用户名: 密码: 验证码:
基于低温溶解制备的甲壳素新材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲壳素是自然界中储量仅次于纤维素的第二大可再生资源,是未来的主要化工原料之一,广泛存在于节肢动物外骨骼、甲壳类动物的外壳和昆虫的角质层。甲壳素是一种N-乙酰基-D-氨基葡萄糖(葡萄糖)的线性多糖,通过αβ(1→4)糖苷键连接。甲壳素具备生物相容性,生物可降解性、高亲水性、高化学活性等优点,已受到了越来越多的关注,但是由于其在一般的溶剂中很难溶解,限制了它的研究和开发。据报道,只有很少的溶剂如LiCl/DMAc和离子液体可以溶解甲壳素并且制备甲壳素材料。本工作利用我们实验室研发的新溶剂(氢氧化钠/尿素水溶液)通过冷冻-熔融溶解甲壳素,构建甲壳素功能性材料,并通过红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、动态力学分析(DMA)、流变仪、紫外-可见光谱仪(UV)、荧光光谱仪(FL)和力学性能试验等表征材料的结构和性能,并研究它们之间的构效关系,由此构建生物质基功能性材料并评价它们的应用前景。
     本工作的主要创新点如下:使用氢氧化钠/尿素水溶液低温下成功溶解甲壳素,并构建甲壳素功能性材料。如具有对重金属离子有效吸附功能的甲壳素/纤维素共混膜,具有对染料强吸附力的甲壳素水凝胶,具有对Cd~(2+)强吸附能力的Fe_3O_4磁性甲壳素微球,具有抗菌能力的Ag_2Mo_2O_7/甲壳素凝胶膜。它们将应用在农业,环境,医用等领域。
     本论文的主要研究内容和结论包括以下几部分。
     使用7wt%NaOH/12wt%尿素水溶液通过冷冻-熔融成功溶解甲壳素,得到透明的甲壳素浓溶液。将甲壳素溶液与纤维素溶液共混后制备甲壳素/纤维素共混膜。对共混膜结构和性能以及吸附功能进行了系列表征,实验结果证明该膜不仅具有良好的力学性能,还具有高效的吸附重金属离子Hg~(2+)的能力,且能再生重复使用。
     用8wt%NaOH/4wt%尿素水溶液低温溶解甲壳素,以环氧氯丙烷为交联剂制备出甲壳素水凝胶。通过系列实验表征水凝胶的结构和性能以及吸附水中的孔雀绿染料的能力。实验结果表明,该水凝胶具有较大的表面积及均匀的多孔结构,对孔雀绿染料有良好的吸附性能。
     首先用NaOH,HCl,H_2O_2对甲壳素粉末进行纯化,将纯化后的粉末溶液11wt%NaOH/4wt%尿素水溶液中通过冷冻-熔融制得高浓度的甲壳素溶液。通过溶胶-凝胶相转变制备甲壳素微球。以微球内部的微孔为微反应器,原位合成Fe_3O_4磁性纳米粒子,成功制备Fe_3O_4磁性甲壳素微球。使用该球对重金属离子Cd~(2+)进行动态吸附试验,结果表明,该球对重金属离子Cd~(2+)具有优良的吸附能力。吸附行为符合Thomas模型,即在均一表面发生单层吸附。
     配置高浓度的甲壳素溶液成功制备甲壳素凝胶膜。以膜内部的微孔为微反应器,原位合成Ag_2Mo_2O_7纳米粒子,得到Ag_2Mo_2O_7/甲壳素凝胶膜。使用该膜对大肠杆菌和金黄色葡萄球菌进行抑菌试验。结果表明Ag_2Mo_2O_7/甲壳素凝胶膜具有很强的抑菌能力,能在较短的时间内杀死大肠杆菌和金黄色葡萄球菌。
     将不同浓度的甲壳素水凝胶用于杂交油菜的育种上。甲壳素水凝胶因其较大的表面积,亲水的甲壳素分子链和均匀的多孔结构等特点,使其具有良好保水性能。对比不同浓度的培养基如琼脂凝胶及土壤,结果表明,甲壳素水凝胶中油菜种子的发芽率及其他生长参数均高于琼脂凝胶,且接近于土壤,说明甲壳素水凝胶能有效地应用在种子的无土栽培上。
     本文利用我们具有自主知识产权的甲壳素“绿色”新溶剂成功创建出各种甲壳素功能性材料,并研究了结构与性能之间的关系。成功构建出一系列甲壳素/纤维素共混膜,甲壳素水凝胶,Fe_3O_4磁性甲壳素微球,Ag_2Mo_2O_7/甲壳素凝胶膜等功能材料。这些基础研究结果为可再生资源类功能材料的设计、制备及应用提供了重要科学理论与依据,且符合可持续发展的战略。因此本论文具有重要的学术价值和应用前景。
Chitin is an abundant biomacromolecule existing in exoskeletons of crab andshrimp, and it has been first identified in1884. It is a linear polysaccharide ofN-acetyl-D-glucosamine (GlcNAc) connecting through α β(1→4) glycosidic linkage.Due to the advantages of being biocompatible, biodegradable, antibacterium andalmost non-toxic, chitin has attracted more and more attention. Chitin has beenextensively investigated as adsorbents for the removal of metal ions from wastewater,and its efficient adsorption potential can be attributed to high hydrophilicity and highchemical reactivity due to large number of functional groups. This biopolymer showsan attractive alternation for many materials because of its physico-chemicalcharacteristics, chemical stability, high reactivity, excellent chelation behavior andhigh selectivity toward pollutants. However, chitin is very difficult to dissolve incommon solvents, resulting in serious limitations in the research and development ofchitin as sorbents. Some new solvents, such as LiCl/Dimethylacetamide (DMAc)mixtures and ionic liquids have been developed to dissolve the chitin and to preparematerials. However, the costs of using these solvents are too high for practical use. Inour laboratory, a novel solvent, aqueous NaOH/urea, and a new method, which candissolve chitin to obtain a homogeneous solution have been developed. The structure,properties, and structure-activity relationship of hydrogels were characterized bydifferential scanningcalorimetry (DSC), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanningelectron microscope (SEM), thermogravimetric analysis (TGA), dynamicmechanicalanalysis (DMA), UV-visspectroscopy (UV) and mechanical testing. The correlation ofstructure to properties was researched, and biobased functional materials wereconstructed to evaluate their potential applications.
     The innovation of this work was as follows:
     chitin were successfully dissolved in NaOH/urea aqueous solution via thefreezing/thawing method to obtain a transparent chitin solution, and biobasedfunctional materials were constructed, such as chitin/cellulose blend membrane, chitinhydrogel, Fe_3O_4magnetic chitin beads, Ag_2Mo_2O_7/chitin gel-membrane, andinvestigated its application in agriculture, environment, medical and other.
     The primary content and conclusion of this work was as follows:
     Chitin/cellulose blend membranes were successfully prepared in7wt% NaOH/12wt%urea aqueous solution via a freezing/thawing method to dissolve chitin,and then by coagulating with5wt%Na2SO4to regenerate. The experimental resultsrevealed that the composite membranes exhibited efficient removing of heavy metalions (mercury, copper and lead) from aqueous solution, as a result of theirmicroporous structure, large surface area and affinity on metal ions. Moreover, thechitin/cellulose membranes could be easily regenerated. This work provided a “green”pathway for removing of the hazardous materials in wastewater.
     A chitin hydrogel with concentration3wt%(CG3) was successfully preparedfrom chitin solution dissolved in8wt%NaOH/4wt%urea aqueous system at lowtemperature by crosslinking with5wt%epichlorohydrin. The experimental resultsrevealed that CG3exhibited high efficiency to remove dye (malachite green) fromaqueous solution, as a result of their microporous structure, large surface area andaffinity on the dye. This work provided an attractive adsorbent for removing of theorganic dye ls from wastewater.
     Novel chitin magnetic beads (CM beads) were successfully prepared by in situsynthesis of Fe_3O_4nanoparticles in regenerated chitin beads to be used to packfixed-bed columns. The interpenetrated porous structure in the regenerated chitinbeads at the swollen state could serve as templates for the preparation of inorganicnanoparticles. The adsorption experiment results revealed that the CM beads exhibitedefficient adsorption of Cd~(2+)ions from the aqueous solution, as a result of theirmicroporous structure, large surface area and affinity for metal ions. The CM beadsshould have potential applications in the fields of chromatography packing andadsorbent both at the laboratory and industrial scales.
     Novel Ag_2Mo_2O_7/chitin gel-membranes were successfully prepared by in situsynthesis of Ag_2Mo_2O_7nanoparticles in regenerated chitin gel-membrane to be usedto pack fixed-bed columns. The interpenetrated porous structure in the chitingel-membrane at the swollen state could serve as templates for the preparation ofinorganic nanoparticles. The experiment results revealed that the Ag_2Mo_2O_7/chitin gelmembranes have a strong antibacterial capacity, in a short period of time to kill E. coliand Staphylococcus aureus.
     In the chitin hydrogels prepared in NaOH/urea aqueous solution via afreezing/thawing method, and then crosslinking with epichlorohydrin have beensuccessfully applied to the soilless cultivation of seeds. The large surface area,excellent hydrophilicity of chitin chains and the homogeneous microporous structure of the chitin hydrogels led to a good water uptake ability, compared with agar and soil.This work provided a new pathway for the application of the chitin hydrogels asculture mediums in seed germination and growth.
     This work developed a series of chitin based materials by using our “green”solvent system, and clarified the relationships between their structure and properties.These basic researches provided valuable information for construction, anddevelopment of biobased materials with different properties from renewable resource,and there were great scientific significance and prospects of applications. Therefore,this thesis is highly valuable for academic study and great important for a sustainabledevelopment.
引文
[1] Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: fascinating biopolymerand sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [2]张俐娜.天然高分子科学与材料.科学出版社,北京,2007.
    [3]张俐娜.天然高分子改性材料及应用.化学工业出版社,北京,2006.
    [4] Mass. W.A., Mass. A., Tighe. B. A review of biodegradable polymers: uses,current developments in the synthesis and characterization of biodegradablepolyesters. Blends of biodegradable polymers and recent advances inbiodegradation studies, Polym. Int.1998,47,89-144.
    [5] Rinaudo. M., Chitin and chitosan: properties and applications, Prog. Polym. Sci.2006,31,603-632.
    [6] Kumar. M., A review of chitin and chitosan applications, React. Funct. Polym.2000,46,1-27.
    [7] Varma. A., Deshpande. S., Kennedy. J. Metal complexation by chitosan and itsderivatives: a review, Carbohydr. Polym.2004,55,77-93.
