用户名: 密码: 验证码:
划艇桨叶水动力性能数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国际大赛中我国划艇运动员使用的桨叶作为研究对象,采用准静态研究方法,利用FLUENT商业软件对划艇桨叶水动力性能进行了数值模拟研究,运用计算流体力学、运动生物力学、运动训练学等多个交叉学科优势,对划艇单桨叶、双桨叶和多桨叶同时划桨时的水动力性能进行了全面地数值模拟研究,为运动员和教练员更科学、更合理选择划桨技术和风格,提高划艇比赛成绩提供了科学依据。
     研究首先对在循环水槽中单桨叶不同浸水深度下和不同攻角下的水动力性能进行了数值模拟研究,讨论了不同湍流模型对计算结果的影响,通过与试验结果的比较分析,以及桨叶周围的流场特征与试验流场观察结果的比较,确定了S-A湍流模型二阶精度下的结果在本研究中的有效性较好。选取S-A模型对无限域中单桨叶的水动力性能进行数值模拟,与水槽域的计算结果进行比较。结果发现,水槽域尺寸较小使得水槽的边界条件对桨叶水动力性能计算结果产生一定的影响。以无限水域为基准,对三种排列方式的工况A、工况B和工况C下四种不同间距双桨叶、工况A下两种不同间距的三桨叶和工况A下的四桨叶水动力性能进行了数值模拟。
     结果表明,不同工况的双桨叶研究中,1号位桨叶阻力随攻角变化的趋势与单桨叶一致,划桨前半周期桨叶阻力随攻角不断增加而增加,直至桨叶与来流垂直位置时为最大值,划桨后半周期桨叶阻力随攻角增加而减小,而且三种工况下桨叶阻力均有不同程度的降低;2号位桨叶阻力随攻角变化的趋势与1号位桨叶正好相反,划桨前半周期桨叶阻力随攻角增加而减小,直至桨叶与来流垂直位置降低为最小值,划桨后半周期桨叶阻力随攻角增加而不断增加。两桨叶升力随攻角变化趋势与单桨叶一致,划桨前半周期随攻角增加不断减小,在划桨后半周期随攻角增加逐渐增加,方向相反;不同工况下2号位桨叶的升力比1号位小,间距越大,错位距离越大,两桨叶升力差距越小。与单桨叶阻力比较发现,改变两桨叶间隔距离和排列工况时,两桨叶阻力均有不同程度降低,且桨叶与来流垂直位置时下降最为严重。1号位桨叶阻力在不同间距和不同工况下阻力性能变化较小。2号位桨叶间隔距离、错位程度越小,桨叶阻力降低越厉害,工况A下阻力下降最严重,工况C下阻力随攻角变化较小。文中还给出了双桨叶周围速度流场的速度矢量图,从流场图可以更清楚更细致地了解桨叶周围流场特征。
     多桨叶水动力性能研究表明,多桨叶同时划桨时,桨叶之间的相互干扰非常明显,1号位桨叶阻力随攻角变化曲线的趋势与单桨叶的相似。2号位、3号位和4号位桨叶阻力随攻角变化曲线的趋势相似,与双桨叶计算中的2号位桨叶阻力变化规律相似。与单桨叶阻力比较发现,2号位桨叶阻力下降最为严重,其次是3号位桨叶和4号位桨叶。
     本论文较为系统地开展了桨叶水动力性能的数值模拟研究,研究结果提示多桨叶同时划桨的多人集体划船运动项目中,运动员可通过增加两桨叶错位程度和间距距离提高桨叶阻力,教练员和运动员应采用合理的划桨技术,根据运动员力量素质与多桨叶水动力性能相一致的科学方法提高配艇技术,提高桨叶阻力,从而提高比赛成绩。
The purpose of this paper was to simulate the hydrodynamic performance of oar blades of canoes using FLUENT for the computation of fluid dynamics (CFD).
