用户名: 密码: 验证码:
基于新材料的翻译后修饰蛋白质、多肽富集鉴定新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组草图测序的完成与蛋白质组学概念的提出,揭示着后基因组时代的到来。而蛋白质作为生物系统活动中的执行体,调节着生物体内许多重要的生理活动。蛋白质翻译后修饰称之为继核酸、蛋白质之后的第三种重要的生命信息寄存形式。在众多的翻译后修饰中,蛋白质磷酸化及糖基化在体内分布最广、影响最多,与生命活动最为密切相关。生物质谱技术作为后基因组学研究的核心技术之一,已经被广泛的应用于蛋白质翻译后修饰的研究,然而对于纷繁复杂的生物体系而言,以质谱为主要研究手段的蛋白质磷酸化与糖基化研究,仍然面临着诸多问题,如:修饰肽段化学计量水平低、存在强的背景干扰,同时质谱检测前样本处理过程复杂且损失严重。因此特异的富集技术与快速灵敏的检测手段成为蛋白质磷酸化与糖基化研究中的关键。本研究针对蛋白质磷酸化与糖基化研究中缺乏灵敏、快速、高效的富集方法与实时、动态的检测手段等问题,开发了多种基于新型制备技术的蛋白质磷酸化高效选择性富集材料与蛋白质糖基化快速分离与原位检测新方法,并在实际生物样本中获得了成功应用,显著提高了磷酸化、糖基化翻译后修饰的鉴定规模。
     第一部分为解决蛋白质磷酸化丰度低,质谱鉴定困难和离线富集步骤繁琐等问题,创新性地利用表面引发原子转移自由基聚合(SI-ATRP)反应制备了新型三维波浪状聚合物修饰的石英毛细管柱,实现了磷酸化蛋白质/肽段在线规模化富集鉴定。该新型毛细管柱与常规磷酸化富集材料相比具有以下创新点和优势:(1)首次在石英毛细管内壁利用SI-ATRP反应的高可控性原位修饰三维波浪状聚合物涂层,有效提高毛细管柱内壁比表面积的同时也维持了较低的柱压,(2)三维波浪状聚合物的覆盖显著增加了柱内富集官能团的密度以及与磷酸化肽段的接触几率,因此大幅提高了磷酸化肽段的富集效率,(3)负载量与传统的开管柱相比提高了将近一个数量级。将该新型三维波浪状聚合物修饰的石英毛细管柱应用于HepG2细胞磷酸化蛋白质的规模化分析,磷酸化肽段鉴定数量与文献报道的基于TiO_2装填柱相比明显提高。这部分研究内容已经发表在Analytical Chemistry2010,82(22)9461-9468。在此基础上为有效提高样品上样量,进一步提高磷酸化蛋白质的鉴定规模,我们还发展了TiO_2固相萃取小柱-高pH值反相色谱分离结合质谱鉴定的磷酸化肽段整体富集鉴定研究。该策略成功应用到复杂生物样本小鼠肝脏蛋白质磷酸化的富集分离中,共鉴定到11291条非冗余的磷酸化肽段和2610种磷酸化蛋白,磷酸化蛋白质鉴定数量与国际上本领域领先实验室哈弗医学院Steven P. Gygi教授采用的SCX结合IMAC技术相比提高了12%。该方法的主要特点和优势在于(1)利用SPE小柱超大的装填容量填装与磷酸化肽段具有特异亲和的TiO_2颗粒,大幅提高初始样本上样量,(2)首次将高pH值反相色谱分离技术应用到富集后的磷酸化肽段混合物的分离,有效降低了样本的复杂程度,显著提高了质谱鉴定的成功率。该技术的建立为磷酸化蛋白质组学的研究提供了有力的技术支持。
     第二部分针对蛋白质糖基化研究中糖蛋白质糖链丰度偏低、质谱信号差以及现有富集方法步骤多与耗时长等问题,首创性的发展了自组装芘衍生化氧化石墨烯对糖蛋白质糖链高效、可视化富集新方法。该方法与生物质谱技术结合,成功应用于HepG2细胞糖蛋白质糖链的富集鉴定,共鉴定到糖型26种,糖型鉴定数量和信噪比获得明显提高。该方法与传统的糖蛋白质糖链富集技术相比具有以下特点:(1)首次利用氧化石墨烯超大的比表面积结合超高密度的芘丁酰氯修饰,显著提高了富集材料对糖蛋白质糖链的捕获能力(2)利用酰氯基团与糖蛋白质糖链羟基的共价结合,选择性富集糖蛋白质糖链,材料的结合能力高于HILIC、凝集素等非共价富集方法;(3)糖链的多羟基可引发功能化氧化石墨烯迅速聚集,实现了对富集过程的可视化监测;(4)显著缩短了糖链富集所需时间并简化了操作步骤。