用户名: 密码: 验证码:
天然纤维素纤维对油液介质的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于天然纤维具有吸油能力强、资源丰富、廉价、易得、可再生、可生物降解等优点,近年来在吸油领域的应用越来越广泛。本课题以棉纤维、木棉纤维、香蒲绒纤维和亚麻纤维为研究对象,测试评价天然纤维的吸附特性,揭示影响该类纤维吸附油液的因素,同时为纤维吸附特性测试提供方法上的指导。
     论文主要做了四个方面的工作:
     (1)纤维与不同液体的接触角测试
     利用OCA15EC光学接触角测量仪测试了棉、木棉、香蒲绒和亚麻纤维分别与水、机油、废油和色拉油的静态接触角以及油液在纤维表面的动态铺展过程。研究发现,除了亚麻纤维外,棉、木棉和香蒲绒纤维均为优良的疏水亲油性纤维,与水的静态接触角大于130.00°,与机油、废油和色拉油的静态接触角均小于60.0°;亚麻纤维表现出亲水亲油特性,其与水和3种油液的接触角均小于50.0°。研究还表明,除亚麻纤维外,棉、木棉和香蒲绒纤维与水的接触角不随时间变化,四种纤维与油液接触时,其接触角瞬间快速变化,利用指数式衰减函数得到纤维与油液的接触角随时间变化的拟合方程。
     (2)纤维表面自由能计算
     利用OCA15EC光学接触角测量仪测试了棉、木棉、香蒲绒和亚麻纤维与水、乙二醇和二碘甲烷的接触角,以几何平均接触角法为理论依据,利用测试仪器自带软件计算4种天然纤维素纤维的表面自由能及其极性和非极性分量。结果发现,4种纤维素纤维的表面自由能差异不大,均为50.00 mN/m左右,其中,棉、木棉和香蒲绒纤维表面自由能中的非极性分量远远大于极性分量,而亚麻纤维的极性分量略微大于非极性分量。
     (3)纤维吸附性能的影响因素
     利用JSM-5600LV扫描电子显微镜、Labomed光学显微镜、X射线衍射仪和索氏提取法观察测试棉、木棉、香蒲绒和亚麻纤维的形态结构、结晶度和蜡质含量,利用SNB-2数字旋转黏度计和DCAT11表面张力/动态接触角测量仪测量了粘度、表面张力等液体特性。
     研究表明,棉纤维的中腔以及纵向天然转曲,木棉纤维天然高中空结构,香蒲绒纤维内竹节结构,以及亚麻纤维表面类竹节形态及中腔结构,都为4种纤维吸附油液提供了通道和储油的空间;棉、木棉、香蒲绒和亚麻纤维的结晶度分别为68.00%、32.70%、45.41%和66.12%,香蒲绒和木棉纤维的低结晶度、大无定形区为液体能够顺利进入纤维内部提供了条件;棉、木棉、香蒲绒和亚麻纤维的蜡质含量分别为0.60%、0.80%、10.64%和2.26%,表面蜡质含量是决定纤维表面亲油疏水性的重要因素;4种纤维表面自由能中较大的非极性分量决定着其对油液有很好的吸附性;就油液介质而言,纤维与油液的接触角随着油液表面张力降低,其静态接触角不断变小,而油液在纤维表面的动态铺展速度随着油液黏度增大,铺展速度变慢。
     (4)纤维接触角测试方法比较分析
     利用OCA15EC光学接触角测量仪和DCAT11动态接触角测量仪,分别采用纤维铺片法、悬滴测量法、动态接触角测量法测试4种纤维与水、机油、废油和色拉油的接触角并对其结果进行比较分析。结果表明:三种方法均能较好地测试4种纤维与油液的接触角,但不同方法之间有一定差异,铺片法适用于各种试样,但对纤维制样要求较高,要求将纤维制成均匀的片状材料;悬滴法一般只适用于亲液性纤维,由于单根纤维较细,实验操作较困难;动态接触角测量法的稳定性较好,但此法需要知道纤维的横截面积与周长,且适用于硬度较大、横截面较规则的纤维;通过Washburn方法测试木棉纤维的毛细常数发现,木棉纤维的毛细常数变异较大,利用此方法测定纤维接触角有待近一步探讨。
The natural fibers were used widely in the field of oil adsorption for the past few years due to some advantages such as excellent oil absorption capacity, rich resources, cheap, easily obtainable, renewable, biodegradable and so on. The paper was focused on the four kinds of natural cellulose fiber such as cotton fiber, kapok fiber, cattail fiber and flax to make clear the adsorption characteristics, the effect factors, and explore the different methods to test the adsorption of the four kinds of fiber.