     First of all, the numerical results of the force one blade in different span of angles of attack and different depth of blade in water in flume were obtained. The results of forces obtained from FLUENT were compared with the results acquired from experiments in flume. The result suggests that the S-A turbulence model was able to simulate the flow around the blade effectively in FLUENT.
     Then, through enlarging the domain of computation, the influence of the domain size as flume can be compared with the enlarged domain. The results indicated that he domain size as flume was too small to enhance the force on the blade. Based on the over results, the research is conducted to the two blades that are arranged at different combinations of positions, in which the force applied on blades was analyzed. The two blades were arranged tandem in three methods, including tandem completely, tandem with haf of width of blade, and tandem with a width of blade, and the spacing interval between the two blade of0.75m,1.5m,2.25m and3.0m, respectively. Therefoe there were12ways to arrange these two blades in one angle of attack. With the angle of attack increasing, the interaction between the two blades increased. Meanwhile in the fist half of stroke, then with the angle of attack increasing the interation declined in the second half of stroke, the force on the oar1blade was same as the result from one blade. On the contrary, the force on oar2decreased with the angle of attack increasing in the first half of stroke, and increased with the angle of attack increasing in the second half of stroke.
     Finally, the flow around three baldes and four blades were simulated. It is found that there were influences between the multi-blades in some degree. The rule of the force on oarl was same as the results of one blade with the angle of attack increasing. The rule of the force on oar2, oar3or oar4was same with the angle of attack increasing and the force on the balde decreased up to the minimum at the angle of 90°. The drag of the oar2declined worstly with the angle of attack, the force of oar3and oar4was close.
引文
[1]韩久瑞,郑伟涛.赛艇、皮划艇器材流体动力性能研究[J].武汉体育学院学报.1999,129(2):91-95.
    [2]郑伟涛,等.赛艇桨叶不同斜角对性能的影响[J].武汉体育学院学报.1998,152(2):51-54.
    [3]郑伟涛,等.一种新型赛艇双桨桨叶性能的试验研究[J].国家自然科学基金流体力学新思路研讨会论文集,1998.
    [4]郑伟涛,等.“BB”赛艇双桨桨叶不同浸水深度对性能影响的试验研究[C].第四届全国海事技术研讨会文集.海洋出版社.1998,5:157-162.
    [5]郑伟涛,韩久瑞,黄谦等."Big Blade"赛艇双桨桨叶性能的试验研究[J].武汉体育学院学报.1999,129(2):96-100.
    [6]郑伟涛,韩久瑞,黄谦等.柔性赛艇双桨桨叶的水动力试验研究[J].水动力学研究与进展A辑.2000,15(2):163-168.
    [7]郑伟涛.划船桨叶水动力性能的数值模拟与试验研究[D].[博士学位论文].武汉:武汉理工大学,2000.
    [8]何海峰,郑伟涛,马勇等.赛艇运动技术的力学原理及测试分析[J].武汉体育学院学报.2005,39(4):74-78.
    [9]郑伟涛,王德徇,韩久瑞等.极大攻角赛艇桨叶水动力特性.第五届全国水动力学学术会议暨第十五届全国水动力学研讨会.2001
    [10]郑伟涛,王德徇,韩久瑞.大攻角划船桨叶的数值模拟[J].中国造船.2002,43(3):16-23.
    [11]黄谦.赛艇桨叶的水动力性能试验研究[D].[硕士学位论文].武汉:武汉体育学院,1997.
    [12]郑伟涛,邱斌,马勇等.国内外体育工程学研究方向综述[C].全国体育仪器器材与体育系统仿真学术报告会论文集.2006:13-16.
    [13]郑伟涛,何海峰,马勇等.国内外体育工程学的研究综述[J].武汉体育学院学报.2006,40(12):73-80.
    [14]郑伟涛,马勇,何海峰等.我国流体力学在水上项目中的应用现状[C].第12届全国运动生物力学学术交流论文集.太原,2008:12-20.
    [15]Zheng Weitao, Ma Yong, Han Jiurui, et al. Hydrodynamic Performance of the Rowing Hull [A].23rd International Symposium on Biomechanics in Sports[C]. Beijing,2005:913-916.