这部分研究内容已经发表在Analytical Chemistry2013,85(5)2703–2709上,该技术的开发为蛋白质糖基化分离富集技术的研究提供了新的技术支持。为进一步实时、动态、原位的研究不同类型细胞表面膜糖糖型的变化及其与疾病发生发展的关系,我们还创新性的利用SI-ATRP反应制备了高度水溶性、凝集素功能化的上转换荧光纳米颗粒,应用于细胞表面膜糖糖型的原位差异识别分析研究。与现有亲水修饰技术相比,SI-ATRP反应的高可控性可在上转换荧光纳米颗粒表面原位修饰结构规整、厚度均匀的亲水聚合物层,并保持上转换荧光颗粒内核的完整性,因此可实现有效增加其生物相容性的同时而不影响上转换荧光纳米颗粒的量子效率。此外,线性聚合物侧链所负载的大量功能化位点在有效提高固定凝集素数量的同时,也将凝集素的固定模式由传统的两维平面提升为三维立体,不同朝向固定的凝集素增加了与其特定糖型的识别几率,显著提高了功能化上转换荧光纳米材料的识别特异性和亲和力。体外与体内实验均表明,该材料可以应用于不同类型肝癌细胞表面膜糖糖型的原位差异识别。该技术的发展为研究肝癌细胞表面膜糖糖型的变化与癌症发生发展的关系提供了有力的技术支持。该部分研究内容已经投稿《ACS Nano》。
Post-translational modifications (PTMs) of proteins have been viewed as the thirdimportant life information storage following nucleic acids and proteinsand are involvedin the control ofalmost all life processes, such as proliferation, growth, differentiation,cellular signaling pathways. Among the common PTMs of proteins, phosphorylationand glycosylation are the most widely distributed and affected almost all biologicalprocess. As one of the core technologies in post genomics era, bio-mass spectrometry iswidely applied in the PTM research.However, the low stoichiometric level, strongbackground interference and tedious sample processing procedure makes it particularlydifficult for the identification of protein phosphorylation and glycosylation by massspectrometry. Therefore, the primary task of phosphorylation and glycosylation researchis to selectively and efficiently isolatethe phosphopeptides/glycopeptides from complexproteolytic peptide mixture. In this study, we developed a few highly efficient methodsfor phosphopeptides and glycans enrichment and in-situ imaging technique for proteinglycosylation using novel functional materials.
