用户名: 密码: 验证码:
抗盐碱基因OsCYP2转化水稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国和世界上最重要的粮食作物之一。在我国,水稻作为最重要的粮食作物,种植面积占全国粮食作物种植面积的30%左右,稻米产量占粮食总产量的50%左右,水稻生产在国民经济发展中发挥着巨大作用,直接关系着国民生计。
     目前我国人口不断增加,而可耕地面积不断减少,这促使人们对盐碱地的开发与利用产生了极大关注。在盐碱地的开发与利用方面虽然有多种方法,但培育适宜在盐碱地上生长的植物新品种,无疑是利用盐碱地最经济有效的措施之一。随着分子生物学和转基因技术的大发展,克隆功能基因,鉴定基因功能,并将功能基因转化到目标植物中,以获得具有优良目标性状的转基因植株,使植物育种工作取得突破性进展。目前,以上方面的研究已有很多报道,为选育耐盐植物品种开辟了新途径。
     本研究克隆得到水稻盐诱导基因OsCYP2,通过农杆菌介导法将其转入水稻,使其在水稻中超表达,通过分子鉴定、生理生化指标鉴定及田间农艺性状鉴定,获得了高世代耐盐水稻新种质,为转基因耐盐水稻的种质创新和新品种培育奠定了基础。取得如下结果:
     (1)从北方优质粳稻品种中克隆了全长519bp的盐诱导基因OsCYP2,经分析表明该基因编码173个氨基酸,具有cyclophilinee-ABH-like结构域,属于cyclophilin基因家族,与已知的稻属OsCYP2基因相似性达到97.5%。
     (2)将新获得的9sCYP2基因在模式植物烟草中进行功能验证,结果表明新得到的OsCYP2基因可以提高转基因烟草对钠盐的耐受性。
     (3)对农大7、吉农大838、吉农大10-41等10份粳稻材料进行筛选,确定吉农大838在农艺性状和再生方面均好于其他品种,可以作为转基因的受体材料,并建立吉农大838转化再生体系。
     (4)构建植物表达载体pCAMBIA3301-OsCYPO2,通过农杆菌介导法转化水稻,获得再生转基因水稻植株。
     (5)对转OsCYP2基因的转基因水稻进行southern杂交、RT-PCR,等分子鉴定,结果表明目的基因整合在受体基因组中,并得到表达。
     (6)以表达载体pCAMBIA3301-OsCYPO2中bar基因为锚定基因,初步建立了通过单引物PCR获得转基因水稻外源基因插入位置侧翼序列的方法,并获得了转基因水稻外源基因插入位置的侧翼序列。
     (7)对转基因水稻材料进行脯氨酸含量、SOD酶活性等生理生化指标检测,结果表明OsCYP2基因的超表达能够提高水稻对盐碱的耐受性。
     (8)对转基因水稻进行耐盐试验,结果表明转基因水稻的耐盐性较非转基因对照明显提高。
     (9)对转基因水稻的主要田间农艺性性状进行观察,结果表明转基因水稻的生育期较非转基因受体延长。
     (10)对T2代、T3代转基因水稻遗传稳定性分析,结果表明目标性状在转基因水稻中可以稳定遗传给后代,其分离比符合孟德尔遗传规律。
Not only in China, but also over the globe, rice (Oryza Sativa L) is one of the most important crops. As most influent crops, directly rice own many things to do with national economy development and the people's livelihood. In China, area of rice cultivation is round thirty percent of all crops, and yield of rice is around fifty percent of all others. The production system of rice plays a major role among whole national economy development.
     One side the population increases, another side cultivated land decreases, there is much practical value to make use of saline and alkaline land at high efficiency. To develop and cultivate high salt-tolerance plants which contain much economy and ecological wealth is one of ways for deep development of the saline and alkaline land. With progressing of modern molecular biology and gene transformation technique, a breakthrough has been made for breeding of plant, until now, there are numbers of gene which are involved with salt-tolerance already had been isolated and transferred into lots of target plants, and meantime to established a new channel to selected and developed strong salt-tolerance plant variety.