    [8] Crini. G., Badot. P. Application of chitosan, a natural aminopolysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: areview of recent literature, Prog. Polym. Sci.2008,33,399-447.
    [9] Mourya, V.K.; Inamdar, N.N.; Chitosan-modifications and applications:opportunities galore. React Funct Polym2008,68,1013–1051.
    [10] Hirano, S.; Chitin and chitosan as novel biotechnological materials. Polym.Int.1999,48,732–734.
    [11] Chandy, T.; Sharma, C.P.; Chitosan-as a biomaterial. Biomater Artif Cells ArtifOrgans1990,18,1-24.
    [12] Paul, W.; Sharma, C.P.; Chitosan, a drug carrier for the21st century: a review.STP. Pharma. Sci.2000,10,5-22.
    [13] Pillai, C.K.S.; Paul, M.; Sharma, C.P.; Chitin and chitosan polymers: Chemistry,solubility and fiber formation. Progress in Polymer Science2009,34,641–678.
    [14] Prashanth, K.V.H.; Tharanathan, R.N.; Chitin/chitosan: modifications and theirunlimited application potential—an overview. Trends. Food. Sci. Technol.2007,18,117-131.
    [15] Muzzarelli, R.A.; Muzzarelli. C.; Chitosan chemistry: relevance to thebiomedical sciences. Adv. Polym. Sci.2005,186,151-209.
    [16] Rinaudo, M. Main properties and current applications of some polysaccharides asbiomaterials. Polym. Int.2008,57,397–430.
    [17] Kurita, K.; Chemistry and application of chitin and chitosan. Polym. Degrad.Stabil.1995,59,117–120.
    [18] Kurita, K.; Chitin and chitosan: functional biopolymers from marine crustaceans.Mar. Biotechnol.2006,8,203–226.
    [19] Hirano, S.; Chitin biotechnology applications. Biotechnol. Annu. Rev.1996,2,23725-258.
    [20] Yi, H.; Wu, L.Q.; Bentley, W.E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; et al;Biofabrication with chitosan. Biomacromolecules2005,6,2881-2894.
    [21] Rudall, K.M.; Kenchington, W.; The chitin system. Biol Rev1973,40,597-636.
    [22] Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J.;Chitosan chemistry and pharmaceutical perspectives. Chem. Rev.2004,104,6017-6084.
    [23] Khor, E.; Chitin: a biomaterial in waiting. Curr. Opin. Solid. State. Mater. Sci.2002,6,313-7.
    [24] Saito, Y.; Okano, T.;Gaill. F.; Chanzy. H.; Putaux. J.L.; Structural data on theintra-crystalline swelling of β-chitin. Int. J.Biol. Macromol.2000,28,81-88.
    [25] Saito, Y.; Putaux, J.L.; Okano, T.; Gaill, F.; Chanzy, H. Macromolecules1997,30,38673873.
    [26] Campana-Filho, S.P., De, B.D., Curti, E., Abreu, F.R., Cardoso, M.B.,Battisti,M.V., Extraction, structures and properties of α-andβ-chitin [Extracao, estruturase propriedades deα-e β-quitina].Quim. Nova.2007,30,644-50.
    [27] Urbanczyk, G.; Lipp-Symonowicz, B.; Szosland, J.; Jeziorny, A. Urbaniak-Domagala, W.; Dorau, K.; et al. Chitin filaments from dibutyrylchitinprecursor:fine structure and physical and physicochemical properties. J. Appl.Polym. Sci.1997,65,807–819.
    [28] Austin PR, Brine CJ, Castle JE, Zikakis JP. Chitin: new facets of research.Science1981,212,749-53.
    [29] Muzzarelli RAA. Chitin. Oxford: Pergamon Press;1977.
    [30] Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials2003,24,2339-49.
    [31] Muzzarelli RAA, Rocchetti R, Stanic V, Weckx M. Methods for thedetermination of the degree of acetylation of chitin and chitosan. In: MuzzarelliRAA, Peter MG, editors. Chitin handbook. Italy: Atec;1997. p.109–19.
    [32] Muzzarelli RAA. Modified chitosans and their chemical behavior. Polym Prep(Am Chem Soc Div Polym Chem)1990,31,626.
    [33] Van Luyen D, Huong D-M, Chitin, Derivatives, In Salamone JC, editors.Polymeric materials encyclopedia. Boca Raton, FL: CRC Press;1996. p.1208–17.
    [34] Hudson, S.M.; Smith, C.; Chitin and chitosan. In: Kaplan DL, editor.Biopolymers from renewable resources. Berlin: Springer;1998.
    [35] Peter MG. Chitin and chitosan from animal sources. In: De Baets S, VandammeEJ, Steinbuchel A, editors. Biopolymers: polysaccharides II. Weinheim: Wiley-VCH;2002.
    [36] Kurita K. Controlled functionalization of polysaccharide chitin. Prog. Polym. Sci.2001;26:1921–71.
    [37] Tharanathan RN, Kittur FS. Chitin-the undisputed biomolecule of great potential.Crit. Rev. Food. Sci. Nutr.2003;43:61–87.
    [38] GorochovcevaN,Makusuka R. Synthesis and study ofwater-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur. Polym. J.2004;40:685-91.
    [39] Yoshifuji A, Noishiki Y, Wada M, Heux L, Kuga S. Esterification of_-chitin viaintercalation by carboxylic anhydrides. Biomacromolecules2006;7:2878–81.
    [40] Zhang M, Ren H-X. Structural modification and application of chitosan. J. Clin.Rehabil. Tissue. Eng. Res.2007;11:9817–20.
    [41] Jayakumar R, Prabaharan M, Reis RL, Mano JF. Graft copolymerized chitosan—present status and applications. Carbohydr. Polym.2005;62:142–215.
    [42] Bade, M.F.; Structure and isolation of native animal chitins. In: Applications ofChitin and Chitosan, Goosen MFA, ed.(Lancaster, PA: Technomic Publishing) pp255–277.
    [43] Dong. Y., Xu C, Wang J, Wu Y, Wang M, Ruan Y. Influence of degreeofdeacetylation on critical concentration of chitosan/dichloroacetic acidliquid-crystalline solution. J. Appl. Polym. Sci.2002,83,1204-8.
    [44] No, H.K.; Meyers, S.P.; Preparation of chitin and chitosan. In: Chitin Handbook,Muzzarelli RAA, Peter MG, eds.(Grottammare: Atec Edizioni) pp475–489.
    [45] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin.1.Solubility change byalkaline treatment and filmcasting. Makromol. Chem.176,1191-1195.
    [46] Kurita, K.; Preparation of squid b-chitin. In: ChitinHandbook, Muzzarelli RAA,Peter MG, eds.(Grottammare:Atec Edizioni) pp491-493
    [47] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin.2.Effect ofd.eacetylation on solubility. Makromol. Chem.177,3589-3600.
    [48] Muzzarelli, R.A.A.; Chitin. Oxford: Pergamon Press,1977.
    [49] Muzzarelli, R.A.A.; Jeuniaux, C.; Gooday, G.W.; Chitin in nature andtechnology. New York: Plenum,1986. p.385.
    [50] Roberts, G.A.F.; Chitin chemistry. London: Macmillan Press, p.72.
    [51] Mayer, G.; Sarikaya, M.; Rigid biological composite materials: structuralexamples for biomimetic design. Exp. Mech.2002,42,395-403.
    [52] Muzzarelli, R.A.A.; editor. Natural chelating polymers. New York: PergamonPress,1973.
    [53] Dumitriu, S.; editor. Polysaccharides in medicinal application. New York:MarcelDekker,1996.
    [54] Vincent, J.F.V.; Wegst, U.G.K.; Design andmechanical properties of insectcuticle. Arthropod. Struct. Dev.2000,46,187–199.
    [55] Khor, E.; Chitin: fulfilling a biomaterials promise. Amsterdam: Elsevier Science,2001.
    [56] Raabe, D.; Al-Sawalmih, A.; Yi, S.B.; Fabritius, H.; Preferred crystallographictexture of α-chitin as a microscopic and macroscopic design principle of theexoskeletonof the lobster Homarus americanus. Acta Biomater2007,3,882-895.
    [57] Rudall, K.M.; Kenchington, W.; The chitin system. Biol Rev1973,40,597-636.
    [58] Tong, H.; Yao, S. N.; Study of the microstructure and the microtopography forshell of crab and lobster. J. Anal. Sci.1997,13,206.
    [59] Paralikar, K. M.; Balasubramanya, R.H.; Electron diffraction study ofalpha-chitin. J. Polym. Sci. Polym. Lett. Ed.1984,22,543–546.
    [60] Toffey, A.; Samaranayake, G.; Frazier, C.E.; Glasser, W.G.; Chitin derivatives.Kineti Chitosan of the heat-induced conversion of chitosan to chitin. J. Appl.Polym. Sci.1996,60,75–85.
    [61] Austin, P.R., US Patent3892731(1975).
    [62] Unitika Co., Ltd., Japanese Patent57139101(1982); Chem. Abstr.,98(8):55449g.
    [63] Unitika Co., Ltd., Japanese Patent57139101(1982); Chem. Abstr.,98(14):11374p.
    [64] Unitika Co., Ltd., Japanese Patent58214513(1983); Chem.100(22):180138r.
    [65] Unitika Co., Ltd., Japanese Patent58214512(1983); Chem. Abstr.,100(22):180139s.
    [66] Rutherford III, F.A., Austin, P.R., Marine chitin properties and solvents, in:R.A.A. Muzzarelli, E.R. Pariser (Eds.), Proceed-ings of the First InternationalConference on Chitin and Chitosan, Boston, MA, MIT Sea Grant Program,Cambridge,1977, p.182.
    [67] Atkins, E.D.T. Conformation in polysaccharides and complex carbohydrates. J.Biosci.1985,8,375–387.
    [68] Noishiki, Y.; Takami, H.; Nishiyama, Y.; Wada, M.; Okada, S.; Kuga, S.;Alkaliinduced conversion of β-chitin to a-chitin. Biomacromolecules2003,4,896–899.
    [69] Austin, P.R., Chitin solvents and solubility parameters, in: J.P. Zikakis (Ed.),Chitin, Chitosan and Related Enzymes, Har-court Brace Janovich, New York,1984, p.227.
    [70] Sukhanova, T.E., Sidorovich, A.V., Goryainov, G.I., Mikhailov, G.M., M.Nitterpakhova, Vysokomol. Soedin. Ser. B31(1989)381; Chem. Abstr.,111(20):175985n.