     In the first chapter, we developed a new type of capillary column using thesurface-initiatedatomic transfer free radical polymerization (SI-ATRP) and successfullyapplied it in on linelarge scale phosphopeptides enrichment and identification.There is afew key features of the newly developed capillary. First, three-dimensional wavelikepolymer structures are grown on the inner wall of capillary columnsfor the firsttime, results in largely increased surface area. Second, the three-dimensionalwavelikepolymerstructureon the inner wallof capillary columns carries a large numberof densely packed enrichment functional groups, and thus, increased enrichmentefficiency of phosphopeptides is achieved. Finally, compared with conventional opentubular capillarycolumn, the loading capacity of SI-ATRP column is increased by nearlyone order of magnitude.The SI-ATRP modified capillarycolumn was successful appliedin the online phosphopeptides enrichment and identification of HepG2cell lysates andresulted in obviously increased number of identifiedphosphopeptides compared withreported on line method using TiO_2packing column. This work was publishedinAnalytical Chemistry2010,82,9461-9468. To further increase the number ofphosphorylation identification, we also developed a new off-line phosphopeptidesenrichment strategy by combining TiO_2packed columns enrichment and high pHreversed-phase chromatography separations. The new strategy was successfully appliedin mouse liver phosphorylation identification.Unique phosphopeptides (11291) andphosphoprotein (2610) were identified which are12%higher than that reported in StevenP. Gygi et al. PNAS.2007.104(5):1488-93using SCX combined IMAC technology. Thenew strategy has two advantages. First, the large loading capacity ofTiO_2packedcolumnssignificantlyincrease the initial sample loading amount.Second, the high pHreversed-phase separation technique was first applied to the separation of thephosphopeptides mixture after enrichment. The high orthogonality of this2D LCseparation efficiently reduce samplecomplexity and increase the phosphorylationidentification in complex samples. The establishment of these new enrichment methodswill provide powerful technical support for phosphoproteomic research.
     In the second chapter, we reported a rapid, highly efficient, and visualized approachfor glycans enrichment using1-pyrenebutyryl chloride functionalized free grapheneoxide (PCGO). Combined with bio-mass spectrometry, this new method, wassuccessfully applied in the enrichment and identification of glycans fromHepG2cellmembrane protein.Compared with conventional glycans enrichment methods, the newstrategy has exhibits the following features and advantages. First, Improved enrichmentefficiency is achieved by the large specific surface area of freePCGO and heavyfunctionalization of highly active1-pyrenebutyryl chloride. Second, reversible covalentbond between the hydroxyl groups of glycans and the acyl chloride groups on grapheneoxide (GO) increased the enrichment specificity comparing with HILIC orlectins based enrichment. Third, the multiple hydroxyl groups of glycans lead tocross-linking andself-assembly of free PCGO sheets into visible aggregation, therefore visualmonitoringof the enrichment process is achieved. Finally, largely reduced the time required forenrichment and simplification of the operation. This work was published in AnalyticalChemistry2013,852703-2709.To realize real time and in-situ investigationon therelationship between cell membrane glycans and disease progression,we prepared highlywater-soluble and lectin functionalized upconversionnanoparticles(UCNPs) usingSI-ATRP technique for cell membrane glycansimaging.SI-ATRP modification resultsin in situ growth of hydrophilic polymer on UCNPs surface and well defined core-shellstructure which renders UCNPs largely improved biocompatibility with intactluminance property. Furthermore, the numerous functional groups on the polymer brushshell provided large number of binding site and3D support for lectin immobilization.The densely packed lectins with diversified orientation\facilitate multivalent bindingbetween the immobilized lectin and target glycans and leads to improved labelingspecificity. Finally, thelectin-ATRP-UCNP is successfully applied in in vitro and in vivoimaging of glycans on hepatocellular carcinoma cells (HCC) and distinct difference inglycan profile was found betweenHCC with and normal liver cells. The establishment ofthis new imaging method will provide powerful technical support for investigation therelationship between cell surface glycans patterns and cancer development.
引文
[1] ünlu M, Morgan M E, Minden J.Difference gel electrophoresis. A single gel method for detectingchanges in protein extracts.Electrophoresis,1997,18(11):2071-2077.
    [2]FrancescaGuidi, Michele Puglia,ChiaraGabbianiea al.2D-DIGE analysis of ovarian cancer cellresponses to cytotoxic gold compounds.Mol.BioSyst,2012,8:985-993.