     In this research, salt-induced gene OsCYP2has been cloned from Japonica varieties, and transformed into rice by Agrobacterium-mediated way. The target gene expressed inside the rice, and identified with molecular methods, physiological examinations and agricultural traits investigations. Obtained multiple-generations of new rice germplasm, created a efficient system to develop new rice germplasms and new rice varieties. The outputs are as follow:
     (1) Isolated519base pair of salt-induced gene OsCYP2from Northern good-quality Japonica cultivar, the analytical result demonstrates the gene code172amino acids of peptide, contain cyclophilinee-ABH-like domain, belong to cyclophilin gene family,97.5%similar to whole known gene OsCYP2.
     (2) For detecting the function, transformed the target gene into model plant of tobacco, the consequence show the ability of salt tolerance was high improved.
     (3) Cultivated and selected Jinong7, Jinongda838, Jinongda1-41and others varieties of rice, finally chose Jinongda838which own more excellent agricultural traits than others material as acceptor, and then established regenerated system for Jinongda838.
     (4) Constructed the plant expressed vector pCAMBIA3301-OsCYPO2, transformed the target gene into rice with Agrobacterium-mediated way to over-expressed in the rice, and achieved transgenic plants.
     (5) Force on bar gene inside recombinant plant expressed vector, using single-prime PCR way, created a primary system to locate the foreign gene by finding out the flank sequence of inserted fragment.
     (6) Force on bar gene inside recombinant plant expressed vector, using single-prime PCR way, created a primary system to locate the foreign gene by finding out the flank sequence of inserted fragment.
     (7) Investigated a number of physiology index such as content of praline, assay of Superoxide Disemutase and others, the data showed actually the gene help rice organism to improve the resistance of salt-tolerance.
     (8) Characterized the resistance of salt-tolerance on transgenic rice and found the ability was precisely elevated at high level.
     (9) Examination on major agricultural traits of the transgenic rice, contrasted to control, nothing but reproductive period prolonged.
     (10) Analysis of inheritance stable ability of the rice on generations of T2and T3, figure out that target gene in progeny stably transmitted into next generation, and distribution data corresponded to Mendel's law of inheritance.
引文
[1]霍华香,张玉烛,屠乃美,等.旱作水稻研究现状与展望.中国农业科技导报[J],2008年,10(2):34-42.
    [2]王昌华,张燕之,郑文静,等.北方旱作水稻研究现状及发展前景.北方水稻[J],2007年,第6期.
    [3]费槐林,蔡国海.水稻生产现状与技术对策.中国农业出版社[M],1995年,6.
    [4]闵绍楷.水稻育种学.中国农业出版社[M],1996年.
    [5]崔国贤,沈其荣,崔国清,等.作物研究.水稻旱作及对旱作环境的适应性研究进展[J],2001年,3:70-76.
    [6]杨振玉.北方杂交粳稻发展的思考与展望.作物学报[J],1998年,24(6):840-846.
    [7]青先国.水稻丰产高效实用技术.长沙:湖南科技出版社[M],2005年.
    [8]徐正进,陈温福,张龙步,等.水稻高产生理研究的现状与展望.沈阳农业大学学报[J],1991年,22(增刊):115-123
    [9]马景勇,杨福,凌凤楼,等.吉林农业大学水稻育种的成就、进展与前景.吉林农业大学学报[J],2001年,23(4):1-5.
    [10]江建华,郭媛,陈献功,等.粳稻穗角与稻米品质的相关性及稻米品质遗传分析,2007年,29(6):714—724
    [11]童发丝,孙宗修,胡培松,等.食用稻米品质形成研究的现状与展望中国水稻科学[J],1995年,12(3):172-176
    [12]Ashikari M,WU J-Z,Yano M,etal. Rice gibberellin insensitive dwarf mutant gene dwarfl encodes the α-subunit of GTP-binding protein. Proc NatlAcadSci USA[J],1999,96:10284-10289
    [13]于永红,斯华敏.水稻矮化相关基因的研究进展.植物遗传资源学报[J].2005年,6(3):344-347.
