用户名: 密码: 验证码:
浑水水力分离清水装置水沙分离的数值分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国华北、西北和新疆一带的众多河流都具有高浑浊水的特点,且泥沙粒径极细,小于0.03 mm粒径的泥沙占含沙总量的40%以上,处理起来十分困难。本课题研究的《浑水水力分离清水装置》可以从高含沙浓度的浑水中将水沙(包括0.01mm以下的极细沙和粘粒)分离,并获取清水。与化学处理过程不同的是,该“装置”在获取清水的过程中,不需添加任何化学药剂,也不需任何其它动力、仅靠水流的自身能量就可将水沙分离,因此被称为“绿色环保装置”。该成果可用于自来水厂对浑水进行预处理及灌区水源中的泥沙分离,对环境保护及加速喷、滴灌等先进节水技术的推广应用产生重要影响。为了探求装置的动态水力分离水沙机理,进一步优化“装置”结构形式,为“装置”的推广应用提供理论依据,本文利用试验研究、理论分析和数值模拟三种方法研究“装置”内部弱旋湍流场分布规律、水沙两相流的分离机理以及“装置”相似模化问题。
     试验研究包括水相流场的测试、水沙分离性能影响因素研究、浑液面的形成对分离性能的影响以及泥沙浓度分布测试。即应用先进的粒子图像测速技术(PIV)测量不同工况下“装置”内的水相流场,揭示了“装置”内的流场的运动规律;运用均匀正交试验和单因素同比试验并结合投影寻踪回归分析法,揭示了“装置”水沙分离的影响因素;观测不同工况下泥沙的絮凝情况,测试不同时间不同工况对应的溢流浓度,揭示了“装置”内泥沙动水絮凝或高浓度下浑液面的形成对“装置”水沙分离效率的影响规律;在“装置”不同位置布置测沙垂线,测试不同工况各测点对应的浓度值,以此验证浑水流场的数值模拟结果的可靠性。
     数值模拟研究主要包括水相场的湍流模拟和水沙多相流场的模拟。采用了不同的湍流模型RNG k-ε模型和RSM模型封闭时均流动的N-S方程,分别在不同的网格划分方案下对水相场进行数值模拟,详细分析了水相场的三维速度分布及雷诺应力分布规律,并将计算结果与PIV实测值对比。结果表明RSM模型和RNG k-ε模型水相场的数模结果与PIV实测结果吻合均较好,综合考虑计算精度和计算消耗时,可以采用RNG k-ε模型计算“装置”内的弱旋湍流场,而不需采用计算成本较高、耗时较长的RSM模型。对于水沙多相流动的数值模拟,在比较了两相流理论中颗粒运动的描述方法Euler-Euler法和Euler-Lagrangian以及不同方法对应的不同的多相流数学模型后,最终选用Euler-Euler方法中的混合物(Mixture)模型在不同进流量下针对不同泥沙浓度、较宽的粒径分布的非均匀沙和单一粒径的均匀沙多相流场进行数值模拟研究。揭示了不同工况下浑水流场的三维速度、动水压强、紊动强度、泥沙浓度分布以及不同粒径泥沙在“装置”内的分布规律。论文对不同工况下“装置”内泥沙浓度分布的数模结果和试验结果进行了对比,结果表明浑水流场浓度分布规律的数模结果与实测结果较为一致,证明本文采用的水沙多相流Mixture模型可以较准确地计算“装置”内的水沙两相流场,所得结论较为可靠。
     结合试验研究和数值模拟研究结果,从不同粒径泥沙在”装置”内的分布规律及其所受分离作用力、“装置”内的流场特性、“装置”的结构特点等角度探明了“装置”动态分离水沙的机理,为“装置”的结构和运行工况的优化提供理论指导。
     最后,在“装置”内的旋转流动中,考虑颗粒在流体中各种受力,包括运动阻力、重力、附加质量力、压强梯度力、Basset力、升力等,忽略低浓度时颗粒间的相互作用,建立了泥沙的运动微分方程。为将模型试验结论推广应用于原型“装置”中,结合水沙两相的运动方程,并根据相似理论中的量纲分析法和方程分析法,推导“装置”相似模化的准则,用以指导“装置”的设计与运行性能预测。
Many rivers which lie in the North China and northwest China have the characteristics of high sediment concentration and the sediment particle diameter is very small. It is very difficult to remove the fine sand whose diameter are smaller than 0.03mm and quality occupies 40% of the total quality. The turbid water hydraulic separation device is able to separate sediment (consists of fine sand and clay grain) and extract clear water from turbid water of high sediment concentration. It only relies on the water self-contained energy under dynamic conditions. In the process of separation, no any chemical is needed and no external energy is provided. So it is known as the green environmental protection device. The device can be applied in the running water factory to pretreat the turbid water, and also provide good source of water for the advanced water conservation technology such as spray and drip irrigation. In order to find out the water-sediment separation mechanism under dynamics conditions and make optimization for the structure of the device as well as provide principle basis for the application, experiment studies and numerical simulations as well as theoretical analysis are used to research the rule of weak swirling turbulent flow field and the water-sediment separation mechanism and the scaling rules of the device.
     The contents of experimental research consist of four sections. The first part is experiment studies for clean water flow field under different incoming discharge which is conducted by Particle Image Velocity(PIV). The results of tests have revealed the flow characteristics in the device. Secondly, the uniform orthogonal designs method with the projection pursuit regression(PPR) method to deal with the measured data, and single factor experiments have both been utilized to find out the main factors influencing on the water-sediment separation efficiency of the device. The third part is experiment studies about observing the sediment flocculation and testing the sediment concentration of the overflowing water at different time in the device with different incoming discharges and sediment concentrations. The results have promulgated the influence of silt hydrodynamic flocculation or the formation of interface between clean water and turbid water due to silt flocculation under high sediment concentration on the separation efficiency of the device. The last section is to study the sediment volume fraction distribution rule in the device. The test points were arranged at different positions of the device, and then the sediment concentration of each one was measured. The results of the tests can be used to verify the multiphase flow numerical simulation results.