    [3]GiddingsJC.Two-dimensionalseparations:conceptand promise.AnalChem,1984,56:1258-1270
    [4] GuX, DengCH, YanGQ, et al. Capillary array reversed-phase liquid chromatography-basedmultidimensional separation system coupled with MALDI-TOF-TOF-MS detection forhigh-throughput proteome analysis J.Proteome.Res,2006,5:3186-3196
    [5] Dai J, Wang LS, Wu YB,et al. Fully automatic separation and identification of phosphopeptidesby continuous pH-gradient anion exchange online coupled with reversed-phase liquidchromatography mass spectrometry. J Proteome Res.2009,8(1):133-141
    [6] AlexandarD. IEEE Transactions on Instrumentation and Measurement.1999,48(3):705-710
    [7] Vieillard J, Mazurczyk R, Morin C, et al. Dispersive liquid-liquid microextraction for theanalysis of three organophosphorus pesticides in real samples by high performance liquidchromatography-ultraviolet detection and its optimization by experimental designJ. Chromatogr. B.2008,85(2):465-470
    [8] D kohlheyer, G A J Besselink, S Schlautmann et al. Free-flow zone electrophoresis andisoelectric focusing using a microfabricated glass device with ion permeable membranes.LabChip,2006,6:374-380
    [9] Luk VN, Wheeler AR. A digital microfluidic approach to proteomic sample processing.AnalChem.2009,81(11):4524-4530
    [10]F. Xavier Bosch, Josepa Ribes, Joan Borràs. Epidemiology of primary liver cancer. Se min LiverDis1999,19(3):271-285.
    [11]Nam SW, Park JY, Ramasamy A. Molecular changes from dysplastic nodule to hepatocellularcarcinoma through gene expression profiling.Hepatology.2005,42(4):809-818.
    [12]He J, Gu D, Wu X.Major causes of death among men and women in China.N Engl JMed.2005:1124-1134
    [13] Leitner A, Sturm M, Sm tt JH, et al. Optimizing the performance of tin dioxide microspheresfor phosphopeptide enrichment.Anal Chim Acta,2009,638(1):51-57
    [14] Larsen M. R,Thingholm T. E,Jensen O. N et al.Highly selective enrichment of phosphorylatedpeptides from peptide mixtures using titanium dioxide microcolumns.Mol Cell Proteomics2005,4:873-886.
    [15] Cantin G. T, Shock T.R,Park S. K et al. Optimizing TiO2-based phosphopeptide enrichment forautomated multidimensional liquid chromatography coupled to tandem mass spectrometry Anal.Chem.2007,79:4666-4673
    [16]隋少卉,王京兰,蔡耘等.磷酸化蛋白质组学分析和定量技术的研究进展.生物化学与生物物理进展.2007,34(3):240-245.
    [17] Leitner A, Sturm M, Sm tt JH, et al. Optimizing the performance of tin dioxide microspheresfor phosphopeptide enrichment.Anal Chim Acta,2009,638(1):51-57
    [18] Junying Wei, Yangjun Zhang, Jinglan Wang,et al. Highly efficient enrichment ofphosphopeptides by magnetic nanoparticles coated with zirconium phosphonate forphosphoproteome analysis.Rapid Commun Mass Spectrom.2008,22:1069-1080
    [19]Feng Tan, Yangjun Zhang, Wei Mi, et al. Enrichment of phosphopeptides by Fe3+-immobilizedmagnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouseliver.Journal of Proteome Research.2008,7:1078-1087
    [20]Wilson-Grady JT, Villén J, and Gygi SP. Phosphoproteome analysis of fission yeast. J. ProteomeRes.2008,7(3):1088-1097
    [21]Huttlin EL, Jedrychowski MP, Elias JEetal. A tissue-specific atlas of mouse proteinphosphorylation and expression.Cell.2010,23,143(7):1174-1189
    [22]Muszylnska G,Andersson L.Porath J.Selective adsorption of phosphoproteins ongel-immobilized ferric chelate Biochemistry.1986,25:6850-6853.
