo Zhang, and Yi Hui Lu, "A New Subaperture Approach to High Squint SAR Processing", IEEE Trans, on GRS, Vol.39, NO.5, MAY 2001, pp.954-968.
    [75] R.P.Perry, R.C.Dipietro, R.L.Fante, "SAR Imaging of Moving Targets", IEEE Trans. AES, 1999, 35(1) :188-199.
    [76] Robert.C. DiPietro, Ronald L. Fante, Richard P. Perry, "Multi-Resolution FOPEN SAR Image Formation", Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VI, SPIE Vol. 3721, pp58-67.
    [77] Entzminger, J.N., Jr.; Fowler, C.A.; Kenneally, W.J. "JointSTARS and GMTI: past, present and future". Aerospace and Electronic Systems, IEEE Transactions on , Volume: 35 Issue: 2 , April 1999, pp.748-761.
    [78] Popp, R.L.; Sandell, N.R.; Johnson, B.L. "MTE ground station testbed-a battlefield awareness asset for GMTI exploitation". Aerospace Conference, 1999. Proceedings. 1999 IEEE , Volume: 4 , 1999, pp. 411-424.
    [79] W.J. Miceli, and Lawrence A. Gross. "Test Result from The AN/APY-6 SAR/GMTI Surveillance, Tracking and Targeting Radar". Radar Conference, 2001. Proceedings of the 2001 IEEE , 2001, pp.13-17.
    [80] Goodman, N.A.; Stiles, J.M, "A general signal processing algorithm for MTI with multiple receive apertures", Radar Conference, 2001. Proceedings of the 2001 IEEE, 2001, pp.315-320.
    [81] C. R. Smith and P. M. Goggans, "Radar Target Identification. IEEE Antenna and Propagation Magazine", 1993, Vol.35, No.2, pp.23-33.
    [82] H. J. Li and S. H. Yang, "Using Range Profiles as Feature Vectors to Identify Aerospace objects", IEEE Trans. Antennas and Propagation, 1993, Vol.41, No.3, pp.261-268.
    [83] S. Hudson and D. Psaltis, "Correlation Filters for Aircraft Identification From Radar Range Profiles", IEEE Trans. Aerospace and Electronics System, 1993, Vol.29, No.3, pp. 741-748.
    [84] A. Zyweck and R. E. Bogner, "Radar Target Classification of Commercial Aircraft", IEEE Trans. AES, 1996, Vol.32, No.2, 598-606.
    [85] Hu Rong, Zhu Zhaoda. Zhaoda, "Researches on radar target classification based on high resolution range profiles", National Aerospace and Electronics
    
    Conference, Proceedings of the IEEE, Piscataway, NJ, USA, 1997, 951-955.
    [86] Xuejun Liao, Zheng Bao, Mengdao Xing, "On the aspect sensitivity of high resolution range profiles and its reduction methods", IEEE 2000 International Radar Conference, Alexandria, VA, USA, May 7-12, 2000:310-15.
    [87] 赵群,“基于高分辨距离像的雷达目标识别与检测”,西安电子科技大学博士论文,1995年4月.
    [88] 唐劲松,“高分辨雷达目标检测与识别”,南京航空航天大学博士论文,1996年1月.
    [89] 孙光民,“基于高分辨回波的雷达目标识别”,西安电子科技大学博士论文,1997年1月.
    [90] 周德全,“基于一维距离像的雷达目标识别研究”,南京理工大学博士论文,1998年1月.
    [91] 廖学军,“基于高分辨距离像的雷达目标识别”,西安电子科技大学博士论文,1999年8月.
    [92] Kong, K.K.; Edwards, J.A. "Slant range and cross range correction for polar format distortion in ISAR imaging", Radar, Sonar and Navigation, IEE Proceedings-, Volume: 147 Issue: 1, Feb. 2000, Page(s): 2-8.
    [93] 邢孟道,保铮,“一种逆合成孔径雷达成像包络对齐的新方法”,《西安电子科技大学学报》,第27卷,第1期,2000年,pp.93-96.