    [16]郑伟涛,何海峰,马勇等.国内外体育工程学的研究综述[J].武汉体育学院学报.2006,40(9):73-80.
    [17]马勇.水上运动项目器材的流体动力性能研究[J].武汉体育学院学报.2008,42(2):72.
    [18]马勇,郑伟涛.我国水上运动器材流体动力性能研究进展[J].体育学刊.2008,15(2):78-81.
    [19]马勇.运动帆翼空气动力性能数值模拟与试验研究[D].[博士学位论文].武汉:武汉理工大学,2009.
    [20]易名农,郑伟涛,马勇等.划艇桨叶水动力测试研究[J].武汉体育学院学报.2007,41(3):69-72.
    [21]易名农.皮划艇桨叶的水动力性能研究[D].[硕士学位论文].武汉:武汉体育学院,2000.
    [22]Affeld K., Schichl K. and Ziemann A. Assessment of Rowing Effciency [J]. nternational Journal of Sports Medicine 1993,14(1):39-41.
    [23]Caplan, N.& Gardner, T. N. A new measurement system for the determination of oar blade forces in rowing. In Proceedings of the XXth IASTED International Symposium on Biomechanics (edited by Hamza, M.H.). Cagary:ACTA Press.2005.
    [24]Caplan, N. A computer model to simulate the mechanics of rowing [J]. School of Sport and Exercise Sciences, University of Birmingham, UK, PhD Thesis,2005.
    [25]Caplan, N. and Gardner, T. A fluid dynamic investigation f the Big Blade and Macon oar blade designs in rowing propulsion [J]. J. Sports Sci.,2007,25(13),643-650.
    [26]Caplan, N. and Gardner, T. Optimization of oar blade design for improved performance in rowing [J]. Journal of Sports Sciences,25:1471-1478,2007.
    [27]Coppel, A., Gardner, T., Caplan, N. et, al. (2008). Numerical Moddelling of the Flow around Rowing Oar Blades. In Estivalet and Brisson (Eds). The Engineering of Sport 7, vol. 1:353-361, Springer, Paris.
    [28]Ramsey, W. D. Lift and drag characteristics of rotating oar blades. Massachusetts Institute of Technology, B.Sc Thesis.1993.
    [29]Herberger, E. Rowing:the GDR textbook of oarsmanship. Sport Books Publisher, Toronto. 1987.
    [30]Dudhia, A. A history of Oxford College rowing. http://www.atm.ox.ac.uk/rowing/history.html. Accessed:4/1/07.
    [31]Pinkerton, P. The Big Blade goes big time [J]. Australian Rowing,1992,15(3):10-11.
    [32]Pomponi, R. Innovations in oar technology:transition to a new dominant design. http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=renata-2012941115460001%40ctpid-mac-13.mit. edu. Accessed:1/1/05
    [33]Nolte, V. Do you need hatchets to chop your water? [J]. American Rowing, July/August, 1993:23-26.
    [34]Dreher, J. Technology discussion:New blade shapes - part 1. www.durhamboat.com/blade.htm. Accessed:8/2/07.
    [35]Dreissigacker, D.& Dreissigacker, P. Oars - Theory and Testing [J]. In Proceedings of the 29th FISA Coaches Conference. Sevilla, Spain.2000.
    [36]Sayer, B. Rowing and sculling. The complete manual. St Edmundsbury Press Ltd., Bury St Edmunds,1996.
    [37]Dal Monte, A.& Komor, A. Rowing and skulling mechanics [J]. In Biomechanics of sport, ed. Vaughan, C. L. CRC Press, Inc., Boca Raton, Florida, pp.1989:53-120.
    [38]Barre', S. and Kobus, J. New facilities for measurement and modelling of hydrodynamic loads on oar blades [J].1998, pp.251-260 (Blackwell Science, Cambridge, UK).
    [39]Berger, M. A., de Groot, G., and Hollander, A. P. Hydrodynamic drag and lift forces on human hand/arm models [J]. J. Biomechanics,1995,28(2),125-133.