     The main work was including the four fields as following:
     (1) Contact angle test of the fibers to the different kinds of liquid
     The static contact angle and dynamic spread process of cotton fiber, kapok fiber, cattail fiber and flax with different kinds of liquids such as water, engine oil, used oil and vegetable oil were investigated using Optical Contact Angle Measuring Device (OCA15EC). It was found that, cotton fiber, kapok fiber, cattail fiber are the excellent oleophylic and hydrophobic fibers with the contact angle of fiber to water are more than 130.00°, but to various kinds of oil are less than 60°, flax is a hydrophilic and oleophylic fiber with the contact angle of flax to water and other three kinds of oil are less than 50.00°. In addition, the contact angle of fibers to water is the constant with the time flies except flax. All the oil liquids on the fibers have quick spreading rates, and the spread curves were similar and can be well fitted with exponential functions.
     (2) Surface free energy calculation of the kinds of fibers
     According to the theory of geometric mean contact angle method, we calculated the surface free energy as well as their polar and non-polar components of four natural cellulose fibers using the software of OCA15EC Measuring Device. It was showed that the surface free energy of four kinds of natural cellulose fibers were about 50.00 mN/m, and the polar component of cotton, kapok and cattail fibers was more larger than the non-polar component except flax, the content of polar component of flax was slightly less than non-polar component.
     (3) Influence factors of the fibers'adsorption
     The JSM-5600LV SEM, Optical Microscopy(Labomed), X-ray Diffraction, Soxhlet Extraction were used to observe and test the morphological structure, crystallinity, wax content of cotton fiber, kapok fiber, cattail fiber and flax. The Digital Spinning Viscometer(SNB-2) and Surface Tension/Dynamic Contact Angle Tester(DCAT11) were used to test characteristics of the liquids such as viscosity and surface tension.
     The analysis showed that, the structures of the natural twist and lumen of cotton, the large lumen of kapok fiber, the bamboo-like interior profile along the longitudinal section of cattail fiber, and the longitudinal bamboo joints and the lumen of flax fiber, are the important factors to determine the excellent adsorption to the different liquids. The crystallinity of cotton, kapok, cattail fiber and flax were 68.00%,32.70%,45.41% and 66.12% respectively. The smaller crystallinity, the larger amorphous area, especially for kapok and cattail fiber, are more favorable of the liquids into the fibers. The wax content of cotton fiber, kapok fiber, cattail fiber and flax fiber were 0.60%,0.80%,10.64% and 2.26% respectively, the larger amount of wax content, the more oleophylic and hydrophobic properties of fibers. The low surface free energy of the fibers was the important factor to determine the adsorption properties of fibers to different kinds of liquids. Considering the different liquids, the small surface tension and viscosity of the liquids determined the speedy spread of the liquids on the fiber surfaces.
     (4) Comparison and analysis of the test methods of contact angle of the fibers
     Based on the features of OCA15EC measuring device and DCAT11 tester, the contact angle was tested between four kinds of fiber and different liquids such as water, engine oil, used oil and vegetable oil by using plate-like method, sessile drop method and dynamic contact angle measurement. The results showed that three methods could well test the contact angle of the four kinds of fiber to different oil liquids. By contrast, plate-like method was appropriate for various samples, but sample preparation was strick in need of the fibers evenly on the glasses. Sessile drop method was generally applicable to the pro-liquid fibers, but the dimension of single fiber was fine, so it was difficult to operate. Dynamic contact angle measurement was more stable, but the method need to know the cross-sectional area and perimeter of fibers, and also this method was appropriate for the fibers that have greater hardness and regular cross-section. The capillary constant of kapok fiber was investigated by using Washburn method. It was found that the coefficient of variation of capillary constant was great, and so the Washburn method to test contact angle between kapok fiber and liquid need to be explored in the future.
引文
[1]胡涛,陈静,周素芹,李艳艳.吸油材料的应用与研究[J].内蒙古科技与经济,2006(20):97-99。
    [2]马希晨,宋辉,王春俏,聂新卫.改性纤维素合成高吸油树脂的工艺条件及吸油效果[J].大连轻工业学院学报,2003,22(4):256-258。
    [3]Antti Pasila, A Biological Oil Adsorption Filter[J]. Marine Pollution Bulletin,2004,49: 1006-1012.
    [4]Edyta Witka-Jezewska, Jan Hupka& Piotr Pieniaz ek. Investigation of Oleophilic Nature of Straw Sorbent Conditioned in Water[J]. Spill Science & Technology Bulletin,2003,8 (5-6): 561-564.