    [71] L.A. Nud’ga, Yu.G. Baklagina, G.A. Petropavlovskii, G.I. Goryainov, G.M.Mikhailov, L.A. Kopytchenko,Vysokomol. Soedin. Ser. B33(1991)864; Chem.Abstr.,116(10):85662.
    [72] P.K. Dutaa, M.N.V. Ravi Kumar, Waste utilization: chitosan fibres by directdissolution, in: Indian Chemist Convention, New Delhi, Dec.17–20,1997.
    [73] T.E. Sukhanova, A.V. Sidorovich, G.I. Goryainov, G.M Mikhailov, M.Nitterpakhova,Vysokomol. Soedin. Ser. B31(1989)381; Chem. Abstr.,111(20):175985n.
    [74] L.A. Nud’ga, Yu.G. Baklagina, G.A. Petropavlovskii, G.I.Goryainov, G.M.Mikhailov, L.A. Kopytchenko,Vysokomol. Soedin. Ser. B33(1991)864; Chem.Abstr.,116(10):85662.
    [75] P.K. Dutaa, M.N.V. Ravi Kumar, Waste utilization: chitosan fibres by directdissolution, in: Indian Chemist Convention, New Delhi, Dec.17–20,1997.
    [76] Du, J.; Hsieh, Y.L.; PEGylation of chitosan for improved solubility and fiberformation via electrospinning. Cellulose2007,14,543–552.
    [77] Kurita, K.; Mori, S.; Nishiyama, Y.; Harata, M.; N-Alkylation of chitin and somecharacteristiChitosan of the novel derivatives. Polym. Bull.2002,48,159–166.
    [78] Seoudi, R; Nada, A.M.A.; Molecular structure and dielectric properties studies ofchitin and its treated by acid, base and hypochlorite. Carbohydr. Polym.2007,68,728–733.
    [79] Kunike, G.; Chitin and chitosan. J. Soc. Dyers. Colorists.1926,42,318–342.
    [80] Weimarn, P.P.V.; Conversion of fibroin, chitin, casein, and similar substancesinto the ropy-plastic state and colloidal solution. Ind. Eng. Chem.1927,19,109–110.
    [81] Clark, G.L.; Smith, A.F.; X-ray diffraction studies of chitin, chitosan andderivatives. J. Phys. Chem.1936,40,863–879.
    [82] Vincendon, M.;1H NMR study of the chitin dissolution mechanism. Makromol.Chem.1985,186,1787–1795.
    [83] Einbu, A.; Naess, S.N.; Elgsaeter, A.; Varum, K.M.; Solution properties of chitinin alkali. Biomacromolecules2004,5,2048–2054.
    [84] Plisko, E. A.; Nud’ ga, L. A.; Danilov, S. N.; Chitin and its chemicaltransformations. Russ Chem Rev1977,46,746–774.
    [85] Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J. et al.; Solubility andproperty of chitin inNaOH/urea aqueous solution. Carbohydr. Polym.2007,70,451–458.
    [86] Brine, C. J.; Austin, P. R.; Renaturated chitin fibrils, films and filaments. In:Church, T. D.; editor. Marine chemistry in coastal environment,18. Washington,DC: ACS Symposium Series,1975. p.505.
    [87] Austin, P. R.; Solvents for and purification of chitin. US Patent3,892,731;1975and purification of chitin. US Patent3,879,377;1975.
    [88] Kifune, K.; Inome, K.; Mori, S.; Chitin fibers and process for the production ofthe same. US Patent4,932,404,1990.
    [89] Kifune, K.; Inome, K.; Mori S.; Process for the production of chitin fibers, USPatent4,431,601,1984.
    [90] Tokura, S.; Seo, H.; Manufacture of chitosan fiber and film, Japanese Patent59116418;1984.
    [91] Unitika Co. Ltd. Chitin powder and its production. Japanese Patent57139101,1982.
    [92] Unitika Co. Ltd. Prodcution of chitin yarn. Japanese Patent58214513,1983.
    [93] Unitika Co. Ltd. Prodcution of chitin yarn. Japanese Patent58214512,1983.
    [94] Tokura, S.; Nishi, N.; Noguchi, J.; Studies on chitin III: preparation of chitinfibers. Polym J (Tokyo)1979,11,781–796.
    [95] Tamura, H.; Hamaguchi, T.; Tokura, S.; Destruction of rigid crystalline structureto prepare chitin solution. In: Boucher, I.; Jamieson, K.; Retnakaran, A. editors.;Advances in chitin science, proceedings of the ninth international conference onchitin and chitosan. Montreal:European Chitin Society2004. p.84–7.
    [96] Carpozza, R.C.; Spinning and shaping poly-(N-acetyl-d-glucosamine). US Patent3,988,411,1976.
    [97] Capozza, R.C.; Solution of poly-(N-acetyl-d-glucosamine). US Patent3,989,535,1976.
    [98] Hirano, S.; Usutani. A.; Midorikawa. T.; Novel fibers of N-acyl chitosan and itscellulose composite prepared by spinning their aqueous xanthate solutions.Carbohydr. Polym.1979,33,1–4.
    [99] Thor, C.J.B.; Henderson, W.F.; Chitin xanthate and regenerated chitin. Am. Dye.Report.1940,29,489–491.
    [100] Van Nimmen, E.; Gellynck, K.; Van Langenhove, L.; Mertens, J.; The tensileproperties of cocoon silk of the spider Araneus diadematus. Text. Res. J.2006,76,619–628.
    [101] Rathke, T.D.; Hudson, S.M.; Review of chitin and chitosan as fiber and filmformers. Polym. Rev.1994,34,375–437.
    [102] Sankararamakrishnan, N.; Sanghi, R.; Preparation and characterization of anovel xanthated chitosan. Carbohydr. Polym.2006,66,160–167.
    [103] Joffe, I.; Hepburn, H. R.; Observations on regenerated chitin films. J. Mater. Sci.1973,8,1751–1754.
    [104] Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules.2006,7,183–189.
    [105] Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.;Cheng, H.; Han, C.; Kuga. S. Dynamic Self-Assembly Induced Rapid Dissolutionof Cellulose at Low Temperatures, Macromolecules.2008,41,9345-9351.
    [106] Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradabletransparent and photoluminescent cellulose films prepared via a green process,Green. Chem.2009,11,177–184.
    [107] Qi, H.; Chang, C.; Zhang, L. Effects of temperature and molecular weight ondissolution of cellulose in NaOH/urea aqueous solution, Cellulose.2008,15,779–787.
    [108] Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolutionof chitin at low temperature: structure and biocompatibility, J. Mater. Chem.2011,21,3865–3871.
    [109] Terbojevich, M.; Carraro, C.; Cosani, A.; Solution studies of the chitin–lithiumchloride–N,N-dimethylacetamide system. Carbohydr. Res.1988,180,73–86.
    [110] Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery: Progress andchallenges.Polymer2008,49,1993-2007.
    [111] Nishimura, S.; Kai, H.; Shinada, K.; Yoshida, T.; Tokura, S.; Kurita, K.;Nakashima, H.; Yamamoto, N.; Uryu, T.; Regioselective syntheses of sulfatedpolysaccharides: specific anti-HIV-1activity of novel chitin sulfates.Carbohydr.Res.306,427–433.
    [112] Vinatier, C.; Gauthier, O.; Fatimi, A.; Merceron, C.; Masson, M.; Moreau, A.An injectable cellulose-based hydrogel for the transfer of autologousnasalchondrocytesin articular cartilage defects. Biotechnol. Bioeng.2009,102,1259-1267.
    [113] Luo, X.; Zhang, L. High effective adsorption of organic dyes on magneticcellulose beads entrapping activated carbon. J. Hazard. Mater.2009,1-3,340-347.
    [114] Poirier, M.; Charlet, G.; Chitin fractionation and characterization inN,N-methylacetamide/lithium chloride solvent system. Carbohydr. Polym.2002,50,363–370.
    [115] Tamura, H.; Dissolution of chitin in calcium chloride solvent system. Polym.Prep. Jpn.2006,55,1862.
    [116] Tamura, H.; Sawada, M.; Nagahama, H.; Higuchi, T.; Tokura, S.; Influence ofamide content on the crystal structure of chitin. Holzforschung2006,60,480–484.
    [117] Cho, Y.W.; Jang, J.; Park, C.R.; Ko, S.W.; Preparation and solubility in acidand water of partially deacetylated chitins. Biomacromolecules2000,1,609–614.
    [118] Rinaudo, M.; Pavlov, G.; Desbrieres, J.; Influence of acetic acid concentrationon the solubilization of chitosan. Polymer1999,40,7029–7032.
    [119] Rinaudo, M.; Pavlov, G.; Desbrieres, J.; Solubilization of chitosan in strongacid medium. Int. J. Polym. Anal. Charact.1999,5,267–276.
    [120] Kim, K.M.; Son, J.H.; Kim, S.K.; Weller, C.L.; Hanna, M.A.; Properties ofchitosan films as a function of pH and solvent type. J. Food. Sci.2006,71, E119–124.
    [121] Kienzle-Sterzer, C.A.; Rodriguez-Sanchez, D.; Ma, C.; Dilute solution behaviorof a cationic polyelectrolyte. J. Appl. Polym. Sci.1982,27,4467–4470.
    [122] Kurita, K.; Kamiya, M.; Nishimura, S.I.; Solubilization of a rigidpolysaccharide controlled partial N-acetylation of chitosan to develop solubility.Carbohydr. Polym.1991,16,83–92.
    [123] Mima, S.; Miya, M.; Iwamoto, R.; Yoshikawa, S.; Highly Deacetylated chitosanand its properties. J. Appl. Polym. Sci.1983,28,1909–1917.
    [124] Kubota, N.; Eguchi, Y.; Facile preparation of water-soluble Nacetylatedchitosan and molecular weight dependence of its water-solubility. Polym. J.1997,29,123–127.
    [125] Bianchi, E.; Marsano, E.; Baldini, M.; Conio, G.; Tealdi, A.; Chitin-celluloseblends: phase properties in dimethylacetamide–LiCl. Polym. Adv. Technol.1995,6,727–732.
    [126] Williamson, S.L.; McCormick, C.L.; Novel semi-interpenetrating networks ofcellulose and chitin utilizing9%LiCl/N,Ndimethylacetamide solvent system.Polym Prep (Am Chem Soc Div Polym Chem)1996,37,510–511.
    [127] Marsano, E.; Conio, G.; Martino, R.; Turturro, A.; Bianchi, E.; Fibers based oncellulose–chitin blends. J. Appl. Polym. Sci.2002,83,1825–1831.