    [94] F.K.Li, D.N.Held, et al.. "Doppler parameter estimation for spaceborne synthetic aperture radar". IEEE Trans. on GRS, 1985, 23(1):47-56
    [95] S.D.Madsen. "Estimating the doppler centroid of SAR data". IEEE Trans. on AES, 1989, 25(2):134-140
    [96] R.Bamler. "Doppler frequency estimation and the Cramer-Rao Bound". IEEE Trans. on GRS, 1991, 29(3):385-389
    [97] Yuanxun Wang; Hao Ling, "A frequency-aspect extrapolation algorithm for ISAR image simulation based on two-dimensional ESPRIT", Geoscience and Remote Sensing, IEEE Transactions on, Volume:38 Issue:4 Part: 1, July 2000, Page(s): 1743-1748
    [98] Yuanxun Wang; Hao Ling, "Adaptive ISAR image construction from nonuniformly undersampled data" Antennas and Propagation, IEEE Transactions on, Volume: 48 Issue: 2, Feb. 2000, Page(s): 329-331
    [99] Berizzi, F.; Mese, E.D.; Diani, M.; Martorella, M, "High-resolution ISAR imaging
    
    of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis" Image Processing, IEEE Transactions on , Volume: 10 Issue: 12 , Dec. 2001, Page(s): 1880-1890.
    [100] Lazarov, A.D. "Iterative MMSE method and recurrent Kalman procedure for ISAR image reconstruction" Aerospace and Electronic Systems, IEEE Transactions on, Volume: 37 Issue: 4 , Oct. 2001, Page(s): 1432-1441
    [101] M.Y. Jin and C. Wu, "A SAR correlation algorithm which accommodates large range migration" IEEE Trans. Geosci. Remote Sensing, vol. GE-22, pp.592-595, 1984.
    [102] Zhu Xixing, Zhu Minhui, "The development of on-board imaging processor for airborne SAR in China" EUSAR'96, Germany.
    [103] J.Dall, MSc, J.H. Jorgenson, E.L. Chnstensen, S.N. Madsen, "Real-time processor for the Danish airborne SAR", IEE Proceedings-F, Vol.139, No, April 1992.
    [104] J.R. Moreira, "A new method of aircraft motion error extraction from radar raw data for real-time motion compensation", IEEE Trans. Gesci. Remote Sensing, vol.28, pp.620-626, July 1990.
    [105] B.L. Burns and J.T.Cordaro "A SAR image-formation algorithm that compensates for the spatially-variant effects of antenna motion" SPIE Conference Proceedings, April 1994.
    [106] C. Cafforio, C. Prati, and F. Rocca, "SAR data focusing using seismic migration techiniques," IEEE Trans. Aerosp. Electron. Syst., vol. 27, pp.99-207, 1991.
    [107] R.K. Raney, H. Runge, R. Bamler, I. dimming, and F. Wong, "Precision SAR processing Using Chirp Scaling," IEEE Trans. Geosci. Remote Sensing, vol.32, pp.786-799 July 1994.
    [108] G.W. Davidson, I.G. Cumming, and M.R. Ito, "A chirp scaling approach for processing squint model SAR data," IEEE Trans. Aerospace Electron. Syst., 1996. 1. Vol.32. No. 1.
    [109] A.Moreira and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling algorithm with integrated motion compensation," IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 1029-1040, Sept. 1994.
    [110] Franceschetti,G. Lannari, R., and Marzouk, E.S., "A new two-dimensional squint mode SAR processor," IEEE Trans. AES 32, pp.845-863, 1996.
    [111] Xiaobing Sun, Tat Soon Yeo, Chengbo Zhang, Yihui Lu, and Pang Shyan Kooi,
    
    "Time-Varying Step-Transform Algorithm for High Squint SAR Imaging". IEEE Trans. Gesci. Remote Sensing, Vol.37, No.6, pp.2268-2267, 1999.
    [112] Graham, L.C., "Systhetic interferometer radar for topographics mapping", Rroc. IEEE, Vol.62, pp.763-768, 1974.
    [113] Zebker,H.A.,and Goldstein,R.M.,"Topographic mapping from interferometric systhetic aperture radar observations", J.Geophys. Res., Vol.91, No.B5, pp.4993-4996, 1986.
    [114] Gabriel A.K. and Goldstein, R.M., "Crossed orbit interferometry: theory and experiment results from SIR-B "Int. J. Remote Sensing, Vol.9 No.5, pp.857-872, 1988.