    [40]Berger, M. A., Hollander, A. P.,& de Groot, G. Determining propulsive force in front crawl swimming:a comparison of two methods [J]. Journal of Sports Sciences,1999,17:97-105.
    [41]Bixler B. and Schloder M., Computational fluid dynamics:an analytical tool for the 21st century swimming scientist [J]. Journal of Swimming Research,1996, vol.11, pp.4-22.
    [42]Bixler, B. and Riewald, S. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics [J]. J. Biomechanics,2002,35(5),713-717.
    [43]Rouboa A., Silva A., Leal L, et.al. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.[J]. Journal of Biomechanics,2006, vol.39, pp.1239-1248.
    [44]Toussaint, H. M., Van den, B. C.,& Beek, W. J. "Pumped-up propulsion" during front crawl swimming [J]. Medicine and Science in Sports and Exercise,2002,34:314-319.
    [45]Sumner, D., Sprigings, E. J., Bugg, J. D.,& Heseltine, J. L. Fluid forces on kayak paddle blades of different design [J]. Sports Engineering,2003,6:11-20.
    [46]Leroyer. A., Barre.S. and Kobus. J. M. Experimental and numerical investigations of the flow around an oar blade [J]. Journal of Marine Science and Technology.2008,13:1-15.
    [47]Leroyer, A., Barre', S., Kobus, J., and Visonneau, M. Experimental and numerical investigations of the flow around an oar blade [J]. J. Mai. Sci. Technol.,2008,13,1-15.
    [48]Matsuuchi K., Miwa T., Nomura T. et. al. Unsteady flow field around a human hand and propulsive force in swimming [J]. Journal of Biomechanics.2009,42:42-47.
    [49]Macrossan M. N., Kamphorst M. Computational study of the Froude number effects on the flow around a rowing blade. University of Birmingham, UK, PhD Thesis,2009
    [50]Nicholas Caplan N., Gardner T.N.2007. A fluid dynamic investigation of the Big Blade and Macon oar blade designs in rowing propulsion [J]. Journal of Sports Sciences,25(6): 643-650.
    [51]Lueneburger. C. A comparative analysis of Macon and'Big'racing blades. FISA Coach, 1995,6:1-8.
    [52]Kleshnev and I. Kleshnev, Dependence of rowing performance and efficiency on motor co-ordination of the main body segments [J]. Journal of Sports Sciences, vol.16, pp. 418-419,1998.
    [53]Kleshnev. V. Propulsive effciency of rowing. Technical report, Australian Institute of Sport, Canberra, Australia,1999.
    [54]Cowles, G. and Parolini, N. CFD makes waves in the America's Cup [J]. Fluent News, Fall 2002,20-23.
    [55]Lukes, R., Hart, J., Chin, S., and Haake, S. The role and validation of CFD applied to cycling [J]. In Proceedings of the Fluent User Group Meeting, Warwick, UK,22 September 2005, pp.64-75.
    [56]Schneider, E.& Hauser, M. (1981). Biomechanical analysis of performance in rowing.[J]. In Biomechanics VII-B, eds. Morecki, A., Fidelus, K., Kedzior, K.,& Wit, A., pp.430-435. University Park Press, Baltimore.
    [57]Sanders R. Hydrodynamic characteristics of a swimmer's hand [J]. Journal of Applied Biomechanics.1999,15:3-26.
    [58]Nolte, V. Shorter oars are more effecitive [J]. Journal of Applied Biomechanics.2009,25: 1-8.
    [59]Nolte, V. Die Effektivitat des Ruderschlages. Berlin.1984.
    [60]马勇.蹼泳板水动力性能数值模拟与试验研究[D].[硕士学位论文].武汉:武汉理工大学,2004
    [61]郑伟涛,韩久瑞,王季安.两种4人皮艇阻力性能的试验研究[J].体育科学.1997,4:64-66
    [62]郑伟涛,等.风速对划艇运动成绩的影响[J].武汉体育学院学报.1998,3:51-54.