    [14]李金华,王丰,廖亦龙,等.水稻矮生性及其相关基因的研究进展.杂交水稻专题与综述[J].2007年,22(3):1-5.
    [15]蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种新战略.2001年,第1期.
    [16]袁隆平.杂交水稻超高产育种.杂交水稻[J].1997年,1(6):1-6.
    [17]陆作楣,徐保钦.论杂种优势群理论对杂交稻育种的指导意义.中国水稻科学[J],2010年,24(1):1-4
    [18]李琦,李殉,李继开北方水稻..辽宁水稻育种方法的三次重大突破[J],2009年,3(6):8-13
    [19]李春光,刘华招.分子标记在水稻育种中的应用.作物学报[J].2007年,5(26):125-131.
    [20]刘洋,徐培洲,张红宇,等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用.中国农业科学[J],2008年,41(1):9-14
    [21]李明辉,王贵学,王凤华,等.水稻抗白叶枯病基因及其抗病机理的研究进展.中国农学通报[J],2005年,21(11):307-310.
    [22]姚姝,陈涛,张亚东,等.分子标记辅助选择聚合水稻暗胚乳突变基因Wx-mq和抗条纹叶枯病基因Stv-bi..中国水稻科学[J],2010年,24(4):341—347.
    [23]郭士伟,张彦,孙立华,等.水稻白叶枯病抗性研究进展.中国农学通报[J],2005年,21(9):399-344.
    [24]苗丽丽,王春连,郑崇珂,等.水稻白叶枯病新基因的初步定位.中国农业科学,2010年,43(15):3051—3058.
    [25]王伟杰,徐昌杰.天然类胡萝卜素生物合成与生物技术应用.细胞生物学杂志[J]2006年,28:839-843
    [26]王凤华,刘俊,童春义,等.电击法磁性纳米颗粒作为水稻转基因载体的研究.分析化学研究报告[J],2010年,38(5):617-621.
    [27]殷奎德,张兴梅,郑桂萍,等.一种快速检测转基因水稻潮霉素抗性标记的方法.黑龙江八一农垦大学学报[J],2010年,22(1):45—-48.
    [28]许明,程祖锌,黄志伟,等.一种适于转基因水稻PCR检测的微量DNA快速提取法.生物技术通报[J],2010年,(3):128—130.
    [29]黄霁月,王玉峰,杨金水.过表达OsPSK3基因增加水稻叶片叶绿素含量.遗传[J],2010年,32(12):1281—1289.
    [30]刘莉,赵丽娜,林拥军.2010.水稻糖基水解酶基因GH27启动子克隆及初步分析.江西农业大学学报[J],32(5):987-991.
    [31]查中萍,李进波,万丙良,等.水稻TWH1基因启动子的克隆及表达分析.湖北农业科学[J],2010年,49(10):2341—-2343.
    [32]鲍永美,刘永慧,许冬清,等.水稻Qb-SNARE蛋白OsNPSN11多克隆抗体进行了制备、鉴定与应用.遗传[J],2010年,32(9):961-965.
    [33]王淑珍,赵霏,任三娟,等.外源铁蛋白基因对水稻重要性状表达的影响.核农学报[J],2010年,24(4):46—-49.
    [34]郭立佳,毛倩,汪卫,等.一个NBS-LRR蛋白质基因转化水稻及其超量表达.厦门大学学报[J],2010年,49(4):552—557.
    [35]De-xi CHEN,Xue-wei CHEN,Bing-tian MA,et al. Genetic Transformation of Rice with Pi-d2 Gene Enhances Resistance to Rice Blast Fungus Magnaporthe oryzae.Rice Science [J],2010,17(1):19-27.