     The numerical simulation research mainly includes the clean water turbulent flow field simulation and the water sediment multiphase flow field calculations. Numerical simulations were conducted for the single-phase (clear water) flow field in the device by applying the RNG k-εmodel and the Reynolds-stress model with the different schemes of grid division. According to the computational results, the characteristics of radial, tangential and axial velocity and Reynolds-stress are analyzed in detail, and the calculation results are contrasted with the experimental data by PIV. The results show that both models can accurately predict the flow field, with a comprehensive consideration of simulation precision and time consumption, we can simulate the flow field of the device by applying RNG k-εmodel, which is less time consuming than the Reynolds-stress model.
     Nowadays, in the solid-liquid two phase flow theory, there are two methods to describe the solid particle movement. They are Euler-Euler and Euler-Lagrangian method, respectively. After the two methods and their corresponding computational models have been compared with each other in detail, the Eulerian model-Algebraic Slip Mixture Model was selected for simulating the two-phase (water &sediment) flow field in the device. The flow field characteristics of the device are predicted by means of computational fluid dynamics technology under different operating conditions including different inlet sediment concentration, different inlet discharges as well as uniform graded sediment and non-uniform graded sediment. The results have revealed the characteristic and the distribution rules of three-dimensional velocity, dynamical pressure, intensity, sediment concentration as well as the different grain diameter sediment and the simulation results are in good agreement with the experimental data. The results show that it is reasonable and accurate to use the Mixture model for the water& sediment two-phase flow field of the device.
     Combining with the experiment and simulation results, the mechanism for that the sediment is separated from the turbid water with high sediment concentration is clarified from the different views such as considering the separation forces acting on the different particle size sediment, the flow field characteristics of the device and the particular structure of the device, which can provide instructions for making optimization in the structure or operation conditions.
     Finally, considering synchronously the drag force, gravity force, adjunctive mass force, pressure gradient force, Basset force, lift force, Magnus force, Saffman force, and neglecting the interation between particles at the low inlet sediment concentration, the movement differential equations for the sediment was established. In order to apply the model experiment conclusions on the prototype device and instruct its design, Combing with the three-dimensional time average control equations for the water and sediment movement equations, the scaling rules is derived to according to dimensional analysis method of similarity theory and Equation analytic method.
引文
[1]傅文德等.高浊度水给水工程 中国建筑工业出版社
    [2]于水利. 高浊度水絮凝投药控制方法研究[博士论文] 哈尔滨建筑大学 1994. 3
    [3]王军,刘焕芳,成玉彪等. 国内微灌用过滤器的研究与发展现状综述[J].节水灌溉,2003 年第 5 期
    [4]田军仓. 高含沙水微灌非全流过滤方法及装置研究[J]. 武汉水利电力大学学报,1997 年 10 月第 30 卷第 5 期
    [5]傅琳,董文楚,郑耀泉等. 微灌工程技术指南. 北京:水利电力出版社,1988
    [6]韩丙芳,田军仓. 微灌用高含沙水处理技术研究综述[J]. 宁夏农学院学报 2001 年第 22 卷第 2 期
    [7]董文楚. 微灌用网过滤器与砂过滤器综述[J]. 喷灌技术,1992(1)
    [8]吴年发,傅娟.介绍几种实用的简易过滤设施[J]. 中国农村水利水电,1997(6)
    [9]马昌,王立军,侯铁.污水处理厂中沉淀池的设计[J].西南给排水,2006 年第 28 卷第 4 期
    [10]许嘉炯,沈裘昌,雷挺等.新型中置式高密度沉淀池的开发与应用[J].给水排水,2007 年第 33 卷第 2 期
    [11]万才元,杨传芳,李中法.过滤技术在污水处理场节水减排中的应用[J].节水减排,2006 年 34(增刊)
    [12] 许嘉炯,雷挺,沈裘昌等. 嘉兴石臼漾水厂扩容工程的设计和调试运行[J]. 给水排水,2006,32(5):1-5
    [13] Ter Linder A.J. Investigation into cyclone dust collectors [J]. Proc. Inst. Mech. Eng., 1949,160:233-240.
    [14] Robert, Deotte, E. Jr. Characterization of the velocity field in a small, cylindrical, low Revonlds number aerosol sampling cyclone[J]. Aerosol Science and Technology, 1990,12 (4): 1037-1049
    [15] Reydon R.F., Gauvin WH.. Theoretical and experimental studies of confined vortex flow[J]. Can. J.Chem. Engng., 1981, 59 (1):14-23.
    [16]彭维明.切向旋风分离器内部流场的数值模拟及试验研究[J].农业机械学报,2001,32 (4): 20-24.
    [17] Peng, W., Hoffmann, A.C. et al. Flow pattern in reverse-flow centrifugal separators [J]. Powder Technology, 2002,127 (3): 212 一 222.
    [18]柳绮年,贾复等. 旋风分离器三维流场测定[J].力学学报,1978, (3):182-191
    [19]姬忠礼,时铭显.蜗壳式旋风分离器流场内的特点[[J].石油大学学报,1992, 16(1):47-53.
    [20]田彦辉,姬忠礼,时铭显. PV 型旋风分离器流场的研究[J].石油大学学报,1992, 16 (1):54-59
    [21]魏耀东,燕辉,时铭显. 蜗壳式旋风分离器环形空间流场的研究[J]. 石油炼制与化工, 2000, 31(11): 46-50.
    [22]吴小林,姬忠礼,田彦辉等. PV 型旋风分离器内流场的试验研究[J].石油学报(石油加工), 1997, 13(3):93-99.