    [128] Tamura, H.; Dissolution of chitin in calcium chloride solvent system. Polym.Prep. Jpn.2006,55,1862.
    [129] Poirier, M.; Charlet, G.; Chitin fractionation and characterization inN,N-methylacetamide/lithium chloride solvent system. Carbohydr. Polym.2002,50,363–370.
    [130] Cho, Y.W.; Jang, J.; Park, C.R.; Ko, S.W.; Preparation and solubility in acidand water of partially deacetylated chitins. Biomacromolecules2000,1,609–614.
    [131] Tamura, H.; Sawada, M.; Nagahama, H.; Higuchi, T.; Tokura, S.; Influence ofamide content on the crystal structure of chitin. Holzforschung2006,60,480–484.
    [132] Rinaudo, M.; Pavlov, G.; Desbrieres, J.; Influence of acetic acid concentrationon the solubilization of chitosan. Polymer1999,40,7029–7032.
    [133] Kim, K.M.; Son, J.H.; Kim, S.K.; Weller, C.L.; Hanna, M.A.; Properties ofchitosan films as a function of pH and solvent type. J. Food. Sci.2006,71, E119–124.
    [134] Rinaudo, M.; Pavlov, G.; Desbrieres, J.; Solubilization of chitosan in strongacid medium. Int. J. Polym. Anal. Charact.1999,5,267–276.
    [135] Kienzle-Sterzer, C.A.; Rodriguez-Sanchez, D.; Ma, C.; Dilute solution behaviorof a cationic polyelectrolyte. J. Appl. Polym. Sci.1982,27,4467–4470.
    [136] Kurita, K.; Kamiya, M.; Nishimura, S.I.; Solubilization of a rigidpolysaccharide controlled partial N-acetylation of chitosan to develop solubility.Carbohydr. Polym.1991,16,83–92.
    [137] Mima, S.; Miya, M.; Iwamoto, R.; Yoshikawa, S.; Highly Deacetylated chitosanand its properties. J. Appl. Polym. Sci.1983,28,1909–1917.
    [138] Kubota, N.; Eguchi, Y.; Facile preparation of water-soluble Nacetylatedchitosan and molecular weight dependence of its water-solubility. Polym. J.1997,29,123–127.
    [139] Schiffman, J. D.; Schauer, C. L.; Cross-linking chitosan nanofibers.Biomacromolecules2007,8,594–601.
    [140] Guo, X.F.; Kazuaki, K.; Yoshiharu, M.; Kazuo, S.; Kozo, O.; Watersolublechitin of low degree of deacetylation. J. Carbohydr. Chem.2002,21,149–161.
    [141] Zhang, H.; Neau, S.H.; In vitro degradation of chitosan by a commercialenzyme preparation: effect of molecular weight and degree of deacetylation.Biomaterials2001,22,1653–1658.
    [142] Zhou, H.Y.; Chen, X.G.; Kong, M.; Liu, C.S.; Cha, D.S.; Kennedy, J.F.; Effectof molecular weight and degree of chitosan deacetylation on the preparation andcharacteristiChitosan of chitosan thermosensitive hydrogel as a delivery system.Carbohydr. Polym.2008,73,265–273.
    [143] Chatelet, C.; Damour, O.; Domard, A.; Influence of the degree of acetylation onsome biological properties of chitosan films. Biomaterials2001,22,261–268.
    [144] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin1. Solubility change byalkaline treatment and film casting. Makromol. Chem.1975,176,1191–1195.
    [145] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin2. Effect of deacetylationon solubility. Makromol. Chem.1976,177,3589–3600.
    [146] Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N.; Rheologicalcharacterization of thermogelling chitosan/glycerol-phosphate solutions.Carbohydr. Polym.2001,46,39–47.
    [147] Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann,C.D. et al.; Novel injectable neutral solutions of chitosan form biodegradable gelsin situ. Biomaterials2000,21,2155–2161.
    [148] Cho, J.; Heuzey, M.C.; Beguin, A.; Carreau, P.J.; Physical gelation of chitosanin the presence of b-glycerophosphate: the effect of temperature.Biomacromolecules2005,6,3267–3275.
    [149] Dung, P.; Milas, M.; Rinaudo, M.; Desbrières, J.; Water-soluble derivativesobtained by controlled chemical modifications of chitosan. Carbohydr. Polym.1994,24,209–214.
    [150] Morimoto, M.; Saimoto, H.; Shigemasa, Y.; Control of functions of chitin andchitosan by chemical modification. Trends. Glycosci. Glycotechnol.2002,14,205–222.
    [151] Schiffman, J. D.; Schauer, C. L.; Cross-linking chitosan nanofibers.Biomacromolecules2007,8,594–601.
    [152] Zhang, H.; Neau, S.H.; In vitro degradation of chitosan by a commercialenzyme preparation: effect of molecular weight and degree of deacetylation.Biomaterials2001,22,1653–1658.
    [153] Guo, X.F.; Kazuaki, K.; Yoshiharu, M.; Kazuo, S.; Kozo, O.; Watersolublechitin of low degree of deacetylation. J. Carbohydr. Chem.2002,21,149–161.
    [154] Zhou, H.Y.; Chen, X.G.; Kong, M.; Liu, C.S.; Cha, D.S.; Kennedy, J.F.; Effectof molecular weight and degree of chitosan deacetylation on the preparation andcharacteristiChitosan of chitosan thermosensitive hydrogel as a delivery system.Carbohydr. Polym.2008,73,265–273.
    [155] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin1. Solubility change byalkaline treatment and film casting. Makromol. Chem.1975,176,1191–1195.
    [156] Chatelet, C.; Damour, O.; Domard, A.; Influence of the degree of acetylation onsome biological properties of chitosan films. Biomaterials2001,22,261–268.
    [157] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin2. Effect of deacetylationon solubility. Makromol. Chem.1976,177,3589–3600.
    [158] Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.D.; Hoemann,C.D. et al.; Novel injectable neutral solutions of chitosan form biodegradable gelsin situ. Biomaterials2000,21,2155–2161.
    [159] Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N.; Rheologicalcharacterization of thermogelling chitosan/glycerol-phosphate solutions.Carbohydr. Polym.2001,46,39–47.
    [160] Morimoto, M.; Saimoto, H.; Shigemasa, Y.; Control of functions of chitin andchitosan by chemical modification. Trends. Glycosci. Glycotechnol.2002,14,205–222.
    [161] Zhang, C.; Ping, Q.; Zhang, H.; Shen, J.; Synthesis and characterization ofwater-soluble O-succinyl-chitosan. Eur. Polym. J.2003,39,1629–1634.
    [162] Santhosh, S.; Mathew, P.T.; Preparation and properties of glucosamine andcarboxymethylchitin from shrimp shell. J. Appl. Polym. Sci.2008,107,280–285.
    [163] Muzzarelli, R.A.A.; Delben, F.; Tomasetti, M.; Agro-Food Ind High Tech1994,5,35.
    [164] Muzzarelli, R.A.A.; Ilari, P.; Petrarulo, M.; Solubility and structure ofN-carboxymethyl chitosan. Int. J. Biol. Macromol.1994,16,177–180.
    [165] Xie, Y.; Liu, X.; Chen, Q.; Synthesis and characterization of water-solublechitosan derivate and its antibacterial activity. Carbohydr. Polym.2007,69,142–147.
    [166] Yalpani, M.; Hall, L.D.; Tung, M.A.; Brooks, D.E.; Unusual rheology of abranched, water soluble chitosan derivative. Nature302,812–814.
    [167] Park, J.H.; Cho, Y.W.; Chung, H.; Kwon, I.C.; Jeong, S.Y.; Synthesis andcharacterization of sugar-bearing chitosan derivatives: aqueous solubility andbiodegradability. Biomacromolecules2003,4,1087–1091.
    [168] Szosland, L.; A simple method for the production of chitin materials from thechitin ester derivatives. In: Domard, A.; Jeauniaux, C.; Muzzarelli, R.A.A.;Roberts, G.; editors.; Advances in chitin science,1.Lyon: Jacques Andre Publisher,European Chitin Society;1996, p.297–302.
    [169] Szosland L, Pielka S, Paluch D, Staniszewska-Kus J, Zywicka B, Solski L, et al.Biological properties of dibutyrylchitin and regenerated chitin. Agro. Food.Ind.Hi-Tech.2003,14,5,43–45.
    [170] Szosland, L; Janowska, G.; Method of preparation of dibutyrylchitin. Patent PL169077B1,1996.
    [171] Carlstrom, D.; The crystal structure of α-chitin (poly-N-acetyl-dglucosamine). J.Biophys. Biochem. Cytol.1957,3,669–683.
    [172] Hirano, S.; Tokura, S.; editors. Chitin and chitosan. Tottori, Japan: JapaneseSociety of Chitin and chitosan;1982.
    [173] W ochowicz, A.; Szosland, L.; Binias, D.; Szumilewicz, J.; Crystallinestructure and mechanical properties of wet-spun dibutyrylchitin fibers andproducts of their alkaline treatment. J. Appl. Polym. Sci.2004,94,1861–1868.
    [174] Szosland, L.; Synthesis of highly substituted butyryl chitin in the presence ofperchloric acid. J. Bioact. Compat. Polym.1996,11,61–71.
    [175] Vikhoreva, G.A.; Gorbacheva, I.N.; Synthesis and properties of water-solublederivatives of chitin: a review. Fiber. Chem.1999,31,573.
    [176] Binias, D.; Wyszomirski, M.; Binias, W.; Boryniec, S.; Supermolecularstructure of chitin and its derivatives in FTIR spectroscopy studies. Polish ChitinSociety, Monograph2007,12,95–107.
    [177] Liu, Y.; Liu, Z.; Pan, W.; Wu, Q.; Absorption behaviors and structure changesof chitin in alkali solution. Carbohydr. Polym.2008,72,235–239.
    [178] Guo, F.; Kikuchi, K.; Matahira Y, Sakai, K.; Ogawa, K.; Water-soluble chitinof low degree of deacetylation. J. Carbohydr. Chem.2002,21,149–161.
    [179] Hirano, S.; Nakahira, T.; Zhang, M.; Nakagawa, M.; Yoshikawa, M.;Midorikawa, T.; Wet-spun blend biofibers of cellulose-silk fibroin andcellulose-chitin-silk fibroin. Carbohydr. Polym.2002,47,121–124.
    [180] Thierry, B.; Winnik, F.M.; Merhi, Y.; Silver, J.; Tabrizian, M.; Bioactivecoatings of endovascular stents based on polyelectrolyte multilayers.Biomacromolecules4,1564–1571.