    [36]Chang-Jin Park,Sang-Won Lee,Mawsheng Chem, et al. Ectopic expression of rice Xa21 over-comes developmentally controlled resistance to Xanthomonas oryzae pv.Plant Science [J],2010,179 (5): 466—471.
    [37]任鄄胜,肖培村,陈勇,等.水稻全基因组编码抗病基因同源序列分析.生物信息学[J],2010年,8(2):91-97.
    [38]张志罡,孙继英,付秀芹,等.转Bt基因水稻的生态安全性研究进展.中国稻米[J],2007年,(2):1-4
    [39]王爱菊,姚方印,温孚江,等.利用Bt基因和Xa21基因转化获得抗螟虫、白叶枯病的转基因水稻.作物学报[J],2002年,28(6):857-860
    [40]祁永斌,叶胜海,陆艳婷,等.转CrylA(b)基因抗虫水稻的获得及鉴定.浙江农业学报[J],2007年,19(4):264~267,
    [41]孙小芬,唐克轩,万丙良,等.表达雪花莲凝集素(GNA)的转基因水稻纯系抗褐飞虱.科学通报[J],2001年,45(13)1108-1113
    [42]武晓智,费震江,张集文.转Bt基因抗虫光温敏核不育性T16S的选育及特性分析.湖北农业科学[J],2010年,(12):40-43.
    [43]段发平,郑枫,段俊,等.转BAR基因水稻的抗性遗传、生理特性和农艺性状研究.浙江大学学报(农业与生命科学版)[J],2006年,32(4):355-359.
    [44]苏家琦,吴先军,张红宇,等.转bar基因水稻的研究与应用.分子植物育种[J],2005年,3(2):229-232.
    [45]伍成祥,宛煜嵩,徐俊,等.基因枪转化MAR序列介导水稻bar基因的表达分析.农业生物技术学报[J],2002年,(10)3::27-230
    [46]蒋显斌,肖国樱.抗除草剂转基因水稻对两种刺吸性害虫和两种天敌的影响.昆虫知识[J],2010年, (6):106—111.
    [47]蒋显斌,肖国樱.转基因抗除草剂水稻对稻田叶冠层节肢动物群落多样性的影响.中国生态农业学报[J],2010年,(6):131—137.
    [48]陆永良,彭于发,王渭霞,等.抗除草剂转基因水稻漂移至常规栽培稻的频率研究初报.中国水稻科学[J],2010年,24(6):663666.
    [49]左娇,强胜,宋小玲.温室条件下抗除草剂转基因水稻与杂草稻杂交和回交后代的适合度分析.中国水稻科学[J],2010年, (6):52—60.
    [50]任志刚,李霞.外源H2O2对孕穗期转C4 PEPC水稻及原种光合特性的影响.华北农学报[J],2010年,25(4):130—135.
    [51]傅元婷,张边江,陈全战.转C4基因水稻的生理表现.河南农业科学[J]2010年(5):18—-22.
    [52]]杨瑞珍,毕于运.我国盐碱化耕地的防治.干旱区资源与环境[J],1996年,10(3):22-30
    [53]LU Zhen-Qiang, LIU Da—Li, LIU Shen—Kui. Elevated Salt Tolerance in Transgenic Tobacco Plants Expressing Cytosolic Peroxidase Genes from Rice. Bulletin of Botanical Research,2010, (4):66—72.
    [54]杨维才,瞿礼嘉,袁明,等.2008年中国植物科学若干领域重要研究进展.植物学报[J],2009年,44(4):379-409.
    [55]Koic Saito, Yuriko Hayano-Saito, Makoto Kuroki, et al. Map-based cloning of the rice cold tolerance gene Ctbl. Plant Science[J],2010,179(1-2):97—102.