    [23]胡砾元,时铭显.蜗壳式旋风分离器全空间三维时均流场的结构[[J].化工学报,2003,54 (4): 549-556.
    [24] 杨祖清.流动显示技术.北京;国防工业出版社,2002,P241-259
    [25] 范杰川.流动显示与测量,机械工业出版社,1997, P296-333
    [26]唐毅.排沙漏斗三维涡流水流结构的研究.四川联合大学博士学位论文,1996.
    [27]李玉星,张劲松,冯叔初等.在液液水力旋流器入口结构及尺寸优化中的应用.化工机械,2002,29(1):11-14.
    [28]王海刚,刘石.不同湍流模型在内燃机缸内流动过程数值模拟中的应用和比较.燃烧科学与技术, 2004,10(1):66-71.
    [29]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较.热能动力工程,2003,18(4):337-342.
    [30]李玉星,冯叔初,寇杰等.除油水力旋流分离器流动机理和性能预测研究,2000,30(7):31-34.
    [31]李枫,刘彩玉等.动态水力旋流器速度场特性.大庆石油学院学报,2002,26(3):70-73.
    [32]王尊策,时培明,吕凤霞.复合式水力旋流器内部流场的数值模拟.石油学报,2005,26(1):125-128.
    [33]戴光清,李建明,陈文梅.水力旋流器内湍流场数值模拟.化工学报,1997,48(1):123-126.
    [34]NALLASNMY M.Turbulence modles and their applications to the internal flows,a review.Computational Fluids,1987,(3):151-194.
    [35]李玉星,张劲松等.CFD 在液-液水力旋流器能耗及分离效率预测中的应用.流体机械,2001,29(10):20-25.
    [36]李玉星,冯叔初等.液液水力旋流器流场数值模拟技术研究.化工装备技术,2000,21(1):9-13.
    [37]李玉星等.水力旋流器压降及压力分布特性的数值模拟.流体机械,2002,30(10):15-19.
    [38]李晓钟,褚良银,陈文梅.水力旋流器内湍流数值模拟研究进展.化工武装技术,1996,17(3)46-54.
    [39]褚良银,陈文梅,李晓钟等.水力旋流器湍流数值模拟及湍流结构.高校化学工程学报,1999,13(2):107-113.
    [40]李建明,戴光清等.旋流器中较强旋液体流动的数值计算.水动力学研究与进展,1999,14(3)278-283.
    [41]赵宗昌,徐维勤,沈自求,转动式油水分离水力旋转流器内部流场的数值计算,大连理工大学学报,1998,38(2):180-183.
    [42]牛贵锋,油水分离旋流器三维数值模拟与结构优化. 西南石油大学硕士论文,2006 年:2-75.
    [43]王尊策,复合式水力旋流器的结构及特性研究.哈尔滨工程大学博士论文,2003 年.2-95.
    [44]魏立新,刘扬,张乐天 液-液水力旋流器的模拟分析与结构优化.石油机械,2006 年,第 01 期
    [45]毛羽,庞磊,王小伟等.旋风分离器内三维紊流场的数值模拟.石油炼制与化工,2002,33(2):1-6.
    [46]易林,王磊,王灿星.螺旋型旋风分离器二维两相流场的数值模拟.现代数学和力学(MMM)-IX 会议论文集,2004.
    [47]成立,泵站进水弯道三维流动分析及流态改善研究.扬州大学学报(自然科学版),2002,5(2):64-68.
    [48]夏云峰,薛鸿超,非正交曲线同位网格三维水动力数值模型.河海大学学报(自然科学版),2002,30(6):74-78.
    [49]夏云峰,非交错网格的水流数值计算模型.水利水运工程学报,2001,(1):50-54.
    [50]夏云峰,一种简便的非交错曲线网格三维水流数值模型.水动力学研究与进展,2002,17(5): 638-646.
    [51]李国彦,赵应长,用修正的 K-ε 方程计算旋转流动,昆明工学院学报,1995,20(2):110-115.
    [52]华祖林,拟合曲线坐标下弯曲河段水流三维数学模型,水利学报,2000,(1):3-10.
    [53]倪晋仁,王光谦. 固液两相流研究的两种基本方法之比较[J].泥沙研究.1992 年,第 3 期,第 95-102 页.
    [54]李福田,1986 挟沙水流紊动结构的试验研究[J].泥沙研究. 1986 年 3 月,第 1 期,第 3 8-46 页.
    [55]Lin D.A 1992 Turbulence characteristics of sediment-laden flow in open channels[J].Hydr. Eng. ASCE,.6, 971-988.
    [56]Wang, G.Q &J.R. Ni, 1990 Kinetic theory for particle concentration distribution in two-phase flow[J]. Eng. Mech. 116(12), 2738-2749.
    [57]倪晋仁,王光谦,张红武. 固液两相流基本理论及最新应用[M]. 科学出版社,1991,北京.
    [58]刘大有. 从二相流出发研究平衡输沙一扩散理论和泥沙扩散系数的讨论[J].水利学报, 1995年4月,第4期,第62-67页.
    [59]刘大有. 现有泥沙理论的不足和改进一扩散模型和费克定律适用性的讨论[J].泥沙研究,1996, 9,第三期 39-45.
    [60] Pai S I., Fundamental equations of a mixing of a gas and small spherical solid particles from kinetic theory [J]. J. Math. Phys. Sci., 1991,(8):l 一 I5.
    [61]Anderson T. B., Jackson R., I&EC Fundamentals,1967,6(4),527-539.
    [62]Soo S.L.. Fluid Dynamics of Multiphase Systems. Blaisdell Publishing Co., Waltham,1967.1-100.
    [63] Walks G.B.. One Dimensional Two-phase Flow. McGrall-Hill, New York, 1969,1-100
    [64]Tchen C.M. Mean values and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph. D. Thesis,Delft,1947.