    [23]Yanfeng Xue, JunyingWei, Huanhuan Han, et al. Application of open tubular capillary columnscoated with zirconium phosphonate for enrichment of phosphopeptides.Journal of ChromatographyB,2009,8,(77):757–764.
    [24]Thingholm TE, Jensen ON, Larsen MR. Enrichment and separation of mono-and multiplyphosphorylated peptides using sequential elution from IMAC prior to mass spectrometricanalysis.Methods Mol Biol.2009,527:67-78
    [25] Zhou H, Watts J D, Ache rsold R. A systematic approach to the analysis of proteinphosphorylation.Nature Biotechnology,2001,19:375-378.
    [26] Thompson A. J, Hart S. R, Franz C., et al. Characterization of protein phosphorylation by massspectrometry using immobilized metal ion affinity chromatography with on-resin beta-eliminationand Michael addition.Anal. Chem.2003,75:3232-3243.
    [27]Goshe M. B, Conrads T. P, Panisko E. A ea al.Phosphoprotein isotope-coded affinity tagapproach for isolating and quantitating phosphopeptides in proteome-wide analyses.Anal. Chem.2001,73:2578-2586.
    [28] Oda Y, Nagasu T,Chait BT. Enrichment analysis of phosphorylated proteins as a tool forprobing the phosphoproteomeNat Biotechnol.2001,19(4):379-382.
    [29]Yang,Z.P,Hancock,W.S,Chew,T.R et al. A study of glycoproteins in human serum and plasmareference standards (HUPO) using multilectin affinity chromatography coupled withRPLC-MS/MS.Proteomics,2005,5:3353-3366
    [30]Zheng T, Peelen D, Smith L M. J. Lectin arrays for profiling cell surface carbohydrateexpression.Am. Chem. Soc.,2005,127:9982-9983
    [31]Wada Y, Tajiri M, Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandemmass spectrometry of glycopeptides for glycoproteomics.Anal Chem,2004,76,6560-6565
    [32]WuhrerM, Koeleman CAM, Hokke CH, Deelder AM. Protein glycosylation analyzed bynormal-phase nano-liquid chromatography--mass spectrometry of glycopeptides.Anal.Chem,2005,77:886-894
    [33] H gglund P, Bunkenborg J, Elortza F, et al. A new strategy for identification of N-glycosylatedproteins and unambiguous assignment of their glycosylation sites using HILIC enrichment andpartial deglycosylation.J.Proteome.2004,3:556–566
    [34]J. David Rawn, Gustav E. Lienhard. Binding of boronic acids to chymotrypsin. Biochemistry,1974,13(15):3124–3130
    [35]Yawei Xu, Lijuan Zhang, Haojie Lu et al.On-plate enrichment of glycopeptides by using boronicacid functionalized gold-coated Si wafer.Proteomics2010,10:1079–1086
    [36]Yawei Xu, Zhangxiong Wu, Lijuan Zhang et al. Highly specific enrichment of glycopeptidesusing boronic acid-functionalized mesoporous silica.Anal. Chem.,2009,81(1):503-508
    [37]Wei Zhou,z Ning Yao,z Guoping Yao et al.Facile synthesis of aminophenylboronicacid-functionalized magnetic nanoparticles for selective separation of glycopeptides andglycoproteins.Chem. Commun,2008,5577–5579
    [38]Y.Xu,Z.Wu,L.Zhang et al. Highly specific enrichment of glycopeptides using boronicacid-functionalized mesoporous silica.Anal.Chem.2009,81:503-508
    [39] Hui Zhang, Xiao-jun Li, Daniel B Martin.Identification and quantification ofN-linkedglycoproteins using hydrazide chemistry, stable isotopelabeling and mass spectrometry NatBiotechnol.2003,21:660-666
    [40]Chen. R,Zou.H.F,Sun.D.G et al.Glycoproteomics analysis of human liver tissue bycombinationof multiple enzyme digestion and hydrazide chemistry. J.Proteome.Res.2009,8:651-661
    [1] Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. Protein posttranslational modifications: thechemistry of proteome diversifications. Angew Chem Int Ed Engl.2005;44(45):7342-7372.