    [56]姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理.土壤[J],2006年,38(3):256-262
    [57]王晶,肖延华,朱平.松嫩平原盐渍土的发展演化与影响因素.吉林农业科学[J],1995年,2:66-71
    [58]罗新正,孙广友.松嫩平原含盐碱斑的重度盐化草甸土种稻脱盐过程.生态环境[J],2004年,13(1):47-50
    [59]赵可夫,冯立田.中国盐生植物资源.北京:中国科技出版社,2001.
    [60]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev Plant Physiol. [J], 1980,31:149-190.
    [61]Zhu J K.GENETIC ANALYSISI OF plant salt tolerance using Arabidopsis thaliana.plant physiol [J], 2000,124:941-948.
    [62]Zhu J K.salt and thought stress signal transduction on plants.Annu.Rev.plant Biol[J],2002, 53:247-273.
    [63]Zhu J Q, ZhangJ T, Tang R J, etal.Molecular characterization of ThIPK2,an inositol polyphosphate kinase gene homolong from thellungiella halophila,andits heterologous espression to improve abiotic stress tolerance in Brassica napus.Physiol.plant [J],2009,136:407-425.
    [64]Blumwald E, Aharon G, Apse M P. Sodium transport in plant cells. Biochim. Bioply. Acta[J],2000, 1465:140-151.
    [65]Shono M, Wada M, Hara Y, etal.Molecular cloning of Na+-ATPase cDNA from a marinr alga, Heterosigma akashiwo.Biophys.Acta[J],2001,1511:193-199.
    [66]Shi H, Quintero F J, Pardo J M, etal. The putative plasma membrane Na+/H+ antiporter SOS1 controls long- distance Na+ transport in plant. Plant Cell [J],2002,14:465-477.
    [67]Shi H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter improves salt tolerance in Arabidopsis. Nature Biotech. [J],2003,21:81-85.
    [68]Shi H, Zhu J K. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and ABA. Plant Mol.Biol[J].,2002,50:543-550.
    [69]Blumwald E,Poole R J.Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris.Plant Physiol [J].,1985,78:163-167.
    [70]Apse M P, Aharon G S, Snedden W A, etal. Salt tolerance conferred by overexpression of a vacuolar NA+/H+ antiport in Arabidopsis.science[J],1999,285:1256-1258.
    [71]Apse M P, Sottosanto JB, Blumwald E.Vacuolar cation/H+ exchange, ion homeostasis, and leaf Development.are altered in a T-DNA insertional mutant of AtNHXl, the Arabidopsis wacuolar NA+/H+ antiporter.Plant [J],2003,36:229-239.
    [72]Fukada-Tanaka S, Inagaki Y, Yamaguchi T, etal. Colour-enhancing protein in blue petals. Nature [J], 2000,82:407-581.
    [73]Ohnishi M,Fukada-Tanaka S,Hoshino A,Takada J,Inagaki Y,Iida S.Characterization of a novel Na+/H+ antiportter gene InNHX2 and comparison of InNHX2 with InNHX1,which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory.Plant Cell Physiol, [J] 2005,46:259-267.
    [74]Song C P, GUO Y, Qiu Q, etal.A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in PH homeostasis and chloroplast Development.in Arabidopsis thaliana.Proc.Natl.Acad.sci.USA [J],2004,101:10211-10216.
    [75]Tsugane K, Kobayashi K, Niwa Y, etal.A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell[J], 1999,11:1195-1206.
    [76]Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop. Sci[J].,2005,45:437-448.
    [77]Singh N K, Bracker C A, HasegawaP M, etal.Characterization of osmotin:A thumatin-like protein associated with osmotic adaptation in plantcells.plant Physiol [J],1987,85:529-536.
    [78]Singh N K, Nelson D E, Kuhn D, etal.Molecular cloning and regulation of its expression by ABA and adaptation to low water potential.plant Physiol [J],1989,90:1096-1101.
    [79]Robert N.Merlot S,N"Guyen V,Boisson-Dernier A,Schroeder J I.A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis.FEBS Lett[J],2006,580:4691-4696.