    [65]Corrsin S. and Lumley J.L. On the equation of motion for a particle in turbulent fluid. Appl. Sci. Res., 1956,A6:114-121.
    [66]Lumley J.L. Some problems connected with the motion of small particles in turbulent fluid. Ph.D. Thesis, Johns Hopkins Univ., Baltimore, 1957.
    [67]Maxey M.R. and Riley J.J. Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids,1983,26, 883-889.
    [68]刘小兵.固液两相流动及在涡轮机械中的数值模拟[M].中国水利电力出版社,1996.
    [69]岑可法,樊建人著.工程气固多相流动的理论及计算.浙江大学出版社。1990.
    [70]Jurewicz J.T. and Stock D.E. ASME Winter Annual Meeting, Paper 76-WS/FE-33,1976.
    [71]Smith P.J. et al. Paper WSS 80-7,Western States Section. Combustion Institute, CA, 1980.
    [72]Smith P,J. et al 二 18th Symposium on Combustion. 1981.
    [73]Boysan F W, et al.. Trans. Instn. Chm. Eng., Vol. 60, 1982.
    [74]范正翘等.煤粉与气流混合喷射两相流数值计算.第二届全国计算流体力学学术会议论文,1984.
    [75]李嘉等计算泥沙颗粒在沉沙池中运动的新方法.第二届全国环境水力学学术会议论文集,西安,1994.
    [76]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000, VOL.12, NO.2. 208-217.
    [77]Spalding D.B. Mathematical models of continuous combustion. Emission from Continuous combustion system.Plenum Press, 1972.
    [78]Soo S.L. Multiphase Fluid Dynamics. Univ. of Illinois, Urabana, 1983.
    [79]Drew D.A. Strd. Appl. Math., 1971,5(3)
    [80]Spalding D.B. Basic two-phase flow modeling in reactor safety and performance. EPPI Workshop Proceedings,1980.
    [81]周力行.欧拉坐标系中有相变的颗粒多相流的连续介质模型.第二届全国多相流力学、牛顿流体力学、物理化学流体力学学术会议论文汇编(上),1982.
    [82]Ishill, M.&Mishima, K. 1984. Two-fluid Model and hydrodynamic constitutive relations. Nucl. Eng.&Des., Vo1.82,107-126.
    [83]Soo, S.L. 1990. Multiphase fluid dynamics. Hong Kong: Science Press.
    [84]Elghobashi, S.E.&Abou-Arab, T.W. 1983. A two-equation turbulence model for two-phase flows. The physics of Fluids, Vo1.26,931-938.
    [85]Mostafa, A.A.&Mongia, H.C. a988, On the interaction of particles and turbulent fluid flow. Int. J. Heat Mass Transfer, Vo1.31,No.10,2063-2075.
    [86]Adeniji-Fashola, A.&Chen, C.P. 1990. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes. Int. J. Heat Mass Transfer, Vo1.33,No.4,691-701.
    [87]Tu, J.Y. & Fletcher, C.A.J. 1994. An improved model for particulate turbulence modulation in confined two-phase flow. Int. Comm. in Heat and Mass Transfer,Vo1.21,No.6,775-783.
    [88] Zuber, N.&Findlay, J.A. 1965. Average Volumetric Concentration in Two-Phase Flow Systems[J]. Heat Trans., Vo1.87,453-468.
    [89]Verloop, W.C. 1995. Teh inertial coupling force. Int. J. Multiphase Flow, Vo1.21,929-933.
    [90]Ungarish, M.1993. Hydrodynamics of suspensions: Fundamentals of centrifugal and gravity separation. Berlin:Springer.
    [91]S.Decker and M.Sommerfed, LChem.E.Symp.Ser. 1996, 140: 71
    [92]Brucato, A., Ciofalo, M., Godfrey, J., Grisafi, F and Micale, G., Experimental determination and CFD simulation of solids distribution in stirred vessels, Proc 5th Int Comfron Multiphase Flow in Industrial Plants, 1996, Amalfi, 26-27 Sept, 323-334
    [93]Brucato, A., Ciofalo, M., Godfrey, J., Grisafi, F and Micale, G., On the simulation of solid particle distribution in multiple impeller agitated tanks via computational fuid dynamics, 1997, AIDIC Conf Ser, 2: 287-294
    [94]Ronald J,Weetman ,Ind 9th European Conference on Mixing, 1997
    [95]徐姚、张政等,旋转圆盘上液固两相流冲刷磨损数值模拟研究,北京化工大学学报 2002, 29(3)
    [96]Cheng xuewen. Nmerical Simularion of the Erosion-Corrosion of Liquid-Solid flows:[dissertation].Beijing:Beijing University of chemical technology,1999
    [97]G. Micale et al, "CFD simulation of particle distribution in stirred vessels," Trans. IchemE, 78(A) (2000), 435-444
    [98]Lanre M. Oshinowo and Andre Bakker, "CFD modeling of solids suspensions in stirred tanks," Computational Modelling ofMaterials, Minerals and Metals Processing, 2001,205-215
    [99]钟丽. 搅拌槽内固—液悬浮的数值模拟[D].北京化工大学,2003
    [100]Krebs P, Armhruster M,Rodi W. Laboratory experiments of buoyancy-influenced flow in clarifiers[J]., Journal of Hydraulic Research, 1998, 36( 5):831.
    [101]Krebs P, Stamou A I, Carcia Heras. Influence of inlet and outlet configuration on the flow secondary clarifiers[ J].Water Science and Technology, 1996, 34( 5- 6):1.
    [102]Lyn D A, Stamou A I, Rodi W. Density currents and shear induced flocculation in sedimentation tanks[J]., Journal of Hydraulic Engineering, 1992, I 18( 6):849.