    [2] Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol.2003;21(3):255-261.
    [3] Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics insignaling networks. Cell.2006;127(3):635-648.
    [4] Linding R, Jensen LJ, Ostheimer GJ, et al. Systematic discovery of in vivo phosphorylationnetworks. Cell.2007;129(7):1415-1426.
    [5] Ficarro SB, McCleland ML, Stukenberg PT, et al. Phosphoproteome analysis by mass spectrometryand its application to Saccharomyces cerevisiae. Nat Biotechnol.2002;20(3):301-305.
    [6] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003;422(6928):198-207.
    [7] Beausoleil SA, Villen J, Gerber SA, et al. A probability-based approach for high-throughput proteinphosphorylation analysis and site localization. Nat Biotechnol.2006;24(10):1285-1292.
    [8] Pereira Navaza A, Ruiz Encinar J, Sanz-Medel A. Absolute and accurate quantification of proteinphosphorylation by using an elemental phosphorus standard and element mass spectrometry. AngewChem Int Ed Engl.2007;46(4):569-571.
    [9] Villen J, Beausoleil SA, Gerber SA, et al. Large-scale phosphorylation analysis of mouse liver. ProcNatl Acad Sci U S A.2007;104(5):1488-1493.
    [10] Tao WA, Wollscheid B, O'Brien R, et al. Quantitative phosphoproteome analysis using adendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods.2005;2(8):591-598.
    [11] Li S, Zeng D. Chemoenzymatic enrichment of phosphotyrosine-containing peptides. Angew ChemInt Ed Engl.2007;46(25):4751-4753.
    [12] Schaefer BC, Paulson E, Strominger JL, et al. Constitutive activation of Epstein-Barr virus (EBV)nuclear antigen1gene transcription by IRF1and IRF2during restricted EBV latency. Mol Cell Biol.1997;17(2):873-886.
    [13] Zhou H, Xu S, Ye M, et al. Zirconium phosphonate-modified porous silicon for highly specificcapture of phosphopeptides and MALDI-TOF MS analysis. J Proteome Res.2006;5(9):2431-2437.
    [14] Feng S, Ye M, Zhou H, et al. Immobilized zirconium ion affinity chromatography for specificenrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics.2007;6(9):1656-1665.
    [15] Xu S, Whitin JC, Yu TT, et al. Capture of phosphopeptides using alpha-zirconium phosphatenanoplatelets. Anal Chem.2008;80(14):5542-5549.
    [16] Thingholm TE, Jensen ON, Robinson PJ, et al. SIMAC (sequential elution from IMAC), aphosphoproteomics strategy for the rapid separation of monophosphorylated from multiplyphosphorylated peptides. Mol Cell Proteomics.2008;7(4):661-671.
    [17] Ficarro SB, Parikh JR, Blank NC, et al. Niobium(V) oxide (Nb2O5): application tophosphoproteomics. Anal Chem.2008;80(12):4606-4613.
    [18] Chang CK, Wu CC, Wang YS, et al. Selective extraction and enrichment of multiphosphorylatedpeptides using polyarginine-coated diamond nanoparticles. Anal Chem.2008;80(10):3791-3797.
    [19] Bi H, Qiao L, Busnel JM, et al. TiO(2) printed aluminum foil: single-use film for a laserdesorption/ionization target plate. Anal Chem.2009;81(3):1177-1183.
    [20] Hu L, Zhou H, Li Y, et al. Profiling of endogenous serum phosphorylated peptides by titanium (IV)immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal Chem.2009;81(1):94-104.
    [21] Pinkse MW, Mohammed S, Gouw JW, et al. Highly robust, automated, and sensitive onlineTiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophilamelanogaster. J Proteome Res.2008;7(2):687-697.