    [80]Ma Y,Szostkiewicz I,Korte A,Moes D,Yang Y,Christmann A,Grill E.Regulators of PP2C phosphatase activity function as abscisic acid sensors.Science[J],2009,324:1064-1068.
    [81]Sakamoto A,Murata N.The role of glycine betaine in the protection of plant from stress:clues from transgenic plant.Plant Cell Environ[J],2002,25:163-171.
    [82]Quintero F J,Ohta M,Shi H,Zhu,J K,Pardo J M.Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.Proc.Natl.Acad.Sci [J].USA,2002,99:9061-9066.
    [83]林凤栖.耐盐植物研究.中国科学技术出版社[M],2004年.
    [84]20.Moons A, Valcke R, van Montagu M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant [J],1998, 15:89-98.
    [85]Locy R D.Chang C C,Nielsen B L,Singh N K.Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol[J].,1996,110:321-328.
    [86]Yan S P, Tang Z C, Su W A, etal. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics[J],2005,5:235-244.
    [87]Zhu J K.Plant salt tolerance.Trends Plant Sci [M],2001,6:66-71.
    [88]Shi H,Ishitani M,Kim C S,Zhu J K.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Proc.Natl.Acad.Sci Shi H,Ishitani M,Kim C S,Zhu J K.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Proc.Natl.Acad.Sci.USA[J],2000,97:6896-6901.
    [89]Liu J, Ishitani M, Halfter U, etal. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is reaquired for salt tolerance. Proc. Natl. Acad. Sci. USA [J],2000,97:3730-3734
    [90]Ishitani M, Liu J, Halfter U, etal. SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding. Plant Cell [J],2000,12:1667-1677.
    [91]Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA [J],2000,97:3735-3740.
    [92]Qiu Q S,Guo Y.Quintero F J,Pardo J M,Schumaker K S,Zhu J K.Regulation of vacuolar membrane Na+/H+ exchange in Arabidopsis thaliana by the SOS pathway.J.Biol.Chem [J],2004,279:207-215.
    [93]Cheng N H, Pittman J K, Zhu J K, etal. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. Biol. Chem. [J],2004, 279:2922-2926.
    [94]Ohta M, Guo Y, Halfter U, etal. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2.Proc. Natl. Acad. Sci. USA [J],2003,100:11771-11776.
    [95]Lin H, Yang Y, Quan R, etal.Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.Plant Cell[J],2009,21:1607-1619.
    [96]Tarczynski M C, jensen R G, BOhnert H J.Stess protection of transgenic tobacco by production of the osmolyte mannitol.science[J],1993,259:508-510
    [97]Kishor P B K, Hong Z, Miao G H, etal. Overexpression of △'-pyrrolin-5-carboxylate synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol [J].,1995, 108:1387-1394.
    [98]Zhang J, Tan W, Yang X H, etal.plastid-expressed choline monooxygenase gene improves salt and drought tolerance though accumulation of glycine betaine in tobacco.Plant Cell Rep[J] 2008,27:1113-1124.
    [99]Gaxiola R A,Li J.Undurrage S,Dang L M,Allen G J,Alper S L,Fink G R.Drought-and salt-tolerant plant result from overexpression of the AVP1 H+-pump.Proc.Natl.Acad.Sci [J].USA,2001,98:11444-11449.
    [100]Zhang H X, Blumwald E.Transgenic salt-tolerant tomato plants accumulate salt in foliage but in fruit.Nat.Biotechnol[J],2001,19:765-768.
    [101]Zhang H X, hodson J N, williams J P, etal.Engineering salt-tolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.proc.Natl.Acad.Sci.USA [J],2001,98:12832-12836.
    [102]Li T X(Y Z), zhang Y, Liu H, etal.Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and its salt tolerance in the transgenic soybean for over six generation.Chinese Sci.Bull. [J],2010,55:1127-1134.