    [63]郑伟涛,韩久瑞,葛新发等.赛艇动力学测试系统的研制[J].武汉体育学院学报.2001,35(3):87-89.
    [64]郑伟涛,马勇,邹早建.双人赛艇兴波阻力特性分析[J].武汉体育学院学报,2002,6:158-161.
    [65]易名农,等.赛艇皮划艇浮态的计算[J].武汉体育学院学报.1997,4:67-70.
    [66]易名农,等.水温对艇速的影响——等动艇速换算[J].武汉体育学院学报.1998,3:67-70.
    [67]Alban Leroyer, Sophie Barr6, Jean-Michel Kobus. Experimental and numerical investigations of the flow around an oar blade [J]. J Mar Sci Technol,2008,13:1-15.
    [68]Baudouin A. and Hawins D. A Biochanical review of factors affecting rowing performance [J]. Br J Sports Med 2002,36:396-402.
    [69]Aujouannet and A. Rounard, "Kinetic study of cyclic phases in rowing," Journal of Human Movement Studies, vol.46, pp.303-318,2004.
    [70]Frank M. White. Fluid Mechanics, fourth edition. McGraw-Hill,1999.
    [71]Hoerner, S.F.& Borst, H.V. Fliud-dynamic lift. (2ed.) Albuquerque, New Mexico:Hoerner Fluid Dynamics.1985.
    [72]Jonker, K.& Yenson, S. Quantitative testing of blade performance. Massachusetts Institute of Technolgy, B.Sc. Thesis.2002.
    [73]Kleshnev. V. Estimation of biomechanical parameters and propulsive efficiency of rowing. In XVII International Symposium on Biomechanics in Sports (edited by R.H.Sanders & N. R. Gibson),1999:224-228.
    [74]Kleshnev. V. Power in rowing. Proceedings of Ⅷ International Symposium on biomechanics in sports [J]. Hong Kong, pages 662-666,2000.
    [75]Kleshnev. V. Moving the rowers. Australian Rowing,24:18-22,2001
    [76]Sliasas A. and Tullis S. Numerical modelling of rowing blade hydrodynamics [J]. Sports Engineering,2009,12:31-40,
    [77]Wellicome J., Some hydrodynamic aspects of rowin [J]g. in Rowing - a scientivc approach, A. Scott and J. Williams, Eds. New Jersey:A S Barnes and Co.,1967, pp.22-63.
    [78]曹春梅,王春财,季林红等.划艇运动力学参数检测与分析.[J]体育科学.2007,2(27):86-89.
    [79]陈素琴,顾明,黄自萍.梁并列方柱绕流相互干扰的数值研究[J].应用数学和力学.2000,21(2):131-146.
    [80]陈旭.划船浮态计算和配艇软件的开发研制[J].湖北体育科技.1999,1:38-40.
    [81]陈永辉,王强,朴明波.湍流模型的发展及其研究现状[J].能源与环境.2009,2:4-7.
    [82]葛洪云.浅述赛艇训练中桨叶运行轨迹[J].科学大众.2009,6:141
    [83]方祥位,李建中,魏文礼.紊流数值模拟的现状及进展[J].陕西水力发电.2000,16(1):16-19.
    [84]费宝玲,郑庭辉,杨骏六.数值分析串列双圆柱绕流[J].西南民族大学学报(自然科学版).2007,33(2):376-380.
    [85]符松.非线性湍流模式研究及进展[J].力学进展.1995,25(3):318-326.
    [86]符松.湍流模式——研究现状与发展趋势[J].应用基础与工程科学学报.1994,1:1-14.
    [87]高玉玲,陈克强.赛艇黏性流场的数值模拟[C].第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集.2008
    [88]高玉玲.赛艇粘性流场的数值模拟[D].武汉理工大学硕士学位论文.2007.
    [89]葛新发,马勇,郑伟涛等.赛艇兴波阻力的计算[J].武汉体育学院学报.2004,4:70-73.