    [5]Tania H. Ribeiro, Jorge Rubio & Ross W. Smith. A Dried Hydrophobic Aquaphyte as an Oil Filter for Oil/Water Emulsions [J]. Spill Science & Technology Bulletin,2003,8(5-6): 483-489.
    [6]Asha Srinivasan, Thiruvenkatachari Viraraghavan. Removal of oil by walnut shell media [J]. Bioresource Technology,2008(99):8217-8220.
    [7]肖伟洪,王丽华,丁海新,汗青梅.天然多孔灯心草对柴油和机油的吸附实验研究[J].江西化工,2005(2):68-70。
    [8]封严,肖长发.后交联共聚甲基丙烯酸酯纤维及其吸油性[J].纺织学报,2006,27(12):14。
    [9]凌昊,沈本贤,陈新忠.熔喷聚丙稀非织造布对不同原油的吸油效果[J].油气储运,2005,24(5):24-27。
    [10]封严,肖长发.聚甲基丙烯酸酯系复合型吸油非织造布的研制[C].功能性纺织品及纳米技术研讨会,2005(5):10-13。
    [11]张建国,王世和,刘莉.含油废水处理中的长纤维填料改性研究[J].中国给水排水,2007,23(17):28-31。
    [12]陈学榕,黄彪,江茂生,唐兴平,廖益强,杨庆贤.生态型木纤维吸油材料的制备与研究[J].福州大学学报(自然科学版),2006,34(3):383-387。
    [13]唐兴平,程捷,林冠烽,林咏梅,陈燕丹.竹纤维吸油材料的制备[J].福建林学院学报,2007,27(1):57-60。
    [14]江茂生,黄彪,蔡向阳,周洪挥,祁建民.红麻杆高吸油材料吸油特性的研究[J].中国麻业科学,2007,29(6):344-348。
    [15]肖红,于伟东,施楣梧.木棉纤维的基本结构和性能[J].纺织学报,2005,26(4):4-6。
    [16]王泉泉,徐广标,王府梅.香蒲绒纤维对大豆油的吸收性能研究[J].材料导报,2009,23(14):455-456。
    [17]Maja Radetic, Vesna Ilic, Darinka Radojevic, Robert Miladinovic, Dragan Jocic, Petar Jovancic. Efficiency of Recycled Wool-based Nonwoven Material for the Removal of Oils from Water[J]. Chemosphere,2008 (70):525-530.
    [18]Onuma Carmody, Ray Frost, Yunfei Xi, Serge Kokot. Surface Characterisation of Selected Sorbent Materials for Common Hydrocarbon Fuels[J]. Surface Science,2007,601:2066-2076.
    [19]曹亚峰,刘兆丽,韩雪,崔励,李沅,马希晨.丙烯酸酯改性棉短绒高吸油性材料的研制与性能[J].精细石油化工,2004(3):20-22。
    [20]Hori Keko, Maxima E. and etal. Excellent Oil AbsorbentKapok [Ceiba pentandra (L.) Gaertn.] Fiber:Fiber Structure, Chemical Characteristics, and Application [J]. The Japan Wood Research Society,2000,46:401-404.
    [21]Khan Eakalak, Sutha Khaodhir, Paritta Rotwiron. Polycyclic Aromatic Hydrocarbon Removal from Water by Natural Fiber Sorption [J], Water Environment Research, 2007,79(8):901-911.
    [22]Lim Teik-Thye, Huang Xiaofeng. Evaluation of Kapok (Ceiba pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic-oleophilic Fibrous Sorbent for Oil SpilCleanup[J]. Chemosphere 66, (2007):955-963.
    [23]Lim Teik-Thye. In Situ Oil/water Separation Using Hydrophobic-Oleophilic Fibrous Wall:A Lab-scale Feasibility Study for Groundwater Cleanup. Journal of Hazardous Materials B137 (2006):820-826.
    [24]Huang Xiaofeng, Performance and Mechanism of a Hydrophobic-Oleophilic Kapok Filter for Oil/Water Separation. Desalination 190 (2006) 295-307.