    [103]Liu H, Tang R J, Zhang Y, etal.AtNHX3 is a vacuolar K+/H+ antiorter required for low-potassium tolerance in Arabidopsis thaliana.plant Cell Envion[J],2010,33:198-1999.
    [104]Liu H, Wang Q Q, Yu M M, etal. Transgenic salt-tolerant sugar beet(Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ [J],2008,31:13255-1334.
    [105]Roxas V P, Smith R K Jr, Allen E R, etal. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedling during stress. Nat. Biotechnol. [J], 1997,15:988-991.
    [106]Xu D, Duan X, Wang B, etal. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol [J], 1996,100:249-257.
    [107]Pardo J M, Reddy M P, Yang S, etal. Stress signaling through Ca2+/calmodulin dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. USA[J],1998,95: 9681-9686.
    [108]Yang L, Tang R J, Zhu J Q, etal. Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing Atlpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol.Biol[J],2008,66:329-343.6
    [109]Zhang Y, Liu H, Li B, etal.Generation of selectable maker-free transgenic tomato resistant to drought, cold and oxidative stress using Cre/loxP DNA ecision system.Transgenic Res[J], 2009,18:607-619.
    [110]Kasuga M, Liu Q, Miura S, etal. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat. Biotechnol. [J],1999,17:287-291.
    [111]Saijo Y, Hata S, Kyozuka J, etal. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant [J],2000,23:319-327.
    [112]Guo Y, Qiu Q, Quintero F J, etal. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell [J],2004,16:435-449.
    [113]胡时开,陶红剑,钱前,等.水稻耐盐性的遗传和分子育种的研究进展.分子植物育种[J],2010年,8(4):629-640
    [114]祁栋灵,郭桂珍,李明哲,等.水稻耐盐碱性生理和遗传研究进展,植物遗传资源学报[J],2007年,8(4):486-493
    [115]祁栋灵,韩龙植,张三元.水稻耐盐/碱性鉴定评价方法.植物遗传资源学报[J],2005年,6(2):226-231
    [116]杨闯,尚丽霞,李淑芳,等.水稻耐盐转基因研究进展.吉林农业科学[J],2010年,35(3):21-26
    [117]张素红,刘立新,刘忠卓.水稻耐盐研究与育种进展.北方水稻[J],2005年,39(3):118-122
    [118]胡婷婷,刘超,王健康,等.水稻耐盐基因遗传及耐盐育种研究.分子植物育种[J],2009年,7(1):110-116
    [119]郭龙彪,薛大伟,王慧中.转基因与常规杂交相结合改良水稻耐盐性.中国水稻科学[J],2006年,20(2):141-146
    [120]陈煜,杨燕凌,谢小芳,等.水稻耐盐相关基因的克隆及转化研究进展.中国农学通报[J],2010年,(11):56-61
    [121]柏锡,朱延明,李丽文,等.转OsMAPK4基因水稻耐盐性分析.东北农业大学学报[J],2007年,40(8):53-57
    [122]康博.OsCYP2参与Aux/IAA蛋白降解并调控水稻侧根发生和花粉发育的功能研究.浙江大学[D],2011年
    [123]张忠臣.水稻侧根发育基因OsCYP2 (cyclophilin2)的克隆和功能分析.浙江大学[D],2007年
    [124]马建,魏益凡,厉志,等.植物RNA干扰表达载体构建方法的研究,安徽农业科学[J],2009年,37(18):8364-8366
    [125]Jones D.H., Winistorfer S.C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res [J],1992,20:595-600.
    [118]Liu Y-G., Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques[J],2007,43:649-656.
    [126]Liu Y-G., Whittier R.F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics[J],1995,25:674-681.
    [127]Liu Y.-G., Mitsukawa N., Oosumi T, etal. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant[J],1995,8:457-463.
    [128]Kim Y.J., Kwak C.I., Gu Y.Y.Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques [J],2004,36(3):424-426.