    [22] Xue Y, Wei J, Han H, et al. Application of open tubular capillary columns coated with zirconiumphosphonate for enrichment of phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci.2009;877(8-9):757-764.
    [23] Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared by atom transferradical polymerization. Nat Chem.2009;1(4):276-288.
    [24] Yu LR, Zhu Z, Chan KC, et al. Improved titanium dioxide enrichment of phosphopeptides fromHeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS andMS/MS/MS spectra. J Proteome Res.2007;6(11):4150-4162.
    [25] Moser K, White FM. Phosphoproteomic analysis of rat liver by high capacity IMAC andLC-MS/MS. J Proteome Res.2006;5(1):98-104.
    [26] Larsen MR, Thingholm TE, Jensen ON, et al. Highly selective enrichment of phosphorylatedpeptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics.2005;4(7):873-886.
    [27] Zhang Y, Wolf-Yadlin A, Ross PL, et al. Time-resolved mass spectrometry of tyrosinephosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamicmodules. Mol Cell Proteomics.2005;4(9):1240-1250.
    [28] Rabinovich GA, Toscano MA. Turning 'sweet' on immunity: galectin-glycan interactions inimmune tolerance and inflaGMAtion. Nat Rev Immunol.2009;9(5):338-352.
    [29] Hart GW, Copeland RJ. Glycomics hits the big time. Cell.2010;143(5):672-676.
    [30] Liu FT, Bevins CL. A sweet target for innate immunity. Nat Med.2010;16(3):263-264.
    [31] Pang PC, Chiu PC, Lee CL, et al. Human sperm binding is mediated by the sialyl-Lewis(x)oligosaccharide on the zona pellucida. Science.2011;333(6050):1761-1764.
    [32] Jones CJ, Larive CK. Carbohydrates: Cracking the glycan sequence code. Nat Chem Biol.2011;7(11):758-759.
    [33] Zaia J. At last, functional glycomics. Nat Methods.2011;8(1):55-57.
    [34] Chen S, LaRoche T, Hamelinck D, et al. Multiplexed analysis of glycan variation on nativeproteins captured by antibody microarrays. Nat Methods.2007;4(5):437-444.
    [35] Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell.2009;139(7):1229-1241.
    [36] Zhang W, Wang H, Tang H, et al. Endoglycosidase-mediated incorporation of18O into glycans forrelative glycan quantitation. Anal Chem.2011;83(12):4975-4981.
    [37] Liu X, Li X, Chan K, et al."One-pot" methylation in glycomics application: esterification of sialicacids and permanent charge construction. Anal Chem.2007;79(10):3894-3900.
    [38] Krishnamoorthy L, Bess JW, Jr., Preston AB, et al. HIV-1and microvesicles from T cells share acommon glycome, arguing for a common origin. Nat Chem Biol.2009;5(4):244-250.
    [39] Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov.2009;8(8):661-677.
    [40] Hirabayashi J. Glycome 'fingerprints' provide definitive clues to HIV origins. Nat Chem Biol.2009;5(4):198-199.
    [41] Astronomo RD, Burton DR. Carbohydrate vaccines: developing sweet solutions to stickysituations? Nat Rev Drug Discov.2010;9(4):308-324.
    [42] Kurogochi M, Matsushista T, Amano M, et al. Sialic acid-focused quantitative mouse serumglycoproteomics by multiple reaction monitoring assay. Mol Cell Proteomics.2010;9(11):2354-2368.
    [43] Song X, Lasanajak Y, Xia B, et al. Shotgun glycomics: a microarray strategy for functionalglycomics. Nat Methods.2011;8(1):85-90.
    [44] Marino K, Bones J, Kattla JJ, et al. A systematic approach to protein glycosylation analysis: a paththrough the maze. Nat Chem Biol.2010;6(10):713-723.