    [103]Takacs I, Patry G, Nlasco D. A dynamic model of the clarification thickening process[J]. Water Research, 1991, 25(10):1263
    [104]Zhou S, McCourquodale J A. Modeling of rectangular settling tanks[J]. Journal of Hydraulic Engineering, 1992,118(10):1391
    [105]屈强,马鲁铭,王红武. 辐流式二沉池固液两相流数值模拟[J].同济大学学报(自然科学版),2006 年第 34 卷第9 期
    [106]Schamber D R, Larock B E. Numerical analysis of flow in sedimentation basins [J]. J.Hydro.Div., ASCE,1981,107(5):575— 591
    [107]Imam E, McCorquodale J A, Bewtra J K. Numerical modeling of sedimentation tanks [J]. J. Hydro. Eng., ASCE, 1983,109(12):1741—1754
    [108]Adams E W, Rodi W. Modeling flow and mixing in sedimentation tanks [J]. J. Hydro. Eng., ASCE.1990,116(7):895—913.
    [109]Zhou S, Mccorquodale J A. Modeling of rectangular settling tanks [J]. J. Hydro. Eng , ASCE,1992, I I 8(10):1391—1405.
    [110] Micalc G. CFD simulation of particle distribution in stirred vessels[J]. Trans IchemE, 2000,78(A) :435-444
    [111]Derksen J J. Simulation of solid particle dispersion in agitated tanks[ C]//11th European Conference on Mixing, VDI GVC, Germany: FUCK-DRUCK, 2003
    [112]Giuscppina Montantc, Franco Magelli. CFD modeling of particle distribution in a vessal stirred by mutiple in-mellers: The case of pesudoplastia liquids[C]//11th European Conference on Mixing .VDF GVC.Germany: FUCK-DRUCK, 2003
    [113]胡志伟等.三维强弯管内湍流场的数值分析.《西安交通人学学报》,1998(1)
    [114]徐自力等.弯曲圆管中矿浆湍流场的三维数值模拟及分析.《西安交通大学学报》,2000(5)
    [115]欧益宏,杜扬,周明来等.柱型水力旋流器多相流场及分离过程的数值模[J].流体机械,2005 年第 33 卷第 1 期
    [116]王卫国,周慎杰. 圆柱旋流器液固两相流场的数值模拟[J].煤矿机械,2006 年第 27 卷第 2 期
    [117]吴春笃,张伟,黄勇强.新型旋流分离器内固液两相流的数值模拟[J].农业工程学报,2006 年第 22 卷第 2 期
    [118]高忠信,周先进,张世雄等.水轮机转轮固液两相三维紊流计算及磨损预估[J].水利学报,2002 年 9 月
    [119]刘刚,雷明光,杨小丽.对称进口水力旋流器多相流场及分离性能的数值模拟[J].化工装备技术,2005 年第 26 卷第 6 期
    [120]杨敏官,刘栋,贾卫东等.离心泵叶轮中固液两相流动的数值模拟[J].水泵技术,2005 年第 4 期
    [121]欧益宏,杜扬,肖杰等. 粒子在柱形旋流器中的随机轨道数值模拟[J].石油矿场机械,2006,35(1):27—29
    [122]王志斌,陈文梅,褚良银等.旋流分离其中固体颗粒随机轨道的数值模拟及分离特性分析[J].机械工程学报,2006,42(6):34—39。
    [123]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展. EIC,VOL.10, 2003 NO.61.
    [124]Tokuhiro A, MaekawaM, lizuka K, hishida K, Mead M. Turbulent flow past abubble and an ellipaoid using shadow image and PIV techniques International. Journal of Multiphase Flow,1998,24
    [125]Adrian R. J.. Particle-Image Techniques for Experimental Fluid Mechanics [J]. Annu. Rev. Fluid.Mech., 1991, 23:261-304.
    [126]Fohanno S., Oesterle B. Analysis of the effect of collisions on the gravitational motion of large particles in a vertical duct }J}. International Journal of Multiphase Flow, 2000,26 (2): 267-292.
    [127]Funes-Gallanzi M.. High accuracy measurement of unsteady flows using digital particle image velocimetry [J]. Optics&Laser Technology, 1998, 30 (6): 349-359
    [128]朱震.利用单祯图像和互相关法测量两维瞬时流动速度场的研究[D]〔硕士学位论文〕.南京:东南大学,1999.
    [129]康琦,申功听.全场测速技术进展[fJl.力学进展,1997,27(1):106-117.
    [130]Medina A. Velocity field measurements in granular gravity flow in a near 2D silo [J]. Physics Letters,1998250:111 一116.
    [131]Reeves M. A high-speed all digital technique for cycle-resolved 2-D flow measurement and flow visualization within SI Engine Cylinders [J]. Optics and Lasers in Engineering, 1999, 31(4): 247-261.
    [132]熊源泉.气固喷射器输送特性的试验研究及其三维数值模拟「D}:〔博士学位论文〕.南京:东南大学热能工程研究所,2003.
    [133]许联锋,陈刚.粒子图像测速技术研究进展.Advances in Mechanics.V0l.33 No.4 Nov.25,2003.
    [134]刘应征,陈汉平.复杂旋转回流 PIV 速度整场实验研究.水动力学研究与进展,A 辑第 18 卷第 5 期, 2003 年 9 月.
    [135]孙鹤泉,康海贵,李广伟.PIV 的原理与应用.水道港口(Journal of Waterway and Harbour),第 23 卷第 1 期,2002 年 3月.
    [136]Westerweel J. Fundamentals of digital particle image velocimetry [J]. Measurement Science and Technology, 1997, 8 (12): 1379-1392.
    [137]王延颧,张永明等.DPIV 的 FFT 互相关算法[[J].中国科学技术大学学报,1999, 29 (3): 316-321.
    [138]Lee K.W. A real-time video encoded particle image traking technique for velocity measurement [J].Optics and laser in engineering, 1997, 27: 621-636.
    [139]Xiao.J., Investigation of clear water field of a turbid water hydraulic power separation device by physical model, thesis, Xinjiang Agricultural University, China, Xinjiang urumqi, 2006.