    [115] R.Lanari, "Anew method for the compensation of the SAR range cell migration based on the chirp Z-transform," IEEE Trans. GRS, Vol.33, No.5, pp.1296-1299, 1995.
    [116] J.Mittermayer, A.Morerira, O.Loffeld, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Trans. GRS, Vol.37, No.5, pp.2198-2214, 1999.
    [117] A.Moreira, J.Mittermayer, R.Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scan SAR imaging modes," IEEE Trans. GRS, Vol.34, No.5, pp.1123-1139, 1996.
    [118] D.C.Munson, J.D.Obrian, W.K.Jenkins, "A tomographic formulation of spotlight mode synthetic aperture radar," Pro. IEEE, Vol.71, pp.917-925, 1983.
    [119] F.Rocca, C.Cafforio, C.Prati, "Synthetic aperture radar: a new application for wave equation techniques," Geophysical Prospecting, Vol.37, pp.809-830, 1989.
    [120] J.Gazdag, P.Sguazzero, "Migration of seismic data," Proc. IEEE, Vol.72, No.10, pp.1302-1315, 1984.
    [121] Hensley, S.; Rosen, P.; Gurrola, E. "The SRTM topographic mapping processor". Geoscience and Remote Sensing Symposiun, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, Volume: 3, 2000, pp.1168-1170.
    [122] 程玉平,“一种改进的非线性CS成像算法”,《西安电子科技大学学报》,第27卷,第3期,2000年。
    [123] 郑义明,保铮,“用频率变标算法处理大斜角SAR数据”,《系统工程与电子技术》,第22卷,第4期,2000年。
    [124] 程玉平,“机载SAR数据的成像研究”,《系统工程与电子技术》,第22卷,
    
    第7期,2000年。
    [125] FENG Dazheng, BAO Zheng, XING Mengdao and ZHANG Haiqin, "Two-Dimensional Phase Unwrapping Based on the Finite Element Method and FFT's", Chinese Journal of Electronics, Vol.9, No.3, July 2000.
    [126] 李立伟,毛士艺,“基于IMU的高分辨率机载SAR运动补偿方法研究”,《电子学报》,第26卷,第12期,1998年。
    [127] 胡庆东,毛士艺,“干涉SAR图像的降噪方法及水平地形效应消除”,《北京航空航天大学学报》,第25卷,第4期,1999年。
    [128] 穆东,朱兆达,张焕春,“干涉合成孔径雷达成像技术研究”,遥感技术与应用,Vol.15,No.4,2000。
    [129] R.Goodman, S.Tummala, W.Carrara, "Issues in Ultra-wideband, widebeam SAR image formation," Inter. Radar conf.'95, pp.479-485, 1995.
    [130] D.R.Sheen, C.M.Strawitch, T.B.Lewis, "UHF wideband SAR design and preliminary result," IGARSS'94, pp.289-291, 1994.
    [131] T.E.Scheuer, F.H.Wong, "Comparsion of SAR processor based on a wave equation formulation," IGARSS'91, pp.635-639.
    [132] Mayhan, J.T.; Burrows, M.L.; Cuomo, K.M.; Piou, J.E. "High resolution 3D "snapshot" ISAR imaging and feature extraction", Aerospace and Electronic Systems, IEEE Transactions on, Vol.37, No:2, April 2001 Page(s): 630-642.
    [133] Berizzi, F. "ISAR imaging of targets at low elevation angles" IEEE Trans. on AES, Vol.37, No:2, April 2001, pp.419-435.
    [134] Chen, V.C.; Miceli, W.J. "Simulation of ISAR imaging of moving targets", Radar, Sonar and Navigation, IEE Proceedings-, Vol. 148, No.3, June 2001, pp.160-166.
    [135] Jian Li; Renbaio Wu; Chen, V.C. "Robust autofocus algorithm for ISAR imaging of moving targets". IEEE Trans. on AES, Vol.37, No.3, July 2001, pp.1056-1069.
    [136] F.M.Henderson and A.J.Lewis, Eds., Manual of Remote Sensing, 3rd ed. Ed. New Work: Willey.
    [137] 程玉平,“SAR成像中几个问题的研究”,西安电子科技大学博士论文,2000年7月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700