    [181] Domard, A.; Rinaudo, M.; Terrassin, C.; New method for the quaternisation ofchitosan. Int. J. Biol. Macromol.,8,105–107.
    [182] Thierry, B.; Winnik, F.M.; Merhi, Y.; Tabrizian, M.; Nanocoatings onto arteriesvia layer-by-layer deposition: toward the in vivo repair of damaged blood vessels.J. Am. Chem. Soc.125,7494–7495.
    [183] Danielsen, S.; Stokke, B.; Structural analysis of chitosan mediated DNAcondensation by AFM: influence of chitosan molecular parameters.Biomacromolecules5,928–936.
    [1] Fontela, M.; Galceran, M.; Ventura, F. Stimulatory drugs of abuse in surface watersand their removal in a conventional drinking water treatment plant, Environ. Sci.Technol.2008,42,6809–6816.
    [2] Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Shah, I. Mechanism of Cd (II)sorption on silica synthesized by sol–gel method, Chem. Eng. J.2011,169,78–83.
    [3] Huang, X.; Sillanpa¨a¨, M.; Duo, B.; Gjessing, E. Water quality in the Tibetan Plateau:Metal contents of four selected rivers, Environ. Pollut.2008,156,270–277.
    [4] Repo, E.; Warchol, J.; Kurniawan, T.; Sillanpa¨a¨, M. Adsorption of Co(II) and Ni(II)by EDTA-and/or DTPA-modified chitosan: Kinetic and equilibrium modeling, Chem.Eng. J.2010,161,73–82.
    [5] Chen, H.; He, J. Facile synthesis of monodisperse manganese oxide nanostructuresand their application in water treatment, J. Phys. Chem. C.2008,112,17540–17545.
    [6] Huang, H.; Schwab, K.; Jacangelo, J. Pretreatment for low pressure membranes inwater treatment: a review, Environ. Sci. Technol.2009,42,3011–3019.
    [7] Ghosh, D., Bhattacharyya, K. Adsorption of methylene blue on kaolinite, Appl.Clay. Sci.2002,20,295–300.
    [8] Zhou, D.; Zhang, L.; Guo, S. Mechanisms of lead biosorption on cellulose/chitinbeads, Water. Res.2005,39,3755–3762.
    [9] Haider, S.; Park, S. Preparation of the electrospun chitosan nanofibers and theirapplications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution,J. Membrane. Sci.2009,328,90–96.
    [10] Gunten, U., Ozonation of drinking water: PartI. Oxidation kinetics and productformation, Water. Res.2003,37,1443–1467.
    [11] Steenkamp, G.; Keizer, K.; Neomagus, H.; Krieg, H. Copper(II) removal frompolluted water with alumina/chitosan composite membranes, J. Membrane. Sci.2002,197,147–156.
    [12] Reddad, Z.; Gérente, C.; Andrès, Y.; Thibault, J.; Cloirec, P. Cadmium and leadadsorption by a natural polysaccharide in MF membrane reactor: experimentalanalysis and modelling, Water. Res.2003,37,3983–3991.
    [13] Beppu, M.; Arruda, E.; Vieira, R.; Santos, N. Adsorption of Cu(II) on porouschitosan membranes functionalized with histidine, J. Membrane. Sci.2004,240,227–235.
    [14] Kobayashi, S.; Makino, A.; Matsumoto, H.; Kunii, S.; Ohmae, M.; Kiyosada, T.;Makiguchi, K.; Matsumoto, A.; Horie, M.; Shoda, S-I. Enzymatic polymerization tonovel polysaccharides having a glucose-N-acetylglucosamine repeating unit, acellulose-chitin hybrid polysaccharide, Biomacromolecules.2006,7,1644–1656.
    [15] Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of chitin nanofibersand their transparent nanocomposite films, Biomacromolecules.2010,11,1326–1330.
    [16] Bhatnagar, A.; Sillanp, M. Applications of chitin-and chitosan-derivatives for thedetoxification of water and wastewater-A short review, Adv. Colloid. Interfac.2009,152,26–38.
    [17] Tuzen, M.; Sar, A. Biosorption of selenium from aqueous solution by green algae(Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies,Chem. Eng. J.2010,158,200–206.
    [18] Volesky, B. Detoxification of metal-bearing effluents: biosorption for the nextcentury, Hydrometallurgy.2001,59,203–216.
    [19] Aryal, M.; Ziagova, M.; Liakopoulou-Kyriakides, M. Comparison of Cr(VI) andAs(V) removal in single and binary mixtures with Fe(III)-treated Staphylococcusxylosus biomass: Thermodynamic studies, Chem. Eng. J.2011,169,100–106.
    [20] Niu, L.; Deng, S.; Yu, G.; Huang, J. Efficient removal of Cu(II), Pb(II), Cr(VI) andAs(V) from aqueous solution using an aminated resin prepared by surface-initiated,Chem. Eng. J.2010,165,751–757.
    [21] Rinaudo, M. Chitin and chitosan: properties and applications, Prog. Polym. Sci.2006,31,603–632.
    [22] Jeon, C.; H ll, W. Application of the surface complexation model to heavy metalsorption equilibria onto aminated chitosan, Hydrometallurgy.2004,71,421–428.
    [23] Crini, G. Recent developments in polysaccharide-based materials used asadsorbents in wastewater treatment, Prog. Polym. Sci.2005,30,38–70.
    [24] Kumar, M. A review of chitin and chitosan applications, React. Funct. Polym.2000,46,1–27.
    [25] Varma, A.; Deshpande, S.; Kennedy, J. Metal complexation by chitosan and itsderivatives: a review, Carbohyd. Polym.2004,55,77–93.
    [26] Crini, G.; Badot, P. Application of chitosan, a natural aminopolysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: Areview of recent literature, Prog. Polym. Sci.2008,33,399–447.
    [27] Kousalya, G.; Gandhi, M.; Sundaram, C.; Meenakshi, S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III).Carbohyd. Polym.2010,82,594–599.
    [28] Zhou, D.; Zhang, L.; Zhou, J.; Guo, S. Cellulose/chitin beads for adsorption of heavymetals in aqueous solution, Water. Res.2004,38,2643–2650.
    [29] Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution ofcellulose with ionic liquids and its application: a mini-review, Green. Chem.2006,8,325–327.
    [30] Malika, M.; Hashima, M.; Nabib, F. Ionic liquids in supported liquid membranetechnology, Chem. Eng. J.2011,171,242–254.
    [31] Cao, Y.; Wu, J.; Zhang, J.; Li, H.; Zhang, Y.; He, J. Room temperature ionic liquids(RTILs): A new and versatile platform for cellulose processing and derivatization,Chem. Eng. J.2009,147,13–21.
    [32] Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules.2006,7,183–189.
    [33] Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.;Cheng, H.; Han, C.; Kuga. S. Dynamic Self-Assembly Induced Rapid Dissolutionof Cellulose at Low Temperatures, Macromolecules.2008,41,9345-9351.
    [34] Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradabletransparent and photoluminescent cellulose films prepared via a green process,Green. Chem.2009,11,177–184.
    [35] Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.;Cheng, H.; Han, C.; Kuga. S. Dynamic Self-Assembly Induced Rapid Dissolution ofCellulose at Low Temperatures, Macromolecules.2008,41,9345-9351.
    [36] Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolution ofchitin at low temperature: structure and biocompatibility, J. Mater. Chem.2011,21,3865–3871.
    [37] Qi, H.; Chang, C.; Zhang, L. Effects of temperature and molecular weight ondissolution of cellulose in NaOH/urea aqueous solution, Cellulose.2008,15,779–787.
    [38] Zhang, L.; Yang, G.; Xiao, L. Blend membranes of cellulose cuoxam/casein, J.Membrane. Sci.1995,103,65–71.
    [39] Bayramoglu, G.; Denizli, A.; Bektas, S.; Arica, M.Y. Entrapment of Lentinussajorcaju into Ca-alginate gel beads for removal of Cd(II) ions from aqueoussolution: preparation and biosorption kinetics analysis, Microchem. J.2002,72,63–67.
    [40] Luo, X., Zhang, L. High effective adsorption of organic dyes on magnetic cellulosebeads entrapping activated carbon, J. Hazard. Mater.2009,171,340–347.
    [41] Liu, S.; Zhang, L. Effects of polymer concentration and coagulation temperature onthe properties of regenerated cellulose films prepared from LiOH/urea solution,Cellulose2009,16,189–198.
    [42] Wada, M.; Saito, Y. Lateral Thermal Expansion of Chitin Crystals, J. Polym. Sci. Pol.Phys.2001,39,168–174.
    [43] Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, Academic Press,San Diego,1982, pp.121–172.
    [44] Yu, J.G.; Liu, S.W.; Yu, H.G. Microstructures and photoactivity of mesoporousanatase hollow microspheres fabricated by fluoride-mediated selftransformation, J.Catal.2007,249,59–66.
    [45] Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review, Sep.Purif. Technol.2004,38,43–74.
    [46] Qu, R.; Sun, C.; Ma, F.; Zhang, Y.; Ji, C.; Xu, Q.; Wang, C.; Chen, H. Removal andrecovery of Hg(II) from aqueous solution using chitosan-coated cotton fibers, J.Hazard. Mater.2009,167,717–727.
    [47] Chantawong, V.; Harvey, N.; Bashkin, V. Comparison of heavy metal adsorption byThai kaolin and ballclay, Water. Air. Soil. Pol1.2003,48,111–125.
    [48] Jang, L.; Nguyen, D.; Geesey, G. An equilibrium model for absorption of multipledivalent metals by alginate gel under acidic conditions, Water. Res.1999,33,2826–2832.
    [49] Yang, J.; volesky, B. L. Modeling uranium-proton ion exchange in biosorption,Environ. Sci. Technol.1999,33,4079–4085.
    [50] Gerentea, C.; Lee, V. K. C.; Cloirec, P. Le.; McKay, G. Application of chitosan forthe removal of metals from wastewaters by adsorption-mechanisms and modelsreview, Crit. Rev. Environ. Sci. Technol.2007,37,41–127.
    [51] Shareef, K. Sorbents for contaminants uptake from aqueous solutions. PartⅠ: heavymetals, World J. Agric. Sci.2009,5,819–831.
    [52] Dong, J.; Ozaki, Y. FTIR and FT-Raman studies of partially miscible Poly(methylmethacrylate)/Poly(4-vinylphenol) blends in solid states, Macromolecules.1997,30,286–292.
    [1] Zhou, L.; Gao, C.; Xu, W. Magnetic dendritic materials for highly efficientadsorption of dyes and drugs, Acs. Appl. Mater. Inter.2010,2,1483–1491.