    [140]QIU Xiuyun, XIAO Jun, ZHOU Zhu. The experimental study on clear water field characteristics of a turbid water hydraulic separation device[J]Xinjiang Agricultural University Journal, 2006,29(4):10-16(in Chinese)
    [141]Boussinesq J. Mem. Pres. Pardiv. Savant al’ acad. sci. Paris, 1877, 23: 46.
    [142]Plandtl L. Nachrichten Von der Akad. Der Wissenschoft in Gottingen,1925.
    [143]Schlichting,H.,Boundary layer theory,McGraw Hill,New York,1969.
    [144]Taylor G. I. The transfer of vorticity and heat through fluid in turbulent motion [C]. Proc. Roy. Sci., 1932: 863.
    [145]Von Karman T. Mechanische Ahnlichkeit und Turbulenz. Nach. Ges. Wiss. Gottingen, Math. Phys. Klasse, 1930: 58.
    [146]Rodi V. Turbulence models and their applications in hydraulics [M]. IAHR publications, Delft. Netherlands, June 1984.
    [147]Meller, G.L., The effects of pressure gradients on turbulent flow near a smooth wall [J]. J.Fluid Mech., Vol.24, 1966.
    [148]平浚.射流理论基础及应用 [M]. 宇航出版社, 1995.
    [149]Bradshaw P., Ferriss D. H. and Atwell N. P. Calculation of boundary layer development using the turbulent energy equation [J]. Journal of Fluid Mech., 1967, Vol.28: 593-616.
    [150]Nee,V.W. and Kobasznay L.S.G. The calculation of the incompressible turbulent boundary layer by a simple theory [J]. Phys. of Fluid, 1969, No.12: 473.
    [151]Zhou,P.Y. On the velocity correlations and the solution of the equations of turbulent fluctuation [J]. Quart. J. Appl. Math, 1945, 3(1): 38-54.
    [152]Davidov,B.I. On the statistical dynamics of an incompressible turbulent fluid [J]. Dokl. AN SSSR, 1961, 163: 47.
    [153]Harlow,F.H. and Nakayama P.I. Transport of turbulence energy decay rate[J]. Los Alamos Sci. Lab. Univ. California Rep. LA-3854, 1968.
    [154]Jones,W.P. and Launder B.E. The prediction of laminarisation with a Z-equation model of turbulence [J]. Int. J. Heat Mass Transfer, 1972,Vol.15: 301.
    [155]Rotta,J.C. Statistische thearie nichthomagener turbulenz[J]. Zeitschrift F. Physic, 1951,192: 547-572 and 131: 51-57.
    [156]Kolmogorov,A.N. Equations of turbulent motion of an incompressible fluid [J]. LZV, Ahad. Nauk. SSR, Seria fizicheska Vi., 1942, No.1-2: 56-58.
    [157]Spalding,D.B. The prediction of two-dimensional steady turbulent flows [M]. Imperial College, Heat transfer section Rep., EF/TN/A/16, 1969.
    [158]Kobayashi,T. and Yoda M. Modified k ?εmodel for turbulent swirling flow in a straight pipe[J]. JSME, International Journal, Series II, 1987, 30:259.
    [159]Hanjalic,K. and Launder B.E. Sensitizing the dissipation equation to irrotational strains[J]. ASME, Journal of Fluids Engineering, 1980, 102.
    [160]Leschziner,M.A. and Rodi W. Calculation of annular and twin parallel jets using various discretization schemes and turbulence model variation[J]. ASME, Journal of Fluids Engineering, 1981, 103.
    [161]Kolavandin B.A. and Vatutin I.A. Statistical transfer theory in non- homogeneous turbulence [J]. Int. J. of Heat and Mass Transfer, 1972, 15: 2371-2388.
    [162]Hanjalic,K. and Launder B.E. A Reynolds-stress model of turbulence and its application to thin shear flows [J]. J. of Fluid Mech., 1972, 52: 609.
    [163]Launder,B.E., Reece G. and Rodi W. Progress in the development of Reynolds stress turbulence closure [J]. J. of Fluid Mech., 1975, 68: 537-566.
    [164]Rotta,J.C., Statistiche thearie nichthomogener turbulenz. Zetischrift f. Physic, 1951, 192: 547-572 and 131:51-57.
    [165]Reece G.J., A generalized Reynolds-stress model of turbulence. Ph.D. Thesis, University of London, 1977.
    [166]郭鸿志. 传输过程数值模拟[M]. 北京:冶金工业出出版社,1998.
    [167]Yakhot, V., Orszag, S.A. Renormalization group analysis of turbulence [J]. Journal of Scientific Computing, 1986, 1 (1): 3-5.
    [168]Speziale,C.G., Thangam, S. Analysis of RNG based turbulence model for separated flows. Int J Engng Sci.1992,10:1379-1388.
    [169]Fluent Inc., Fluent6.0 User’s Guide. December 2001.
    [170]周力行.湍流气粒两相流动和燃烧的理论与模拟.北京:科学出版社,1994:167-168
    [171]金忠青.N-S 方程的数值解和紊流模型[M].南京:河海大学出版社,1989:21-97,174-197
    [172]陶文铨. 计算传热学的近代进展[M]. 科学出版社,北京,2001.
    [173]Patanker,S.V., DB.Spalding. A calculation pressure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 1972,15:1787-1806.
    [174]Van Doormal,J.P. and Raithby,G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows [J]. Numer. Heat Transfer, Vol.7, 1984.
    [175]Issa,R.I. Solution of implicityly discretized fluid equations by operator splitting [J]. Journal of Comp. Physics, 1986, (62): 40-65.