    [118]Liang C.Z., Zhang R., Sun G.Q. Cloning of stress-related transcription factors gene from cotton by optimized TAIL-PCR. Cott Sci[J],2010,22(3):195-201.
    [129]Zhang X., Zhang R., Sun G., etal. High efficiency genome walking method for flanking sequences of cotton mitochondrial double-copy atpA gene based on optimized inverse PCR and TAIL-PCR. Chinese J of Biotech [J],2012,28(1):104-15.
    [130]Song D.F., Han N., Bian H.W.,etal. Analysis of cbfl flanking sequences in transgenic tobacco by TAIL-PCR. Acta Agronomica Sinica[J],2005,31(10):1377-1379.
    [131]Antal Z., Rascle C., Fevre M.,etal. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet [J],2004, 46(4):240-246.
    [132]J. Ma, P.W. Wang, D. Yao,etal. Guan Single-primer PCR correction:a strategy for false-positive exclusion Genet. Mol. Res[J],2011,10(1):150-159
    [133]Bozkurt O, Unver T and Akkaya MS. Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol. Mol. Plant Pathol[J],2007,71:251-259.
    [134]Fabi JP, Lajolo FM and Nascimento JRO. Cloning and characterization of transcripts differentially expressed in the pulp of ripening papaya. Sci. Hortic[J],2009,121:159-165.
    [135]Lofstrom C, Axelsson CE and Radstrom P. Validation of a diagnostic PCR method for routine analysis of Salmonella spp. in animal feed samples. Food Anal. Method[J],2008.1:23-27.
    [136]Ono K, Satoh M, Yoshida T, et al. Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev. Biol. Anim[J],2007,43:168-175.
    [137]J. Ma, S.C. Guan, D. Yao, etal.Problems with and a system to eliminate single-primer PCR product contamination in simple sequence repeat molecular marker-assisted selection in soybeanGenet. Mol. Res[J],2011,10 (3):1659-1668
    [138]Sahdev S, Saini S, Tiwari P, et al. Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions. Mol. Cell Probes[J],2007, 21:303-307.
    [139]Amar MH, Biswas MK, Zhang Z, etal. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci. Hortic[J],2011,128:220-227.
    [140]Liang HZ, Yu YL, Wang SF, et al. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agric. Sci. China[J],2010,9:1108-1116.
    [141]Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res[J],1990,18:6531-6535.
    [142]J. Ma, S.C. Guan, Z. Zhang, etal.Single- and double-SSR primer combined analyses in rice, Genet. Mol. Res. [J],2012,11 (2):1032-1038
    [143]Sayama T, Nakazaki T, Ishikawa G, etal. QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci[J],2009,176:514-521.
    [144]Ghannam A, Jacques A, De Ruffray P, et al. Identification of tobacco ESTs with a hypersensitive response (HR)-specific pattern of expression and likely involved in the induction of the HR and/or localized acquired resistance (LAR). Plant Physiol. Biochem[J],2005,43:249-259.
    [145]Du W, Yu DY, Fu SX.Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max (L.) Merr.]. Agric. Sci. China[J],2009,8:529-537.
    [146]Du W, Wang M, Fu S.Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments. J. Genet. Genomics[J],2009,36:721-731.
    [147]Ferreira AM, Vitor RW, Carneiro AC, et al. Genetic variability of Brazilian Toxoplasma gondii strains detected by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and simple sequence repeat anchored-PCR (SSR-PCR). Infect. Genet. Evol[J],2004,4:131-142.
    [148]Sayama T, Nakazaki T, Ishikawa G, et al. QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci. [J],2009,176:514-521.
    [149]Liu Y, Li Y, Zhou G, etal. Development of soybean EST-SSR markers and their use to assess genetic diversity in the subgenus Soja. Agr. Sci. China[J],2010,9:1423-1429.
    [150]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res[J],1990,18:7213-7218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700