    [25]王元庆,周美华.木棉基活性炭纤维的结构与吸附性能[J].合成纤维工业,2009,32(3):11-14。
    [26]王泉泉.香蒲绒纤维基础性能及其吸油性能研究[D].上海:东华大学纺织学院,2010。
    [27]赵兆.蒲绒纤维的结构和性能[D].上海:东华大学纺织学院,2009:21-25。
    [28]曹胜彬.香蒲绒纤维结构性能及其集合体浮力测试与评价[D].上海:东华大学纺织学院,2009。
    [29]Suni S, Kosunen A.-L, Hautala M, Pasila A, Romantschuk M.Use of a By-product of Peat Excavation, Cotton Grass Fibre,as a Sorbent for Oil-spills S. Suni et al: Marine Pollution Bulletin 49 (2004):920.
    [30]张华,冯家好,李俊,张建春.液氨处理对亚麻纤维结构与织物性能的影响[J].纺织学报,2008,29(6):68-72。
    [31]李小敏,张月梅.亚麻废料吸附剂对C02+吸附的研究[J].伊犁师范学院学报(自然科学版),2009(1):30-33。
    [32]宗炜,赵阿木,王晓蕾.亚麻织物丝光后纤维吸附性的变化[J].黑龙江纺织,2006(3):1-3。
    [33]Lim Teik-Thye, Huang Xiaofeng. Evaluation of Hydrophobicity/Oleophilicity of Kapok and Its Performance in Oily Water Filtration:Comparison of Raw and Solvent-treated Fibers [J]. Industrial Crops and Products,2007(26):125-134.
    [34]蒋秋林,赵其明.纤维接触角测定方法研究[J].合成纤维SFC,2008(5):32-35。
    [35]Carroll B J.The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume, and Laplace Excess Pressure in Drop-on-Fiber Systems[J]. Journal of Colloid and Interface Science,1976,57(3):488-495.
    [36]Yamaki Jun-Ichi, Katayama Yuzo. New Method of Contact Angle Between Monofilament and Liquid[J]. Journal of Applied Polymer Science,1975,19:2897-2909.
    [37]王宜,胡健,张英东,程小炼,罗果,李琳.液滴形状法测量纤维接触角的研究[J].合成纤维工,2004,27(2):12-14。
    [38]宋孝浜,王春霞.常压等离子射流在改善纤维和职务吸湿性能中的应用[J].毛纺科技,2006(8):22-26。
    [39]胡芳.单根纤维接触角测定技术及应用[J].造纸科学与技术,2006,25(1):34-36。
    [40]邓锐,李敏,张佐光,贾晶晶.接触角法测玄武岩及玻璃纤维表面能实验[J].北京航空航天大学学报,2007,11(33):1349-1352。
    [41]黄锋林,魏取福,徐文正.等离子体处理对丙纶纤维表面接触角的影响[J].纺织学报,2006,2(27):65-67。
    [42]金文俊,封勤华,鞠彬.低温氩等离子体改善PTT织物吸湿性的研究[J].合成纤维SFC,2010(3):22-26。
    [43]陈丽华.组织结构对吸湿排汗织物性能的影响[J].棉纺织科技,2007,5(35):261-264。
    [44]刘今强,李永强,邵建中.蚕丝织物的CF4低温等离子体表面改性研究[C].全国特种印花和特种整理学术交流会,2006:156-160。
    [45]刘文超,狄剑锋.织物润湿性能测试新方法[J].2005,5(26):1-3。
    [46]Abdullah M.A, Rahmah Anisa Ur, Man Z.Physicochemical and Sorption Characteristics of Malaysian Ceiba Pentandra Gaertn. As a Natural Oil Sorbent[J]. Journal of Hazardous Materials,2009:1-9.
    [47]李品,李忠,康忠贤,奚红霞,夏启斌.丙烯酸系树脂的吸附自由能特殊能分量对其吸附油烟性能的影响[J].化工学报,2008,59(8):2035-2040。
    [48]于伟东.纺织材料学[M].中国纺织出版社,2006:87-98。
    [49]张远超,朱定一,许少妮.高聚物表面的润湿性实验及表面张力的计算[J].科学技术与工程,2009,9(13):3595-3600。
    [50]韩玉香,韩平,王永富,岳福山.固体表面自由能及其分量的计算方法(Ⅰ)-接触法[J].辽宁师范大学学报(自然科学版).1995,18(3):214-218。
    [51]胡福增.材料的表面与界面[M],上海,华东理工大学出版社,2008:19-26。
    [52]奚新国,Pu Chen表面张力测定方法的现状与进展.盐城工学院学报(自然科学版).2008,21(3):1-4。
    [53]Wei Q.F, Mather R.R, Fotheringham A.F, Yang R.D. Evaluation of Nonwoven Polypropylene Oil Sorbents in Marine Oil-spill Recovery[J]. Marine Pollution Bulletin. 2003,46:780-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700