    [176]陶文铨.数值传热学.西安:西安交通大学出版社,1988.23~27,448~451
    [177]李云开,杨培岭,任树梅,王勇,圆柱型灌水器迷宫式流道内部流体流动分析与数值模拟[J].水动力学研究与进展 A 辑,2005 年第 6 期
    [178]W.Peng,A.C.Hoffmann,H.W.A.Dries.Experimental Study of the vortex end in centrifugal separators:The nature of the vortex end[J].Chemical Engineering Science,2005,60:6919~6928
    [179]W.Peng,A.C.Hoffmann,P.J.A.J.Boot etc. Flow pattern in reverse flow centrifugal separators[J].Powder Technology,2002,127:212~22
    [180]程勇,王军.旋流燃烧室内湍流流动的 PIV 实验研究[J].上海理工大学学报,2004 年 26 卷第 5 期、[44]魏新利,张海红,王定标.水力旋流器流场的数值模拟[J].热科学与技术第 4 卷第 2 期,2005 年 6 月
    [181]刘淑艳,张雅,王保国.用 RSM 模拟旋风分离器内的三维湍流流场[J].北京理工大学学报,第 25 卷第 5 期,2005年 5 月
    [182] Hou Shuandi( 侯 拴 弟 ).Experiment Research and Numerical Simulation of 3D Flow Field in Agitating Tank:[dissertation]. Beijing: Beijing University of Chemical Technology, 1997
    [183]Foumeny E A, Benyahia F. Chem. Eng. Progress, 1993(1):21-26
    [184]Nathalie Hamill. Chem. Eng., 1996(10):68-72
    [185]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1
    [186]李嘉,罗麟,李克锋等.紊流场中固体颗粒运动轨迹的 Lagrangian 模型[J].水动力学研究与进展 A 辑,1997(12)1
    [187]倪晋仁,曲轶众.固液两相流中固体颗粒的垂直分选模型[J].水动力学研究与进展A辑.2003,(18) 3
    [188]Fluent Inc. Fluent documentation[R].[s.l.]:Fluent Inc, 2003.
    [189]Jackson R. The mechanics of fluidized beds [J]. Trans. Inst. Chem. Eng. 1963, 41:13-28
    [190]Murray J.D.On the mathematics of fluidization. Part 2. Steady motion of fully developed bubbles [J]. J. Fluid Mech. 1965,22:57-80.
    [191]Anderson T.B., Jackson R. A fluid mechanical description of fluidized beds [J]. I&EC Fundamentals, 1967,6:527-539
    [192]张健, NIEH S. 涡旋管内强旋湍流气固两相流的数值模拟[J]. 水动力学研究与进展 A 辑.2000, (04)
    [193]周永,吴应湘,郑之初等. 油水分离技术研究之一——直管和螺旋管的数值模拟[J].水动力学研究与进展 A辑.2004, (04)
    [194]谭晓军, 陈丽华, 李宏剑. 半圆管惯性分离器气固两相流动数值模拟[J]. 水动力学研究与进展 A 辑 , 2005, (S1)
    [195]屈强,马鲁铭,王红武. 辐流式二沉池固液两相流数值模拟[J]. 同济大学学报(自然科学版),2006,34(9)
    [196]褚良银,陈文梅,戴光清等.水力旋流器[M]. 北京:化学工业出版社,1998 年 1 月,79-80
    [197]Ishii M. 1975. Thermo-fluid Dynamic Theory of Two-phase Flow. Paris: Eyrolles
    [198]Ungarish M. Hydrodynamics of Suspensions:Fundamentals of Centrifugal and Gravity Separation. Berlin:Springer, 1993.
    [199]Gidaspow D. Multiphase Flow and Fluidization. Continuum and Kinetic Theory descriptions. San Diego: Academic Press.1994.
    [200]Verloop W C. The Inertial Coupling Force. Int J Multiphase Flow,1995,21:929-933
    [201]L. Schiller and Z. Naumann. Z. Ver. Deutsch. Ing., 77:318, 1935.
    [202]Durst F , Milojevic D , Schonung B. A ppl . Math. Modelli ng , 1984 , 8 (April) : 101—115
    [203]Tsuji Y, Tanaka T , Yonemura S. Pow der Technology , 1998 ,95 : 254 —256
    [204]Zhang Jian ( 张健) , Nieh S. Journal of Chemical Industry and Engineeri ng ( China ) ( 化工学报) , 1995 , 46 ( 5 ) :545 —551
    [205]Fan Jianren, Cen Kefa . J . Zhejiang University , 1986 , 20 (6) : 17 -26
    [206]Tam C K W. J . Fl ui d Mech. 1969 , 38 : 537 —546
    [207]D.Gidaspow,R.Bezburuah, and J.Ding. Hydrodynamics of Circulating FluidizedBeds, Kinetic Theory Approach. In Fluidization VII, Proceedings of the 7thEngineering Foundation Conference on Fluidization, pages 75-82, 1992.
    [208]M. Syamlal, W. Rogers, and O'Brien T. J. MFIX Documentation: Volume 1,Theory Guide. National Technical Information Service, Springfield, VA, 1993.DOE/METC-9411004,NTIS/DE9400087.
    [209]陶文铨.数值传热学.西安:西安交通大学出版社,1988.23~27,448~451
    [210]张瑞瑾.论重力理论兼论悬移质运动过程. 水利学报,1963年第3期:11-23
    [211]Bagnold,R.A. Some Flume Experiment on Large Grains but Little Denser than Transporting Fluid, and Their Implications. Proc.,Inst. Civil Engrs.,1955:174-205
    [212]Bruhl,H. and I.Kazanskij,New Results Concerning the Influence of Fine Particles on Sand-Water Flows in Pipes, Proc. of Hydrotransport, No.4, 1976, B2 19-25
    [213]Elata, C. and I.T. Ippen, The Dynamics of Open Channel Flow with Suspensions of Neutrally Buoyant Particles. Tech. Rep. No.45, Hydrodynamics Laboratory, Massachusetts Inst. Tech.,January 1961
    [214]中国水利学会泥沙专业委员会主编.泥沙手册.北京:中国环境科学出版社,1998
    [215]刘青泉,陈立.泥沙对水流紊动影响的进一步分析. 水利学报,1997,11.