    [2] Blackburn, R. Natural polysaccharides and their interactions with dye molecules:applications in effluent treatment, Environ. Sci. Technol.2004,38,4905–4909.
    [3] Bek i, Z.; zveri, C.; Seki, Y.; Yurdako, K.; Sorption of malachite green onchitosan bead, J. Hazard. Mater.2008,154,254–261.
    [4] Shi, B.; Li, G.; Wang, D.; Feng, C.; Tang, H.; Removal of direct dyes bycoagulation: The performance of preformed polymeric aluminum species, J.Hazard. Mater.2007,143,567–574.
    [5] Lee, J.; Choi, S.; Thiruvenkatacharib, R.; Shim, W.; Moon, H.; Submergedmicrofiltration membrane coupled with alum coagulation/powdered activatedcarbon adsorption for complete decolorization of reactive dyes. Water. Res.2006,40,435–444.
    [6] Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S.; Adsorption and desorptionkinetics of anionic dyes on doped polyaniline, J. Phys. Chem. B.2009,113,2293–2299.
    [7] Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S.; Adsorption of sulfonateddyes by polyaniline emeraldine salt and its kinetics, J. Phys. Chem. B.2008,112,10153–10157.
    [8] Chen, W.; Lu, W.; Yao, Y.; Xu, M.; Highly Efficient decomposition of organicdyes by aqueous-fiber phase transfer and in situ catalytic oxidation usingfiber-supported cobalt phthalocyanine, Environ. Sci. Technol.2007,41,6240–6245.
    [9] Wong, Y.; Szeto, Y.; Cheung, W.; McKay, G.; Equilibrium studies for acid dyeadsorption onto chitosan, Langmuir.2003,19,7888–7894.
    [10] Fernández, J.; Kiwi, J.; Lizama, J.; Freer, J.; Baeza, J.; Mansilla, H.; Factorialexperimental design of orange II photocatalytic discolouration, J. Photoch.Photobio. A,2002,151,213–219.
    [11] Tahir, S.; Rauf, N.; Removal of a cationic dye from aqueous solutions byadsorption onto bentonite clay, Chemosphere.2006,63,1842–1848.
    [12] Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H.; Acetylation of chitinnanofibers and their transparent nanocomposite films, Biomacromolecules.2010,11,1326–1330.
    [13] Rathke, T.D.; Hudson, S.M.; Review of chitin and chitosan as fiber and filmformers. Polym. Rev.1994,34,375–437.
    [14] Chang, C.; Peng, J.; Zhang, L.; Pang, D.; Strongly fluorescent hydrogels withquantum dots embedded in cellulose matrices, J. Mater. Chem.2009,19,7771–7776.
    [15] Crini, G.; Recent developments in polysaccharide-based materials used asadsorbents in wastewater treatment, Prog. Polym. Sci.2005,30,38–70.
    [16] Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.;Cheng, H.; Han, C.; Kuga, S.; Dynamic self-assembly induced rapid dissolution ofcellulose at low temperatures, Macromolecules.2008,41,9345–9351.
    [17] Chang, C.; Duan, B.; Zhang, L.; Fabrication and characterization of novelmacroporous cellulose–alginate hydrogels, Polymer,2009,50,5467-5473.
    [18] Chang, C.; Chen, S.; Zhang, L.; Novel hydrogels prepared via direct dissolutionof chitin at low temperature: structure and biocompatibility, J. Mater. Chem.2011,21,3865–3871.
    [19] Sikorski, P.; Hori, R.; Wada, M.; Revisit of α-chitin crystal structure using highresolution X-ray diffraction data, Biomacromolecules.2009,10,1100–1105.
    [20] Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano,H.; Preparation of chitin nanofibers with a uniform width as α-chitin from crabshells, Biomacromolecules.2009,10,1584–1588.
    [21] Samiey, B.; Toosi, A.; Adsorption of malachite green on silica gel: Effects ofNaCl, pH and2-propanol, J. Hazard. Mater.2010,184,739–745.
    [22] Samiey, B.; Dargahi, M.; Kinetics of brilliant green fading in the presence ofTX-100, DTAB and SDS, Reac. Kinet. Mech. Cat.2010,101,25–39.
    [23] Noroozi, B., Sorial, G.; Bahrami, H.; Arami, M.; Equilibrium and kineticadsorption study of a cationic dye by a natural adsorbent-Silkworm pupa, J.Hazard. Mater. B.;2007,139,167–174.
    [24] Samiey, B.; Raoof Toosi, A.; Kinetics of malachite green fading in thepresence of TX-100, DTAB and SDS, Bull. Korean Chem. Soc.2009,30,2051–2056.
    [25] Samiey, B.; Toosi, A.; Kinetics of malachite green fading in alcohol–waterbinary mixtures, Int. J. Chem. Kinet.2010,42,508–518.
    [26] Baumann, E.; Colorimetric determination of low pH with malachite green,Talanta,1995,42,457–462.
    [27] Rodríguez, A.; Ovejero, G.; Mestanza, M.; García, J.; Removal of dyes fromwastewaters by adsorption on sepiolite and pansil. Ind. Eng. Chem. Res.2010,49,3207–3216.
    [28] Bayramoglu, G.; Denizli, A.; Bektas, S.; Arica, M.; Entrapment of lentinussajorcaju into ca-alginate gel beads for removal of Cd(II) ions from aqueoussolution: preparation and biosorption kinetics analysis, Microchem. J.2002,72,63–67.
    [29] Samiey, B.; Dargahi, M.; Kinetics and thermodynamics of adsorption of congored on cellulose, Cent. Eur. J. Chem.2010,8,906–912.
    [30] Sulak, M.; Demirbas, E.; Kobya, M.; Removal of astrazon yellow7GL fromaqueous solutions by adsorption onto wheat bran. Bioresource. Technol.2007,98,2590–2598.
    [31] Mohan, S.; Rao, N.; Kartikeyan, J.; Adsorptive removal of direct azo dye fromaqueous phase onto coal based sorbents: a kinetic and mechanistic study, J.Hazard. Mater. B2002,90,189–204.
    [32] Ho, Y.; McKay, G.; Sorption of dye from aqueous solution by peat, Chem. Eng. J.1998,70,115–124.
    [33] zcan, A.; zcan, A. Adsorption of acid dyes from aqueous solution ontoacid-activated bentonite, J. Colloid. Interface. Sci.2004,276,39–46.
    [34] Kiran, I.; Akar, T.; zcan, A.; zcan, A.; Tunali, S.; Biosorption kinetics andisotherm studies of acid red57by dried cephalosporium aphidicola cells fromaqueous solutions, Biochem. Eng. J.2006,31,197–203.
    [35] Sun, Q.; Yang, L.; The adsorption of basic dyes from aqueous solution onmodified peat-resin particle, Water. Res.2003,37,1535–1544.
    [36] Hameed, B,; El-Khaiary, M.; Kinetics and equilibrium studies of malachite greenadsorption on rice straw-derived char, J. Hazard. Mater.2008,153,701–708.
    [37] Koumanova, B.; Peeva, P.; Allen, S.; Variation of intraparticle diffusionparameter during adsorption of p-chlorophenol onto activated carbon made fromapricot stones, J. Chem. Technol. Biotechnol.2003,78,582–587.
    [38] zcan, A.; ncu, E.; zcan, A.; Adsorption of acid blue193from aqueoussolutions onto DEDMA-sepiolite, J. Hazard. Mater. B2006,129,244–252.
    [39] Boyd, G.; Adamson, A.; Meyers, L.; The exchange adsorption of ions fromaqueous solution by organic zeolites. II. Kinetics, J. Am. Chem. Soc.1947,692836–2848.
    [40] C. Ijagbemi, M. Baek, D. Kim, Montmorillonite surface properties and sorptioncharacteristics for heavy metal removal from aqueous solutions, J. Hazard. Mater.2009,166,538–546.
    [41] Juang, L.; Wang, C.; Lee, C.; Adsorption of basic dyes onto MCM-41.Chemosphere.2006,64,1920–1928.
    [42] Khattria, S.; Singh, M.; Removal of malachite green from dye wastewater usingneem sawdust by adsorption, J. Hazard. Mater.2009,167,1089–1094.
    [43] Aksu, Z.; Kabasakal, E.; Batch adsorption of2,4-dichlorophenoxy-acetic acid(2-4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol.2004,35,223–240.
    [44] Sun, X.; Wang, S.; Liu, X.; Gong, W.; Bao, N.; Gao, B.; Zhang, H.; Biosorptionof malachite green from aqueous solutions onto aerobic granules: Kinetic andequilibrium studies, Bioresource. Technol.2008,99,3475–3483.
    [45] Dogan, M.; Alkan, M.; Demirbas, O.; Ozdemir, Y.; Ozmetin, C.; Adsorptionkinetics of maxilon blue GRL onto sepiolite from aqueous solutions, Chem. Eng. J.2006,124,89–101.
    [46] Baek, M.; Ijagbemi, M.; Kim, S, O, D.; Removal of malachite green fromaqueous solution using degreased coffee bean, J. Hazard. Mater.2010,176,820–828.
    [47] Dong, J.; Ozaki, Y.; FTIR and FT-Raman studies of partially misciblePoly(methyl methacrylate)/Poly(4-vinylphenol) blends in solid states,Macromolecules.1997,30,286–292.
    [1] Vimala, R.; Charumathi, D.; Das, N.; Packed bed column studies on Cd(II)removal from industrial wastewater by macrofungus Pleurotus platypusDesalination.2011,275,291-296.
    [2] Iqbal, M.; Saeed, A.; Zafar, S. Hybrid biosorbent: An innovative matrix toenhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater.2007,148,47-55.
    [3] Sharma, A.; Bhattacharyya, K. Azadirachta indica (Neem) leaf powder as abiosorbent for removal of Cd(II) from aqueous medium. J. Hazard. Mater.2005,B125,102-112.
    [4] Iqbal, M.; Saeed, A.; Zafar, S. Hybrid biosorbent: An innovative matrix toenhance the biosorption of Cd(II) from aqueous solution. J. Hazard. Mater.2007,148,47-55.
    [5] Kumar, U.; Bandyopadhyay, M. Fixed bed column study for Cd(II) removal fromwastewater using treated rice husk. J. Hazard. Mater.2006, B129,253-259.
    [6] Crist, R.; Martin, J.; Chonko, J. Uptake of metals on feat moss: an ion-exchangeprocess. Environ. Sci. Technol.1996,30,2456-2461.
    [7] Huang, C.; Blankenship, D. The removal of mercury(II) from dilute aqueous-solution by activated carbon. Water. Res.1984,18,37.