    [90]葛新发,黄胜初,郑伟涛.赛艇动力学及流体动力性能和快速性能研究[J].武汉体育学院学报.2000,6:80-83.
    [91]葛新发.赛艇水动力性能和运动员机能的评定研究[D].武汉理工大学博士学位论文.2004
    [92]黄胜初,葛新发,何永康等.划船动力学方程的建立[J].武汉体育学院学报.1999,33(5):39-42.
    [93]韩守磊,曾卓雄,徐义华等.并列双圆柱数值模拟[J].南昌航空大学学报.2007,21(4):29-34.
    [94]韩守磊,曾卓雄,徐义华.串列三圆球绕流数值模拟[J].水动力学研究与进展.2008,23(2):175-180.
    [95]韩久瑞,等.划船运动在高原训练中的流体力学问题[J].第五届全国体育科技大会论文摘要汇编——专题报告.1997:79.
    [96]贾晓荷.单圆柱及双圆柱绕流的大涡模拟[D].上海交通大学硕士论文.2008.
    [97]John D. Anderson著.吴颂平,刘赵淼译.计算流体力学基础及其应用.北京:机械工业出版社.2008
    [98]梁在潮.在我国开展开展工程湍流研究的设想[J].1994,24(4):483-487.
    [99]刘宇陆.湍流——力学中的最后难题[J].今日启明星.36-37.
    [100]刘松,符松.串列双圆柱绕流问题的数值模拟[J].计算力学学报.2000,17(3):260-266.
    [101]刘向军,张健,林超.双圆柱绕流特性的模拟研究[J].力学学报.2009,41(3):300-306.
    [102]刘东升,朱英民.皮划艇桨叶流体动力分析研究[J].吉林体育学院学报.2011,27(1):83-84.
    [103]贾晓荷,刘桦.双圆柱绕流的大涡模拟[J].水动力学研究与进展(A).2008,23(6):625-632.
    [104]李福田,倪浩清.工程湍流模式的研究开发及其应用[J].水利学报.2001,5:22-31.
    [105]李建新.划船技术中的动力学思维[J].体育科研.1999,20(1):33-37.
    [106]李文华,苏明军.常用湍流模型及其在FLUENT软件中的应用[J].水泵技术.2006,4:39-40.
    [107]吕树慧,王爱坤,咸立芬等.不同艰巨的五圆柱体绕流的流体动力特性研究[J].河北科技大学学报.2009,30(2):99-102.
    [108]马勇,郑伟涛.赛艇兴波阻力的Mechell方法计算分析[C].第十届全国运动生物力学学术交流大会,2002
    [109]马祖长.皮划艇运动能够生物力学信息获取与评价指标体系研究[D].[博士学位论文].北京:中国科学技术大学,2007.
    [110]马祖长,李世明,何军等.静水皮艇的动力产生和动力保护问题研究[J].体育科学.2008,3:46-49.
    [111]杨银儿,潘慧炬[J].国内、外女子赛艇单人双桨划桨技术比较研究[J].中国体育科技.2007,4:126-128.
    [112]钱永东.国内优秀皮划艇运动员全程运动技术分析[D].[硕士学位论文].北京:北京体育大学.2006.
    [113]柏开祥,尹航,王德恂等.基于FLUNT数值计算结果帆板航速预测与最佳航线设计.[J].武汉体育学院学报.2006,9:57-61.
    [114]任喜平.优秀赛艇运动员划桨技术动作的特征研究[D].[硕士学位论文].浙江:浙江师范大学,2006.
    [115]沈潜.关于皮划艇运动划距和桨频的分析[J].武汉体育学院学报.1986,3:67-71.
    [116]王福军.计算流体动力学分析.——CFD软件原理与应用.北京:清华大学出版社.2004
    [117]王云民.对赛艇技术的理论浅析[J].武汉体育学院学报.1995,108(1):33-35.
    [118]王小华,何钟怡.二并列方柱绕流的大涡模拟.哈尔滨建筑大学学报.2002,35(2): 49-53.