    [216]陈稚聪,王光谦,詹秀铃.细颗粒塑料沙的群体沉速及起动流速试验研究. 水利学报,1996.2.
    [217]练继建,洪柔嘉,于国友.水流作用下粘性泥沙悬扬的动力分析. 水利学报,1995,4.
    [218]汪光寿,城市供水行业 2000 年技术进步发展规划,中国建筑工业出版社,1993:6
    [219]任露泉.试验优化设计与分析.高等教育出版社,2003:405-410,481-505
    [220]刘芬. 浑水水力分离清水装置结构优化试验研究[硕士学位论文]. 乌鲁木齐:新疆农业大学
    [221]刘大秀.投影寻踪在试验设计中的应用研究。数理统计与管理,1995,14(1)
    [222]毛鸿才,杨力行,姚源松,等.棉花栽培试验建模仿真的研究。棉花学报,2001,1(42-44)
    [223]雷明光,陈文梅,刘玉良. 利用激光量测技术和粒子动态分析技术研究旋流器内两相流[J].流体机械.1999 年 2 月: 10-14
    [224]李彦,闫德中.三维激光颗粒动态分析仪在多相流测量中应注意的问题[J].实验技术与管理. 2003(20),5:9~12
    [225]李彦,等. 利用 3D-PDA 系统对四角切燃锅炉炉膛上部的气固两相流场冷态测量研究[J].激光杂志. 2000(21),5: 53~55
    [226]徐祥开,刘应征,罗次申等. 有机玻璃板对 PDA 测量结果影响的研究[J].激光技术.2003(27),6:268~270
    [227]杨艳玲,李星,刘美洲. 用颗粒计数和浊度联合评价颗粒物去除作用[J]. 北京工业大学学报.2007(33),11:1119~1202
    [228]ROSE J B. Occurrence and significance of cryptosporidium in water[J]. JAWWA.1998.80(2):53~58.
    [229]DUGAN N R,FOX K R,OWENS J H,et al. Controlling cryptosporidium oocysts using conventional treatment[J]. JAWWA,2001,93(12):12~25.
    [230]李星,杨艳玲. 用新型透光式颗粒检测法测定颗粒凝聚程度[J].北京工业大学学报,.2003,29(3):301~304.
    [231]倪晋仁,王光谦,张洪武. 固液两相流基本理论及其最新应用[M]. 北京:科学出版社,1991:195~215
    [232]钱宁,万兆惠. 泥沙运动力学[M]. 北京:科学出版社,1983:76~81,85~105 [ 233]黄建维.粘性泥沙在静水中沉降特性的试验研究[J].泥沙研究,1981,(2):31~40. [ 234]陈保平,金同轨.黄河高浊度水自然沉淀某些规律的新探索[J].泥沙研究,1991,(3):62~67.
    [235]Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J].Continental Shelf Research,2002,(22):1339~1360
    [236]AllainC, Cloitre M and Wafra M. Aggregation and sedimentation in colloidal suspensions[J]. Physical Review Letters,1995,(74): 1478~1481 1995,(74):1478~1481
    [237]Senis D, Gorre_Talini L, and Allain C. Systematic study of the settling kinetics in an aggregating colloidal suspension[J].Eur.Phys.J.E4,2001,(4):59~68.
    [238]陈静,陈士才,自来水厂排泥水的静沉及浓缩试验研究,中国给水排水,2005(2):40
    [239]唐受印,戴友芝,水处理工程师手册,化学工业出版社,2000:97~111
    [240]杨世铭,陶文铨.传热学[M].2 版.北京:高等教育出版社,1988.
    [241]徐挺.相似方法及其应用.机械工业出版社,1995.
    [242]景思睿,张鸣远.流体力学[M].西安:西安交通大学出版社,2001:91-96
    [243]李之光.相似与模化理论及应用[M].北京:国防工业出版社,1982:203-213
    [244]周光炯,严宗毅等.流体力学(下册)[M].北京:高等教育出版社,2000:50-52
    [245]D.Leith,W.Licht,The collection efficiency of cyclone efficiency of cyclone-type particle collectors—a new theoretical approach, AIChE Symp.Ser.68(126)(1972)196-206
    [246]R. Grybos, Principles of Fluid Mechanics(in Polish),PWN, Warszawa, 1989
    [247]E.Muschelknautz, K.Brunner, Untersuchungen an Zyklonen, Chemie-Ing.-Tech. 39(9/10)(1967):531-538
    [248]E.Muschelknautz, Die Berechnung von Zyklonabscheidern fur Gase, ChEMIC-Ing.-Tech. 44(1/2)(1972)63-71
    [249] E.Muschelknautz, Auslegung von Zyklonabscheidern in dertechnischen Praxis, Staub Reinhalt, Luft 30 (5)(1970), 187-195
    [250]吴柏志,赵立新,蒋明虎等.水力旋流器内颗粒受力与运动分析[J].大庆石油学院院报,2005,29(6):64-66
    [251]王志斌,陈文梅,褚良银. 水利旋流器固体颗粒运动行为的分析[J].流体机械,2005,33(11):57-60
    [252]刘凡清,范德顺,黄钟. 固液分离与工业水处理[M]. 北京:中国石化出版社,2001. 210-212
    [253]倪晋仁,王光谦,张红武. 固液两相流基本理论及其最新应用.北京:科学出版社,1991. 17-29
    [254]程尚模,季中.相似理论及其在热工和化工中的应用[M].武汉:华中理工大学出版社,1990
    [255]李之光,相似与模化(理论及应用)[M].北京:国防工业出版社,1982:19-53,201-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700