    [8] Juang, R.; Shao, H. A simplified equilibrium model for sorption of heavy metalions from aqueous solutions on chitosan. Water. Res.2002,36,2999.
    [9] Volesky, B. Detoxification of metal-bearing effluents: biosorption for the nextcentury. Hydrometallurgy.2001,59,203-216.
    [10] Rao, R.; Khan, M. Removal and recovery of Cu(II), Cd(II) and Pb(II) ions fromsingle and multimetal systems by batch and column operation on neem oil cake(NOC). Sep. Purif. Technol.2007,57,394.
    [11] Gustavsson, P.-E.; Larsson, P.-O. Biosorption Processes for Heavy MetalRemoval. J. Chromatogr. A1996,734,231.
    [12] Churms, S.C. Batch desorption studies and multiple sorption-regeneration cyclesin a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum. J.Chromatogr. A1996,720,75.
    [13] Chang, C.; Duan, B.; Zhang, L. Fabrication and characterization of novelmacroporous cellulose-alginate hydrogels. Polymer2009,50,5467-5473.
    [14] Vieira, R.; Beppu, M. Dynamic and static adsorption and desorption of Hg(II)ions on chitosan membranes and spheres. Water. Res.2006,40,1726-1734.
    [15] Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of chitinnanofibers and their transparent nanocomposite films. Biomacromolecules.2010,11,1326-1330.
    [16] Rathke, T.D.; Hudson, S.M.; Review of chitin and chitosan as fiber and filmformers. Polym. Rev.1994,34,375–437.
    [17] Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci.2006,31,603-632.
    [18] Xi, F.; Wu, J. Macroporous chitosan layer coated on non-porous silica gel as asupport for metal chelate affinity chromatographic adsorbent. J. Chromatogr. A2004,1057,41-47.
    [19] Jeon, C.; H ll, W. Application of the surface complexation model to heavy metalsorption equilibria onto aminated chitosan. Hydrometallurgy2004,71,421-428.
    [20] Kumar, M. A review of chitin and chitosan applications. React. Funct. Polym.2000,46,1-27.
    [21] Crini, G.; Badot, P. Application of chitosan, a natural aminopolysaccharide, fordye removal from aqueous solutions by adsorption processes using batch studies:a review of recent literature. Prog. Polym. Sci.2008,33,399-447.
    [22] Wang, A.; Xu, J.; Chen, H. In-situ grafting hydrophilic polymer on chitosanmodified poly (dimethylsiloxane) microchip for separation of biomolecules. J.Chromatogr. A2007,1147,120.
    [23] Li, C.; Champagne, P. Fixed-bed column study for the removal of cadmium (II)and nickel (II) ions from aqueous solutions using peat and mollusk shells. J.Hazard. Mater.2009,171,872-878.
    [24] Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolutionof chitin at low temperature: structure and biocompatibility. J. Mater. Chem.2011,21,3865-3871.
    [25] Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H.Preparation of chitin nanofibers with a uniform width asα-chitin from crab shells.Biomacromolecules2009,10,1584-1588.
    [26] Xie, H.; Zhang, S., Li, S. Chitin and chitosan dissolved in ionic liquids asreversible sorbents of CO2. Green Chem.2006,8,630-633.
    [27] Terbojevich, M.; Carraro, C.; Cosani, A. Solution studies of the chitin-lithiumchloride-N,N-di-methylacetamide system. Carbohydr. Res.1988,180,73.
    [28] Vincendon, M. Regenerated chitin from phosphoric acid solutions. Carbohydr.Polym.1997,32,233-237.
    [29] Tamura, H.; Nagahama, H.; Tokura, S. Preparation of chitin hydrogel under mildconditions. Cellulose2006,13,357.
    [30] Hu, Y.; Gallert, C.; Winter., J. Chitin purification from shrimp wastes bymicrobial deproteination and decalcification. Appl. Microbiol. Biot.2008,79,687-697.
    [31] Chang, C.; Peng, J.; Zhang, L.; Pang, D. Strongly fluorescent hydrogels withquantum dots embedded in cellulose matrices. J. Mater. Chem.2009,19,7771-7776.
    [32] Luo, X.; Zhang, L. Creation of regenerated cellulose microspheres with diameterranging from micron to millimeter for chromatography applications. J.Chromatogr. A2010,1217,5922-5929.
    [33] De′ve′dec, F.; Bazinet, L.; Furtos, A.; Venne, K.; Brunet, S.; Mateescu,M. Separation of chitosan oligomers by immobilized metal affinitychromatography. J. Chromatogr. A2008,1194,165-171.
    [34] Zhou, S.; Tan, J.; Chen, Q.; Lin, X.; Lü, H.; Xie, Z. Carboxymethylchitosancovalently modified capillary column for open tubular capillaryelectrochromatography of basic proteins and opium alkaloids. J. Chromatogr. A2010,1217,8346-8351.
    [35] Egal, M.; Budtova, T.; Navard, P. The dissolution of microcrystalline cellulose insodium hydroxide-urea aqueous solutions. Cellulose2008,15,361–370.
    [36] Ifuku, S.; Nogi, M.; Yoshioka, M.; Morimoto, M.; Yano, H.; Saimoto, H.Fibrillation of dried chitin into10–20nm nanofibers by a simple grindingmethod under acidic conditions. Carbohyd. Polym.2010,81,134-139.
    [37] Vanzi, F.; Madan, B.; Sharp, K. Effect of the Protein Denaturants Urea andGuanidinium on Water Structure: A Structural and Thermodynamic Study. J. Am.Chem. Soc.1998,120,10748-10753.
    [38] Kaplan, D. L. Biopolymers from Renewable Resources. Spinger-Verlag: BerlinHeidelberg,1998, p55.
    [39] Zhou, D.; Zhang, L.; Zhou, J.; Guo, S. Development of a Fixed-Bed Columnwith Cellulose/Chitin Beads to Remove Heavy-Metal Ions. J. Appl. Polym. Sci.2004,94,684-691.
    [40] Luo, X.; Zhang, L. High effective adsorption of organic dyes on magneticcellulose beads entrapping activated carbon. J. Hazard. Mater.2009,171,340-347.
    [41] Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review, Sep.Purif. Technol.2004,38,43–74.
    [42] Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity, Academic Press, SanDiego,1982, pp.121-172.
    [43] Yu, J.; Liu, S.; Yu, H. Microstructures and photoactivity of mesoporous anatasehollow microspheres fabricated by fluoride-mediated self transformationJ. Catal.2007,249,59-66.
    [44] Liu, S.; Zhang, L. Effects of polymer concentration and coagulation temperatureon the properties of regenerated cellulose films prepared from LiOH/urea solution.Cellulose2009,16,189.
    [45] Kunze, J.; Fink, H. P. Structural changes and activation of cellulose by causticsoda solution with urea. Macromol. Symp.2005,223,175-187.
    [46] Liu, S.; Zhang, L.; Zhou, J.; Xiang, J.; Sun, J.; Guan, Fiberlike Fe2O3Macroporous Nanomaterials Fabricated by Calcinating Regenerate CelluloseComposite Fibers.J. Chem. Mater.2008,20,3623-3628.
    [47] Rao, K.; Anand, S.; Venkateswarlu, P. Modeling the kinetics of Cd(II)adsorption on Syzygium cumini L leaf powder in a fixed bed mini column. J. Ind.Eng. Chem.2011,17,174-181.
    [48] Dong, J.; Ozaki, Y. FTIR and FT-Raman studies of partially misciblepoly(methylmethacrylate)/poly(4-vinylphenol) blends in solid states.Macromolecules1997,30,286-292.
    [49] Parsons, J.; Lopez, M.; Peralta-Videa, J.; Gardea-Torresdey, J. Determination ofarsenic(III) and arsenic(V) binding to microwave assisted hydrothermalsynthetically prepared Fe3O4, Mn3O4, and MnFe2O4nanoadsorbents. Microchem.J.2009,91,100.
    [50] Purushotham, S.; Ramanujan, R. Thermoresponsive magnetic compositenanomaterials for multimodal cancer therapy. Acta. Biomater.2010,6,502-510.
    [51] Chairama, S.; Somsook, E. Starch vermicelli template for synthesis of magneticiron oxide nanoclusters, J. Magn. Magn. Mater.2008,320,2039-2043.
    [52] Zeng, J.; Liu, S.; Cai, J.; Zhang, L. J. Phys. Chem. C.2010,114,7806.
    [53] Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Biosorption of copper,cobalt and nickel by marine green alga Ulva reticulata in a packed column.Chemosphere2005,60,419-426.
    [54] Kunze, J.; Fink, H. P. Structural changes and activation of cellulose by causticsoda solution with urea. Macromol. Symp.2005,223,175-187.
    [55] Lopes, C.; Pereira, E.; Lin, Z.; Pato, P.; Otero, M.; Silva, C.; Rocha, J. Fixed-bedremoval of Hg2+from contaminated water by microporous titanosilicate ETS-4:Experimental and theoretical breakthrough curves. A. Duarte Micropor. Mesopor.Mat.2011,145,32.
    [56] Barnstone, L.; Harriott, Peter. Frequency response of gas mixing in afluidized-bed reactor. Aiche J.1967,13,465-475.
    [1] Zhao, H.; Kwak, J.; Wang, Y.; Franz, J. A.; White, J. M.; Holladay, J. E.Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr.Polym.2007,67,97-103.
    [2] Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization.Prog. Polym. Sci.2001,26,1689-1762.
    [1] Liu, S. J.; Tsai, Y. E.; Ueng, S. W. N.; Chan, E. C. A novel solvent-free methodfor the manufacture of biodegradable antibiotic-capsules for a long-term drugrelease using compression sintering and ultrasonic welding techniques.Biomaterials2005,26,4662-4669.
    [2] Darder, M.; Aranda, P.; Hitzky, E. R. Bionanocomposites: A New Concept ofEcological, Bioinspired, and Functional Hybrid Materials. Adv. Mater.2007,19,1309-1319.
    [3] Scanga, V. I.; Goraltchouk, A.; Nussaiba, N.; Shoichet, M.; Morshead, C. M.Biomaterials for neural-tissue engineering-Chitosan supports the survival,migration, and differentiation of adult-derived neural stem and progenitor cells.Can. J. Chem.2010,88,277-287.
    [4] Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H.Preparation of chitin nanofibers with a uniform width asα-chitin from crab shells.Biomacromolecules2009,10,1584-1588.
    [5] Ifuku, S.; Morooka, S.; Nakagaito, A. N.; Morimoto, M.; Saimoto, H. Preparationand characterization of optically transparent chitin nanofiber/(meth)acrylic resincomposites. Green Chem.2011,13,1708-1711.