    [45] Qin H, Zhao L, Li R, et al. Size-selective enrichment of N-linked glycans using highly orderedmesoporous carbon material and detection by MALDI-TOF MS. Anal Chem.2011;83(20):7721-7728.
    [46] Bereman MS, Williams TI, Muddiman DC. Development of a nanoLC LTQ orbitrap massspectrometric method for profiling glycans derived from plasma from healthy, benign tumor control,and epithelial ovarian cancer patients. Anal Chem.2009;81(3):1130-1136.
    [47] Bones J, Mittermayr S, O'Donoghue N, et al. Ultra performance liquid chromatographic profilingof serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation.Anal Chem.2010;82(24):10208-10215.
    [48] Selman MH, Hemayatkar M, Deelder AM, et al. Cotton HILIC SPE microtips for microscalepurification and enrichment of glycans and glycopeptides. Anal Chem.2011;83(7):2492-2499.
    [49] Ruhaak LR, Miyamoto S, Kelly K, et al. N-Glycan profiling of dried blood spots. Anal Chem.2012;84(1):396-402.
    [50] Wei Z, Wang D, Kim S, et al. Nanoscale tunable reduction of graphene oxide for grapheneelectronics. Science.2010;328(5984):1373-1376.
    [51] Lee J, Kim YK, Min DH. A new assay for endonuclease/methyltransferase activities based ongraphene oxide. Anal Chem.2011;83(23):8906-8912.
    [52] Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4polynucleotide kinase activity andinhibition based on coupled exonuclease reaction and graphene oxide platform. Anal Chem.2011;83(22):8396-8402.
    [53] Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films.Science.2004;306(5696):666-669.
    [54] Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett.2008;8(6):1679-1682.
    [55] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phaseexfoliation of graphite. Nat Nanotechnol.2008;3(9):563-568.
    [56] Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol.2009;4(4):217-224.
    [57] Signore A, Mather SJ, Piaggio G, et al. Molecular imaging of inflaGMAtion/infection: nuclearmedicine and optical imaging agents and methods. Chem Rev.2010;110(5):3112-3145.
    [58] Kikuchi K. Design, synthesis and biological application of chemical probes for bio-imaging.Chem Soc Rev.2010;39(6):2048-2053.
    [59] Jing C, Cornish VW. Chemical tags for labeling proteins inside living cells. Acc Chem Res.2011;44(9):784-792.
    [60] Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for trackingsignaling dynamics in living cells. Chem Rev.2011;111(5):3614-3666.
    [61] Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medicaldiagnostic imaging. Chem Rev.2010;110(5):2620-2640.
    [62] Louie A. Multimodality imaging probes: design and challenges. Chem Rev.2010;110(5):3146-3195.
    [63] Chatterjee DK, GnanasaGMAndhan MK, Zhang Y. Small upconverting fluorescent nanoparticlesfor biomedical applications. Small.2010;6(24):2781-2795.
    [64] Nam SH, Bae YM, Park YI, et al. Long-term real-time tracking of lanthanide ion dopedupconverting nanoparticles in living cells. Angew Chem Int Ed Engl.2011;50(27):6093-6097.
    [65] Wang G, Peng Q, Li Y. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, andapplications. Acc Chem Res.2011;44(5):322-332.
    [66] Liu Q, Sun Y, Li C, et al.18F-Labeled magnetic-upconversion nanophosphors via rare-Earthcation-assisted ligand assembly. ACS Nano.2011;5(4):3146-3157.
    [67] Xiong LQ, Chen ZG, Yu MX, et al. Synthesis, characterization, and in vivo targeted imaging ofamine-functionalized rare-earth up-converting nanophosphors. Biomaterials.2009;30(29):5592-5600.
    [68] Liu J, Bu W, Zhang S, et al. Controlled synthesis of uniform and monodisperse upconversioncore/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry.2012;18(8):2335-2341.
    [69] Abdul Jalil R, Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescentnanocrystals. Biomaterials.2008;29(30):4122-4128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700