    [119]王振东,姜楠.湍流新涡粘模式的研究[J].科学通报.1994,39(13):1183-1186.
    [120]王志东,王德爟.粘流场数值模拟关键技术研究进展[J].华东船舶工业学院学报(自然科学版).2002,16(5):1-8.
    [121]熊莉芳,林源,李世武.k-ω湍流模型及其在FLUENT软件中的应用[J].热能工程.2007,4:13-15.
    [122]许维德,徐肇廷.湍流模式的研究近况[J].哈尔滨船舶工程学院学报.1983,1:1-13.
    [123]熊鳌魁.湍流模式理论综述[J].武汉理工大学学报(交通科学与工程板).2001,25(4):451-454.
    [124]徐元利,徐元春,梁兴等FLUENTT软件在圆柱绕流模拟中的应用[J].水利电力机械.2005,27(1):39-41.
    [125]肖志祥,李凤慰,鄂秦.湍流模型在复杂流场数值模拟中的应用[J].计算物理.2003,20(4):335-340.
    [126]徐海祥,邹早建.赛艇非线性兴波阻力数值计算[C].第十四届全国水动力学研讨会文集,2000.
    [127]徐海祥,邹早建,郑伟涛.赛艇斜航兴波水动力数值计算[C].第五届全国水动力学学术会议暨第十五届全国水动力学研讨会文集.2001.
    [128]杨鹏,郑伟涛,马勇等.CFD在体育器材性能研究中的应用[C].全国体育仪器器材与体育系统仿真学术报告会论文集.2006:78-82.
    [129]杨文熊.湍流一般机理及其应用[J].力学进展1992,22(4):489-495.
    [130]颜大椿.湍流实验研究中的某些进展[J].中国科学基金.1989:30-34.
    [131]杨纪伟,滕丽娟,郑薇薇.用FLUENT模拟不同排列下的双柱绕流流场[J].人民黄河.2009,3:74-75
    [132]余振苏,陈曦.湍流基础研究进展——湍流973项目实验标模会议概况[J].力学进展 2009,39(4):511-512.
    [133]张子华.赛艇阻力板空气动力性能数值模拟[D].[硕士学位论文].武汉:武汉体育学院,2009.
    [134]张志伟,刘建军.各种湍流模型在FLUENT中的应用[J].河北水利.2008,10:23-24.
    [135]Zhang Dongyan, Zheng Weitao, Ma Ziqing. Numerical Simulation of Viscous Flows around Rowing Based on CFD code FLUENT [C]. International Colloquium on Computing, Communication, Control, and Management. China, August 8-9,2009, pp:429-433.
    [136]Zhang Dongyan, Zheng Weitao, Song Kaiming. Numerical Simulation of the Flow around an Oar Blade of Canoe at Square-off [C]. Proceedings of Second International Conference on Sports Science and Sports Engineering, China, September 25-27,2009, pp:14-19.
    [137]Zhang Dongyan, Zheng Weitao. Numerical simulation of the hydrodynamicPerformance of an Oar Blade of Canoe during the stroke [C]. Proceedings of Second International Conference on Sports Science and Sports Engineering, China, octomber 18-22,2010, pp: 34-38
    [138]Zhang Dongyan, Zheng Weitao. International development of the research on the hydrodynamic performance of rowing [C]. Proceedings of Second International Conference on Sports Science and Sports Engineering, China, octomber 18-22,2010, pp:43-47.
    [139]赵邦义,徐铭陶,夏先福.划桨运动循环的力学分析[J].四川体育科学学报.1987,4:102-104
    [140]周秀华,郑伟涛,马勇等.赛艇回桨技术的分析与训练[J].湖北体育科技.2004,23(2):203-206.
    [141]邹建锋,任安禄.串列双圆球的流场转捩研究[J].浙江大学学报(工学版).2006,40(1):107-112.
    [142]邹克宁,郑伟涛.赛艇运动中频率、浸水深度、幅度之间的关系[J]体育科学.2001,21(6):78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700