    [6] Ifuku, S.; Miwa, T.; Morimoto, M.; Saimoto, H. Preparation of highlychemoselective N-phthaloyl chitosan in aqueous media. Green Chem.2011,13,1499-1502.
    [7] Spinde, K.; Kammer, M.; Freyer, K.; Ehrlich, H.; Vournakis, J. N.; Brunner, E.Biomimetic Silicification of Fibrous Chitin from Diatoms. Chem. Mater.2011,23,2973-2978.
    [8] Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci.2006,31,603-632.
    [9] Leipzig, N. D.; Wylie, R. G.; Kim, H.; Shoichet, M. S. Differentiation of neuralstem cells in three-dimensional growth factor-immobilized chitosan hydrogelscaffolds. Biomaterials2011,32,57-64.
    [10] Kim, H.; Tator, C. H.; Shoichet, M. S. Chitosan implants in the rat spinal cord:Biocompatibility and biodegradation. J. Biomed. Mater. Res. A2011,15,395-404.
    [11] Freiera, T.; Montenegro, R.; Koh, H. S.; Shoichet, M. S. Chitin-based tubes fortissue engineering in the nervous system. Biomaterials2005,26,4624-4632.
    [12] Rathke, T.D.; Hudson, S.M.; Review of chitin and chitosan as fiber and filmformers. Polym. Rev.1994,34,375–437..
    [13] Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolutionof chitin at low temperature: structure and biocompatibility. J. Mater. Chem.2011,21,3865-3871.
    [14] Hsu, S. H.; Tseng, H. J.; Lin, Y. C. The biocompatibility and antibacterialproperties of waterborne polyurethane-silver nanocomposites. Biomaterials2010,31,6796-6808.
    [15] Jiang, J.; Pan, X.; Cao, J.; Jiang, J.; Hua, D.; Zhu, X. Synthesis and property ofchitosan graft copolymer by RAFT polymerization with tosylic acid–chitosancomplex. Int. J. Biol. Macromol.2012,50,586-590.
    [16] Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z.;Chu, P. K. Antibacterial nano-structured titania coating incorporated with silvernanoparticles. Biomaterials2011,32,5706-5716.
    [17] Ifuku, S.; Tsuji, M.; Morimoto, M.; Saimoto, H.; Yano, H. Synthesis of SilverNanoparticles Templated by TEMPO-Mediated Oxidized Bacterial CelluloseNanofibers. Biomacromolecules2009,10,2714-2717.
    [18] Russell, A. D.; Hugo, W. B. Antimicrobial activity and action of silver. Prog.Med. Chem.1994,31,351-370.
    [19] Shah, M.; Nag, M.; Kalagara, T.; Singh, S.; Manorama, S. Chem. Mater.2008,20,2455-2460.
    [20] Chen, W.; Liua, Y.; Courtney, H.S; Bettenga, M.; Agrawal, C.M.; Bumgardner,J.D.; Ong, J.L. Biomaterials2006,27,5512-5517.
    [21] Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of ChitinNanofibers and their Transparent Nanocomposite Films. Biomacromolecules2010,11,1326-1330.
    [22] Ifuku, S.; Nogi, M.; Yoshioka, M.; Morimoto, M.; Yano, H.; Saimoto, H.Fibrillation of dried chitin into10-20nm nanofibers by a simple grinding methodunder acidic conditions. Carbohyd. Polym.2010,81,134-139.
    [23] Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, AcademicPress, San Diego,1982, pp.121-172.
    [24] Yu, J.G.; Liu, S.W.; Yu, H.G. Microstructures and photoactivity of mesoporousanatase hollow microspheres fabricated by fluoride-mediated self transformation,J. Catal.2007,249,59–66.
    [25] Liu, S.; Zhang, L. Effects of polymer concentration and coagulation temperatureon the properties of regenerated cellulose films prepared from LiOH/urea solution,Cellulose2009,16,189-198.
    [26] T. Kato, Polymer/Calcium Carbonate Layered Thin-Film Composites. Adv.Mater.2000,12,1543-1546.
    [27] Hashim, M.; Hu, C.; Chen, Y.; Zhang, C.; Xi, Y.; Xu, J. Synthesis,characterization, and optical properties of Ag2Mo2O7nanowires. Phys. Status.Solidi. A2011,208,1937-1941.
    [28] Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulosemicrospheres with magnetic-induced protein delivery. J. Mater. Chem.2009,19,3538-3545.
    [29] Bhatt, L. R.; Kim, B. M.; An, C.; Lu, C.; Chung, Y. S.; Soung, M. G.; Park, S.H.; Chai. K. Y. Synthesis of chitin cycloalkyl ester derivatives and their physicalproperties. Carbohyd. Res.2010,345,2102-2106.
    [30] Liu, S.; Zhang,L.; Zhou,J.; Xiang, J.; Sun, J.; Guan, J. Fiberlike Fe2O3Macroporous Nanomaterials Fabricated by Calcinating Regenerate CelluloseComposite Fibers. Chem. Mater.2008,20,3623-3628.
    [31] Dong, J.; Ozaki, Y. FTIR and FT-Raman studies of partially misciblepoly(methylmethacrylate)/poly(4-vinylphenol) blends in solid states,Macromolecules1997,30,286-292.
    [32] Nagaraaju, G.; Chandrappa, G. T.; Livage, J. Synthesis and characterization ofsilver molybdate nanowires, nanorods and multipods. Bull. Mater. Sci.2008,31,367-371.
    [1] Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Modified carrageenan3.Synthesis of a nonel polysaccharide-based superabsorbent hydrogel via graftcopolymerization of acrylic acid onto kappacarrageenan in air. Eur. Polym. J.2004,40,1363-1370.
    [2] Pourjavadi, A.; Harzandi, A. M.; Amini-Fazl, M. S. Taguchi optimized synthesisof collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur.Polym. J.2008,44,1209-1216.
    [3] Ibrahim, S. M.; Salmawi, K. M.; Zahran. A. H. Synthesis of crosslinkedsuperabsorbent carboxymethylcellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci.2007,104,2003-2008.
    [4] Chang, C.; Lue, A.; Zhang, L. Effects of Crosslinking Methods on Structure andProperties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys.2008.209,1266-1273.
    [5] Elisseeff, J. Hydrogels: Structure starts to gel. Nat. Mater.2008,7,271-273.
    [6] Cho, K.; Torres, N. L.; Subramanyam, S.; Deepak, S. A.; Sardesai, N.; Han, O.;Williams, C. E.; Ishii, H.; Iwahashi, H.; Rakwa, R. J.Plant. Biol.2006,49,413.
    [7] Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of chitinnanofibers and their transparent nanocomposite films. Biomacromolecules201011,1326-1330.
    [8] Sikorski, P.; Hori, R.; Wada, M. Revisit of α-chitin crystal structure using highresolution X-ray diffraction data. Biomacromolecules2009,10,1100-1105.
    [9] Fujioka, M.; Okada, H.; Kusaka, Y.; Nishiyama, S.; Noguchi, H.; Ishii, S.;Yoshida, Y. Enzymatic Synthesis of Chitin-and Chitosan-graft-AliphaticPolyesters Macromol. Rapid Commun.2004,25,1776-1780.
    [10] Fangkangwanwong, J.; Akashi, M.; Kida, T.; Chirachanchai, S. Chitosan-Hydroxybenzotriazole Aqueous Solution: A Novel Water-Based System forChitosan Functionalization. Macromol. Rapid Commun.2006,27,1039-1046.
    [11] Matsuda, S.; Kaneko, Y.; Kadokawa, J. Chemoenzymatic Synthesis ofAmylose-Grafted Chitosan. Macromol. Rapid Commun.2007,28,863-867.
    [12] Kobayashi, S.; Makino, A.; Tachibana, N.; Ohmae, M. Chitinase-CatalyzedSynthesis of a Chitin-Xylan Hybrid Polymer: A Novel Water-Soluble β(1→4)Polysaccharide Having an N-Acetylglucosamine-Xylose Repeating Unit RapidCommun.2006,27,781-786.
    [13] Crini, G. Recent developments in polysaccharide-based materials used asadsorbents in wastewater treatment. Prog. Polym. Sci.2005,30,38-70.
    [14] Bhatt, L. R.; Kim, B. M.; An, C.; Lu, C.; Chung, Y. S.; Soung, M. G.; Park, S.H.; Chai. K. Y. Synthesis of chitin cycloalkyl ester derivatives and their physicalproperties. Carbohyd. Res.2010,345,2102-2106.
    [15] Jiang, J.; Pan, X.; Cao, J.; Jiang, J.; Hua, D.; Zhu, X. Synthesis and property ofchitosan graft copolymer by RAFT polymerization with tosylic acid–chitosancomplex. Int. J. Biol. Macromol.2012,50,586-590.
    [16] Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano,H. Preparation of chitin nanofibers with a uniform width asα-chitin from crabshells. Biomacromolecules2009,10,1584-1588.
    [17] Vikhoreva, G.A.; Gorbacheva, I.N.; Synthesis and properties of water-solublederivatives of chitin: a review. Fiber. Chem.1999,31,573.
    [18] Sannan, T.; Kurita, K.; Iwakura, Y.; Studies on chitin2. Effect of deacetylationon solubility. Makromol. Chem.1976,177,3589–3600.
    [19] Chang, C.; Duan, B.; Zhang, L. Fabrication and characterization of novelmacroporous cellulose-alginate hydrogels. Polymer2009,50,5467-5473.
    [20] Zhang, L.; Tang, H.; Chang, C.2010. China Patent ZL,201010201892.3(2010).
    [21] Chang, C.; Chen, S.; Zhang, L. Novel hydrogels prepared via direct dissolutionof chitin at low temperature: structure and biocompatibility. J. Mater. Chem.2011,21,3865-3871.
    [22] Waite, S.; Hutchings, M. The effects of sowing density, salinity and substrateupon the germination of seeds of plantago coronopus L. New Phytologist.1978,81,341-348.
    [23] Garrard, A. The effects of β-indolylacetic acid on the germination and rootgrowth of certain members of the cruciferae. New Phytologist.1954,53,165-176.
    [24] Figueroa, J.; Lusk, C. Germination requirements and seedling shade toleranceare not correlated in a Chilean temperate rain forest. New Phytologist.2001,152,483-489.
    [25] McLean, E.; Ludwig, m.; Grierson, P. Root hydraulic conductance andaquaporin abundance respond rapidly to partial root-zone drying events in ariparian Melaleuca species. New Phytologist.2011,192,664-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700